Catalytic and Non-Catalytic Co-Gasification of Biomass and Plastic Wastes for Energy Production
Abstract
1. Introduction
2. Gasification Fundamentals
2.1. Basics of Gasification: Reactions, Products (Syngas, Tar, and Char), and Energy Potential
- Boudouard reaction
- Water—gas or steam
- Hydrogasification
- Oxidation reactions
- Shift reaction
- Methanation reaction
- Steam reforming reaction
2.2. Feedstock Characteristics
- Biomass waste: Types (agricultural, forestry) and properties (moisture, ash content).
- Non-biodegradable plastics and their challenges (chlorine content and melting behaviour).
3. Co-Gasification Mechanisms
3.1. Synergistic Effects: How Plastics Enhance H2/CO in Syngas (e.g., Plastics Act as Hydrogen Donors)
3.2. Plastics and Biomass Blends: Physicochemical Advantages of Co-Feeding
3.3. Exploration of Co-Gasification Studies
3.3.1. Biomass/Plastic Blends Co-Gasification, Non-Catalytic
3.3.2. Biomass/Plastic Blends Co-Gasification, Catalytic
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PLA | Polylactic Acid |
PHA | Polyhydroxyalkanoates |
PET | polyethylene terephthalate |
PETE | Polyethylene terephthalate |
PP | polypropylene |
HDPE | High-Density Polyethylene |
LDPE | Low-Density Polyethylene |
PVC | Polyvinyl Chloride |
PS | Polystyrene plastic |
LHV | Lower Heating Value |
PE | polyethylene |
IEA | International Energy Agency |
NR | natural rubber |
UT | used tires |
References
- Kaur, A.; Bharti, R.; Sharma, R. Municipal solid waste as a source of energy. Mater. Today Proc. 2023, 81, 904–915. [Google Scholar] [CrossRef]
- 1.1. Definition and Classification of Waste—MOOC: Auditing Waste Management, University of Tartu. Available online: https://sisu.ut.ee/waste/11-definition-and-classification-waste/ (accessed on 27 May 2025).
- Industrial Waste Management Market Size & Share to 2023–2030, KBV Research. Available online: https://www.kbvresearch.com/industrial-waste-management-market/ (accessed on 27 May 2025).
- Industrial Waste Management Market Revenue & Growth [2032], Fortune. Available online: https://www.fortunebusinessinsights.com/industry-reports/industrial-waste-management-market-100116 (accessed on 27 May 2025).
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Biomass, Energy. Available online: https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomass_en (accessed on 28 May 2025).
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Pilapitiya, P.G.C.N.T.; Ratnayake, A.S. The world of plastic waste: A review. Clean. Mater. 2024, 11, 100220. [Google Scholar] [CrossRef]
- Chidepatil, A.; Cárdenas, J.F.M.; Sankaran, K. Circular Economy of Plastics: Wishful Thinking or A Way Forward? J. Inst. Eng. (India) Ser. C 2021, 103, 647–653. [Google Scholar] [CrossRef]
- Bashir, M.A.; Ji, T.; Weidman, J.; Soong, Y.; Gray, M.L.; Shi, F.; Wang, P. Plastic waste gasification for low-carbon hydrogen production: A comprehensive review. Energy Adv. 2025, 4, 330–363. [Google Scholar] [CrossRef]
- Ioelovich, M. Recent findings and the energetic potential of plant biomass as a renewable source of biofuels-A review. BioResources 2014, 10, 1879–1914. [Google Scholar] [CrossRef]
- Alhulaybi, Z.; Dubdub, I. Comprehensive Kinetic Study of PET Pyrolysis Using TGA. Polymers 2023, 15, 3010. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Hall, P. Densification of Biomass and Waste Plastic Blends as a Solid Fuel: Hazards, Advantages, and Perspectives. Front. Energy Res. 2020, 8, 58. [Google Scholar] [CrossRef]
- Leary, M. 25-Materials selection and substitution using aluminium alloys. In Fundamentals of Aluminium Metallurgy; Woodhead Publishing: Sawston, UK, 2011; pp. 784–827. [Google Scholar] [CrossRef]
- Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and carbon emissions. Mater. Struct. 2013, 47, 1055–1065. [Google Scholar] [CrossRef]
- EIA. Available online: https://www.eia.gov/pressroom/releases/press542.php (accessed on 7 July 2025).
