Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = polymeric benzoyl peroxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2510 KiB  
Article
Roles of Polymerization Temperature and Initiator Type on Thermal Properties of Rubitherm® 21 PCM Microcapsules
by Refat Al-Shannaq, Monzer Daoud, Mohammed Farid, Md Wasi Ahmad, Shaheen A. Al-Muhtaseb, Mazhar Ul-Islam, Abdullah Al Saidi and Imran Zahid
Micro 2025, 5(2), 19; https://doi.org/10.3390/micro5020019 - 12 Apr 2025
Viewed by 1424
Abstract
Thermal energy storage offers a viable solution for managing intermediate energy availability challenges. Phase change materials (PCMs) have been extensively studied for their capacity to store thermal energy when available and release it when needed, maintaining a narrow temperature range. However, effective utilization [...] Read more.
Thermal energy storage offers a viable solution for managing intermediate energy availability challenges. Phase change materials (PCMs) have been extensively studied for their capacity to store thermal energy when available and release it when needed, maintaining a narrow temperature range. However, effective utilization of PCMs requires its proper encapsulation in most applications. In this study, microcapsules containing Rubitherm®(RT) 21 PCM (Tpeak = 21 °C, ΔH = 140 kJ/kg), which is suitable for buildings, were synthesized using a suspension polymerization technique at different operating temperatures (45–75 °C). Two different water-insoluble thermal initiators were evaluated: 2,2-Azobis (2,4-dimethyl valeronitrile) (Azo-65