- Lundgren, J.; Vreugdenhil, B.; Ganjkhanlou, Y.; Baldwin, R. Biomass Gasification for Hydrogen Production. Available online: https://www.ieabioenergy.com/wp-content/uploads/2025/03/IEA-Bioenergy_T33_Bio-H2_Final_v2.pdf (accessed on 9 June 2025).
- Garcia, L.; Cordoba, M.; Dosso, L.; Nardi, F.; Vera, C.; Quiroga, M.; Busto, M.; Badano, J. Catalytic Gasification and Reforming of Residual Biomass in a Bench Scale System with Low Cost Catalysts. ChemPlusChem 2023, 88, e202300376. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, Q.; Wang, Y.; Guo, P.; Wang, Z.; Liu, H.; Akbari, A. Investigation of Biomass Gasification Potential in Syngas Production: Characteristics of Dried Biomass Gasification Using Steam as the Gasification Agent. Energy Fuels 2019, 34, 1033–1040. [Google Scholar] [CrossRef]
- Lv, P.M.; Xiong, Z.H.; Chang, J.; Wu, C.Z.; Chen, Y.; Zhu, J.X. An experimental study on biomass air–steam gasification in a fluidized bed. Bioresour. Technol. 2004, 95, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, Y.-L.; Zhao, X.-Y.; Cao, J.-P. Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification. J. Energy Inst. 2020, 93, 1083–1098. [Google Scholar] [CrossRef]
- Shah, H.H.; Amin, M.; Iqbal, A.; Nadeem, I.; Kalin, M.; Soomar, A.M.; Galal, A.M. A review on gasification and pyrolysis of waste plastics. Front. Chem. 2023, 10, 960894. [Google Scholar] [CrossRef]
- Aentung, T.; Patcharavorachot, Y.; Wu, W. Co-Gasification of Plastic Waste Blended with Biomass: Process Modeling and Multi-Objective Optimization. Processes 2024, 12, 1906. [Google Scholar] [CrossRef]
- Reed, T.B. Principles and Technology of Biomass Gasification. In Advances in Solar Energy: An Annual Review of Research and Development Volume 2; Böer, K.W., Duffie, J.A., Eds.; Springer Nature: Boston, MA, USA, 1985; pp. 125–174. [Google Scholar] [CrossRef]
- Bartels, M.; Lin, W.; Nijenhuis, J.; Kapteijn, F.; Van Ommen, J.R. Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention. Prog. Energy Combust. Sci. 2008, 34, 633–666. [Google Scholar] [CrossRef]
- Donskoy, I. Particle Agglomeration of Biomass and Plastic Waste during Their Thermochemical Fixed-Bed Conversion. Energies 2023, 16, 4589. [Google Scholar] [CrossRef]
- Tremel, A.; Becherer, D.; Fendt, S.; Gaderer, M.; Spliethoff, H. Performance of entrained flow and fluidised bed biomass gasifiers on different scales. Energy Convers. Manag. 2013, 69, 95–106. [Google Scholar] [CrossRef]
- Chanthakett, A.; Arif, M.T.; Khan, M.M.K.; Oo, A.M.T. Performance assessment of gasification reactors for sustainable management of municipal solid waste. J. Environ. Manag. 2021, 291, 112661. [Google Scholar] [CrossRef]
- Hrbek, J. Gasification Developments in Europe and the USA. 2021. Available online: https://www.ieabioenergy.com/wp-content/uploads/2021/03/Hrbek-Gasification-developments-in-Europe-USA.pdf (accessed on 2 May 2025).
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; De Medeiros, G.A.; Pereira, A.D.E.S.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Chandraratne, M.R.; Daful, A.G. Hydrothermal Conversion of Lignocellulosic Biomass to Hydrochar: Production, Characterization, and Applications. In From Biomass to Biobased Products; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Santana, H.E.P.; Jesus, M.; Santos, J.; Rodrigues, A.C.; Pires, P.; Ruzene, D.S.; Silva, I.P.; Silva, D.P. Lignocellulosic Biomass Gasification: Perspectives, Challenges, and Methods for Tar Elimination. Sustainability 2025, 17, 1888. [Google Scholar] [CrossRef]
- Lucas, Y. The Role of Plants in Controlling Rates and Products of Weathering: Importance of Biological Pumping. Annu. Rev. Earth Planet. Sci. 2001, 29, 135–163. [Google Scholar] [CrossRef]
- Levine, S.E.; Broadbelt, L.J. Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution. Polym. Degrad. Stab. 2009, 94, 810–822. [Google Scholar] [CrossRef]
- Hasan, M.M.; Haque, R.; Jahirul, M.I.; Rasul, M.G. Pyrolysis of plastic waste for sustainable energy Recovery: Technological advancements and environmental impacts. Energy Convers. Manag. 2025, 326, 119511. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology, NIST. Available online: https://www.nist.gov/ (accessed on 2 June 2025).
- Singh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. J. Environ. Manag. 2019, 239, 395–406. [Google Scholar] [CrossRef]
- Meng, A.; Chen, S.; Long, Y.; Zhou, H.; Zhang, Y.; Li, Q. Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Manag. 2015, 46, 247–256. [Google Scholar] [CrossRef]
- Parvathi, K.; Ramesan, M.T. Structure, properties, and antibacterial behavior of nickel oxide reinforced natural rubber nanocomposites for flexible electronic applications. J. Appl. Polym. Sci. 2022, 139, e53120. [Google Scholar] [CrossRef]
- Ng, H.M.; Saidi, N.M.; Omar, F.S.; Ramesh, K.; Ramesh, S.; Bashir, S. Thermogravimetric Analysis of Polymers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 1–29. [Google Scholar] [CrossRef]
- Park, S.S.; Seo, D.K.; Lee, S.H.; Yu, T.-U.; Hwang, J. Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor. J. Anal. Appl. Pyrolysis 2012, 97, 29–38. [Google Scholar] [CrossRef]
- Chin, B.L.F.; Yusup, S.; Al Shoaibi, A.; Kannan, P.; Srinivasakannan, C.; Sulaiman, S.A. Comparative studies on catalytic and non-catalytic co-gasification of rubber seed shell and high density polyethylene mixtures. J. Clean. Prod. 2014, 70, 303–314. [Google Scholar] [CrossRef]
- Fernandez, A.; Soria, J.; Rodriguez, R.; Baeyens, J.; Mazza, G. Macro-TGA steam-assisted gasification of lignocellulosic wastes. J. Environ. Manag. 2019, 233, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Shagali, A.A.; Hu, S.; Li, H.; He, L.; Han, H.; Chi, H.; Qing, H.; Xu, J.; Jiang, L.; Wang, Y.; et al. Synergistic interactions and co-pyrolysis characteristics of lignocellulosic biomass components and plastic using a fast heating concentrating photothermal TGA system. Renew. Energy 2023, 215, 118936. [Google Scholar] [CrossRef]
- Avni, E.; Suib, S.L. Free Radical Formation in Lignin During Pyrolysis. Holzforschung 1985, 39, 33–40. [Google Scholar] [CrossRef]
- Klapiszewski, U.; Szalaty, T.J.; Jesionowski, T. Depolymerization and Activation of Lignin: Current State of Knowledge and Perspectives. In Lignin—Trends and Applications; IntechOpen: London, UK, 2018; pp. 1–27. [Google Scholar] [CrossRef]
- Dubdub, I.; Al-Yaari, M. Pyrolysis of Mixed Plastic Waste: I. Kinetic Study. Materials 2020, 13, 4912. [Google Scholar] [CrossRef]
- Ye, L.; Li, T.; Hong, L. Understanding enhanced char formation in the thermal decomposition of PVC resin: Role of intermolecular chlorine loss. Mater. Today Commun. 2021, 26, 102186. [Google Scholar] [CrossRef]
- Das, P. Pyrolysis study of a waste plastic mixture through different kinetic models using isothermal and nonisothermal mechanism. RSC Adv. 2024, 14, 25599–25618. [Google Scholar] [CrossRef]
- Holland, B.J.; Hay, J.N. The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer 2002, 43, 1835–1847. [Google Scholar] [CrossRef]
- Parekh, D.B.; Rotliwala, Y.C.; Parikh, P.A. Synergetic pyrolysis of high density polyethylene and Jatropha and Karanj cakes: A thermogravimetric study. J. Renew. Sustain. Energy 2009, 1, 033107. [Google Scholar] [CrossRef]
- Chaudhary, A.; Lakhani, J.; Dalsaniya, P.; Chaudhary, P.; Trada, A.; Shah, N.K.; Upadhyay, D.S. Slow pyrolysis of low-density Poly-Ethylene (LDPE): A batch experiment and thermodynamic analysis. Energy 2022, 263, 125810. [Google Scholar] [CrossRef]
- Osayi, J.I.; Iyuke, S.; Daramola, M.O.; Osifo, P.; Van Der Walt, I.J.; Ogbeide, S.E. Evaluation of pyrolytic oil from used tires and natural rubber (Hevea brasiliensis). Chem. Eng. Commun. 2018, 205, 805–821. [Google Scholar] [CrossRef]
- Wu, F.; Ben, H.; Yang, Y.; Jia, H.; Wang, R.; Han, G. Effects of Different Conditions on Co-Pyrolysis Behavior of Corn Stover and Polypropylene. Polymers 2020, 12, 973. [Google Scholar] [CrossRef]
- Li, J.; Burra, K.R.G.; Wang, Z.; Liu, X.; Gupta, A.K. Co-gasification of high-density polyethylene and pretreated pine wood. Appl. Energy 2021, 285, 116472. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Man, P. Kinetic Analysis of Thermal Decomposition of Polyvinyl Chloride at Various Oxygen Concentrations. Fire 2023, 6, 404. [Google Scholar] [CrossRef]
- Lee, T.; Lee, J.; Ok, Y.S.; Oh, J.-I.; Lee, S.-R.; Rinklebe, J.; Kwon, E.E. Utilizing CO2 to suppress the generation of harmful chemicals from thermal degradation of polyvinyl chloride. J. Clean. Prod. 2017, 162, 1465–1471. [Google Scholar] [CrossRef]
- Felix, C.B.; Chen, W.-H.; Ubando, A.T.; Park, Y.-K.; Lin, K.-Y.A.; Pugazhendhi, A.; Nguyen, T.-B.; Dong, C.-D. A comprehensive review of thermogravimetric analysis in lignocellulosic and algal biomass gasification. Chem. Eng. J. 2022, 445, 136730. [Google Scholar] [CrossRef]
- Pinto, F.; André, R.; Miranda, M.; Neves, D.; Varela, F.; Santos, J. Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel 2016, 180, 407–416. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, M.; Jones, I.; Okoye, C.O.; Zhang, Z.; Gao, J.; Zhang, D. Transformation and fate of sulphur during steam gasification of a spent tyre pyrolysis char. Fuel 2022, 321, 124091. [Google Scholar] [CrossRef]
- Emadi, B.; Iroba, K.L.; Tabil, L.G. Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. Appl. Energy 2017, 198, 312–319. [Google Scholar] [CrossRef]
- Mishra, R.; Ong, H.C.; Lin, C.-W. Progress on co-processing of biomass and plastic waste for hydrogen production. Energy Convers. Manag. 2023, 284, 116983. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, L.; Guan, J.; Xiong, Q.; Zhang, S.; Jin, X. A Review on Biomass Gasification: Effect of Main Parameters on Char Generation and Reaction. Energy Fuels 2020, 34, 13438–13455. [Google Scholar] [CrossRef]
- Chen, W.-H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Fazil, A.; Kumar, S.; Mahajani, S.M. Downdraft co-gasification of high ash biomass and plastics. Energy 2022, 243, 123055. [Google Scholar] [CrossRef]
- Wang, B.; Gupta, R.; Bei, L.; Wan, Q.; Sun, L. A review on gasification of municipal solid waste (MSW): Syngas production, tar formation, mineral transformation and industrial challenges. Int. J. Hydrogen Energy 2023, 48, 26676–26706. [Google Scholar] [CrossRef]
- Block, C.; Ephraim, A.; Weiss-Hortala, E.; Minh, D.P.; Nzihou, A.; Vandecasteele, C. Co-pyrogasification of Plastics and Biomass, a Review. Waste Biomass Valorization 2018, 10, 483–509. [Google Scholar] [CrossRef]
- Robinson, T.; Bronson, B.; Gogolek, P.; Mehrani, P. Comparison of the air–blown bubbling fluidized bed gasification of wood and wood–PET pellets. Fuel 2016, 178, 263–271. [Google Scholar] [CrossRef]
- Zhu, H.L.; Zhang, Y.S.; Materazzi, M.; Aranda, G.; Brett, D.J.L.; Shearing, P.R.; Manos, G. Co-gasification of beech-wood and polyethylene in a fluidized-bed reactor. Fuel Process. Technol. 2019, 190, 29–37. [Google Scholar] [CrossRef]
- Alvarez, J.; Kumagai, S.; Wu, C.; Yoshioka, T.; Bilbao, J.; Olazar, M.; Williams, P.T. Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. Int. J. Hydrogen Energy 2014, 39, 10883–10891. [Google Scholar] [CrossRef]
- Baloch, H.A.; Yang, T.; Li, R.; Nizamuddin, S.; Kai, X.; Bhutto, A.W. Parametric study of co-gasification of ternary blends of rice straw, polyethylene and polyvinylchloride. Clean Technol. Environ. Policy 2016, 18, 1031–1042. [Google Scholar] [CrossRef]
- Basha, M.H.; Sulaiman, S.A.; Uemura, Y. Co-gasification of palm kernel shell and polystyrene plastic: Effect of different operating conditions. J. Energy Inst. 2020, 93, 1045–1052. [Google Scholar] [CrossRef]
- García-Bacaicoa, P.; Mastral, J.F.; Ceamanos, J.; Berrueco, C.; Serrano, S. Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier. Bioresour. Technol. 2008, 99, 5485–5491. [Google Scholar] [CrossRef]
- Yu, H.; Yang, X.; Jiang, L.; Chen, D. Experimental Study on Co-gasification Characteristics of Biomass and Plastic Wastes. BioResources 2014, 9, 5615–5626. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, C.; Peng, B.; Liu, C.; Li, Z.; Wu, K.; Zhang, H.; Xiao, R. High H2/CO ratio syngas production from chemical looping co-gasification of biomass and polyethylene with CaO/Fe2O3 oxygen carrier. Energy Convers. Manag. 2019, 199, 111951. [Google Scholar] [CrossRef]
- Lopez, G.; Erkiaga, A.; Amutio, M.; Bilbao, J.; Olazar, M. Effect of polyethylene co-feeding in the steam gasification of biomass in a conical spouted bed reactor. Fuel 2015, 153, 393–401. [Google Scholar] [CrossRef]
- Wang, Z.; Burra, K.G.; Lei, T.; Gupta, A.K. Co-gasification characteristics of waste tire and pine bark mixtures in CO2 atmosphere. Fuel 2019, 257, 116025. [Google Scholar] [CrossRef]
- Duman, G.; Uddin, A.; Yanik, J. The effect of char properties on gasification reactivity. Fuel Process. Technol. 2014, 118, 75–81. [Google Scholar] [CrossRef]
- Hongthong, S.; Sangsida, W.; Wongcharee, S.; Chanthakhot, A.; Aungthitipan, P.; Suwannahong, K.; Kreetachat, T.; Rioyo, J. Enhanced Biochar Production via Co-Pyrolysis of Biomass Residual with Plastic Waste after Recycling Process. Int. J. Chem. Eng. 2024, 1, 1176275. [Google Scholar] [CrossRef]
- Déparrois, N.; Singh, P.; Burra, K.G.; Gupta, A.K. Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2. Appl. Energy 2019, 246, 1–10. [Google Scholar] [CrossRef]
- Mishra, R.K. Co-pyrolysis of low-value wood sawdust and non-recyclable plastics into char: Effect of plastic loading on char yield and its properties. RSC Sustain. 2025, 3, 1774–1787. [Google Scholar] [CrossRef]
- Burra, K.G.; Gupta, A.K. Synergistic effects in steam gasification of combined biomass and plastic waste mixtures. Appl. Energy 2018, 211, 230–236. [Google Scholar] [CrossRef]
- Parrillo, F.; Ardolino, F.; Boccia, C.; Calì, G.; Marotto, D.; Pettinau, A.; Arena, U. Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor. Energy 2023, 273, 127220. [Google Scholar] [CrossRef]
- Xu, D.; Xiong, Y.; Zhang, S.; Su, Y. The synergistic mechanism between coke depositions and gas for H2 production from co-pyrolysis of biomass and plastic wastes via char supported catalyst. Waste Manag. 2021, 121, 23–32. [Google Scholar] [CrossRef]
- Ahmed, I.I.; Nipattummakul, N.; Gupta, A.K. Characteristics of syngas from co-gasification of polyethylene and woodchips. Appl. Energy 2011, 88, 165–174. [Google Scholar] [CrossRef]
- Buentello-Montoya, D.A.; Duarte-Ruiz, C.A.; Maldonado-Escalante, J.F. Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality. Energy 2022, 266, 126510. [Google Scholar] [CrossRef]
- Midilli, A.; Kucuk, H.; Haciosmanoglu, M.; Akbulut, U.; Dincer, I. A review on converting plastic wastes into clean hydrogen via gasification for better sustainability. Int. J. Energy Res. 2021, 46, 4001–4032. [Google Scholar] [CrossRef]
- Wilk, V.; Hofbauer, H. Co-gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels. Energy Fuels 2013, 27, 3261–3273. [Google Scholar] [CrossRef]
- Cortazar, M.; Santamaria, L.; Lopez, G.; Alvarez, J.; Zhang, L.; Wang, R.; Bi, X.; Olazar, M. A comprehensive review of primary strategies for tar removal in biomass gasification. Energy Convers. Manag. 2022, 276, 116496. [Google Scholar] [CrossRef]
- Cortazar, M.; Alvarez, J.; Lopez, G.; Amutio, M.; Santamaria, L.; Bilbao, J.; Olazar, M. Role of temperature on gasification performance and tar composition in a fountain enhanced conical spouted bed reactor. Energy Convers. Manag. 2018, 171, 1589–1597. [Google Scholar] [CrossRef]
- Upadhyay, D.S.; Sakhiya, A.K.; Panchal, K.; Patel, A.H.; Patel, R.N. Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach. Energy 2019, 168, 833–846. [Google Scholar] [CrossRef]
- Basu, P. Chapter 6–Design of Biomass Gasifiers. In Biomass Gasification and Pyrolysis; Academic Press: Cambridge, MA, USA, 2010; pp. 167–228. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Wu, R.; Zeng, X.; Gao, S.; Xu, G. Fundamentals of Catalytic Tar Removal over in Situ and ex Situ Chars in Two-Stage Gasification of Coal. Energy Fuels 2013, 28, 58–66. [Google Scholar] [CrossRef]
- Tang, W.; Cao, J.; He, Z.; Jiang, W.; Wang, Z.; Zhao, X. Recent Progress of Catalysts for Reforming of Biomass Tar/Tar Models at Low Temperatures-A Short Review. ChemCatChem 2023, 15, e202300581. [Google Scholar] [CrossRef]
- Keller, M.; Sharma, A. Reverse Boudouard reforming produces CO directly suitable for the production of methanol from CO2 and CH4. Chem. Eng. J. 2022, 431, 134127. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, S.; Wang, Y.; Zhang, Y.; Zhu, Y.; Zong, B.; Hu, J.; Williams, P.; Wu, C. The role of reverse Boudouard reaction during integrated CO2 capture and utilisation via dry reforming of methane. Chem. Eng. J. 2024, 491, 151668. [Google Scholar] [CrossRef]
- Shahbaz, M.; Yusup, S.; Inayat, A.; Patrick, D.O.; Ammar, M. The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: A review. Renew. Sustain. Energy Rev. 2017, 73, 468–476. [Google Scholar] [CrossRef]
- Ding, X.; Jiao, W.; Liu, Y.; Wang, Z.; Fang, Y. Methane production from high-pressure catalytic steam hydrogasification of sawdust char on K-modified transition metal composite catalysts. Fuel 2024, 363, 131000. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.; Byun, S.W.; Shin, H.; Ju, Y.; Min, H.; Kim, Y.J.; Heo, I.; Hazlett, M.J.; Kim, M.; et al. Impact of Pd:Pt ratio of Pd/Pt bimetallic catalyst on CH4 oxidation. Appl. Catal. B Environ. 2022, 316, 121623. [Google Scholar] [CrossRef]
- Yan, H.; Qin, X.-T.; Yin, Y.; Teng, Y.-F.; Jin, Z.; Jia, C.-J. Promoted Cu-Fe3O4 catalysts for low-temperature water gas shift reaction: Optimization of Cu content. Appl. Catal. B Environ. 2018, 226, 182–193. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, S.; Wang, Y.; Zhang, J.; Xu, D.; Gong, Y. Gasification of two and three-components mixture in supercritical water: Influence of NaOH and initial reactants of acetic acid and phenol. Int. J. Hydrogen Energy 2012, 37, 2278–2286. [Google Scholar] [CrossRef]
- Ngo, S.I.; García-Bordejé, E. Catalytic CO2 Methanation Reactors and Processes. Catalysts 2023, 13, 1422. [Google Scholar] [CrossRef]
- Arnold, R.A.; Hill, J.M. Catalysts for gasification: A review. Sustain. Energy Fuels 2019, 3, 656–672. [Google Scholar] [CrossRef]
- Cao, C.; Bian, C.; Wang, G.; Bai, B.; Xie, Y.; Jin, H. Co-gasification of plastic wastes and soda lignin in supercritical water. Chem. Eng. J. 2020, 388, 124277. [Google Scholar] [CrossRef]
- Chai, Y.; Wang, M.; Gao, N.; Duan, Y.; Li, J. Experimental study on pyrolysis/gasification of biomass and plastics for H2 production under new dual-support catalyst. Chem. Eng. J. 2020, 396, 125260. [Google Scholar] [CrossRef]
- Niu, Y.-H.; Chi, Z.-Y.; Li, M.; Du, J.-Z.; Han, F.-T. Advancements in biomass gasification and catalytic tar-cracking technologies. Mater. Rep. Energy 2024, 4, 100295. [Google Scholar] [CrossRef]
- Islam, W. A review of dolomite catalyst for biomass gasification tar removal. Fuel 2020, 267, 117095. [Google Scholar] [CrossRef]
- Kumagai, S.; Alvarez, J.; Blanco, P.H.; Wu, C.; Yoshioka, T.; Olazar, M.; Williams, P.T. Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the pyrolysis–gasification of a biomass/plastic mixture. J. Anal. Appl. Pyrolysis 2015, 113, 15–21. [Google Scholar] [CrossRef]
- Xu, D.; Xiong, Y.; Ye, J.; Su, Y.; Dong, Q.; Zhang, S. Performances of syngas production and deposited coke regulation during co-gasification of biomass and plastic wastes over Ni/-Al2O3 catalyst: Role of biomass to plastic ratio in feedstock. Chem. Eng. J. 2020, 392, 123728. [Google Scholar] [CrossRef]
Biomass | Ash, % | LHV, MJ/kg | Ref. |
---|---|---|---|
Used printing paper | 29 | 11 | [9] |
Used newspaper | 18 | 12.9 | [9] |
Rice straw | 16 | 12.3 | [9] |
Rice husk | 15 | 14.6 | [9] |
Corn stover | 6 | 15 | [9] |
Wheat straw | 6 | 14.7 | [9] |
Switchgrass | 5 | 14.8 | [9] |
Miscanthus | 3 | 16.3 | [9] |
Used cardboard | 7 | 15 | [9] |
PET | 0.6 | 21.9 | [10,11] |
HDPE | 0.2 | 43.6 | [11,12] |
PVC | 0.2 | 16.8 | [10,11] |
LDPE | 0.1 | 43.5 | [11,12] |
PP | 0.3 | 44.2 | [11,12] |
PS | 0.2 | 44.2 | [11,12] |
Reactor Type | Key Advantage | Biggest Challenge for Co-Gasification |
---|---|---|
Fluidised-Bed (FBR) | Excellent mixing, temperature control | Agglomeration/Defluidisation from melting plastic |
Fixed-Bed (Downdraft) | Simple design, low tar | Clogging from heterogeneous feed and molten plastic |
Entrained-Flow (EFR) | High efficiency, clean syngas | Pre-processing (grinding to micron size) |
Plasma | Handles any feed, cleanest syngas | High energy consumption (cost) |
Type Biomass | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|
Hardwood | 42 | 19 | 19 |
Softwood | 43 | 15 | 32 |
Grassy | 31 | 25 | 13 |
Agro-industrial | 19–44 | 7–36 | 1–48 |
Type of Feedstocks | T (°C) | Plastic Composition (%) | H2 Yields (%) | LHV (MJ/kg) | Ref. | |||
---|---|---|---|---|---|---|---|---|
Biomass | Plastic | Biomass Alone | Blend | Biomass Alone | Blend | |||
Garden Waste | LDPE | 991 | 25 | 10.8 | 13.5 | 3.5 | 4.7 | [66] |
Wood | HDPE | 900 | 25 | 15.5 | 19.5 | 160 | 19.6 | [55] |
Sawdust | PE | 850 | 50 | 29.7 | 34.1 | 10.7 | 18.9 | [69] |
Palm shell | PS | 900 | 30 | 14.0 | 12.5 | 11.0 | 12.5 | [72] |
Rice straw | PVC | 900 | 50 | 42.0 | 45.0 | 11.9 | 12.6 | [71] |
Wood | PET | 800 | 50 | 8.1 | 5.4 | 5.0 | 4.2 | [68] |
Wood | PP | 800 | 20 | 29.8 | 36.6 | - | - | [70] |
Wood | PS | 800 | 20 | 29.8 | 37.4 | - | - | [70] |
Wood | HDPE | 780 | 15 | 11.2 | 14.4 | 3.2 | 6.7 | [73] |
Rice straw | PE | 1000 | 30 | 10.3 | 13.7 | 3.0 | 5.5 | [74] |
Type of Feedstocks | Plastic Composition (%) | Tar Yields | Ref. | ||
---|---|---|---|---|---|
Biomass | Plastic | Biomass Alone | Blend | ||
Wood | PE | 50 | 0.7 % | 1.3% | [69] |
Rice | PE | 30 | 2.20 mg/g | 3.29 mg/g | [75] |
Wood | PET | 50 | 20.9 g/Nm3 | 114 g/Nm3 | [68] |
Wood | PS | 20 | 71% | 73.7% | [70] |
Challenge | Specific Technical Challenges | Impact on Process Efficiency |
---|---|---|
Operational | Clogging, fouling, catalyst deactivation | Increased downtime, high maintenance costs, reduced availability. |
Energy | Loss of chemical energy to tar instead of syngas | Lower cold gas efficiency, reduced fuel yield. |
Economic | High cost of tar removal systems | Higher overall cost of energy/product, lower profitability. |
Application | Syngas unsuitable for high-value end-uses | Limits marketability to low-value heat, reduces ROI. |
Environmental | Toxicity, handling hazards, waste disposal | Increased compliance costs, safety risks. |
Reaction | Name | Catalyst | Ref. |
---|---|---|---|
C + CO2—2CO | Boudouard reaction (1) | Fe, Ni, Co, Mo | [95,96] |
C + H2O—CO + H2 | Water—gas or steam (2) | Alkali, alkaline earth, Ni | [97] |
C + 2H2—CH4 | Hydrogasification (3) | Pd, Ni | [98] |
C + 0.5O2—CO | Partial oxidation of carbon (5) | Pt, Pd, Ni, Co | [99] |
C + O2—CO2 | Complete oxidation of carbon (4) | Pt, Pd | [99] |
CO + H2O—CO2 + H2 | Shift reaction (8) | Fe (high T); Cu (low T) | [100] |
CH4 + H2O—CO + 3H2 | Steam reforming reaction (13) | Alkali, alkaline earth | [101] |
CO2 + 4H2—CH4 + 2H2O | Methanation reaction (11) | Ni, Co, Ru | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busto, M.; Dosso, L.A.; Nardi, F.; Badano, J.M.; Vera, C.R. Catalytic and Non-Catalytic Co-Gasification of Biomass and Plastic Wastes for Energy Production. Catalysts 2025, 15, 844. https://doi.org/10.3390/catal15090844
Busto M, Dosso LA, Nardi F, Badano JM, Vera CR. Catalytic and Non-Catalytic Co-Gasification of Biomass and Plastic Wastes for Energy Production. Catalysts. 2025; 15(9):844. https://doi.org/10.3390/catal15090844
Chicago/Turabian StyleBusto, Mariana, Liza Ainalen Dosso, Franco Nardi, Juan Manuel Badano, and Carlos Roman Vera. 2025. "Catalytic and Non-Catalytic Co-Gasification of Biomass and Plastic Wastes for Energy Production" Catalysts 15, no. 9: 844. https://doi.org/10.3390/catal15090844
APA StyleBusto, M., Dosso, L. A., Nardi, F., Badano, J. M., & Vera, C. R. (2025). Catalytic and Non-Catalytic Co-Gasification of Biomass and Plastic Wastes for Energy Production. Catalysts, 15(9), 844. https://doi.org/10.3390/catal15090844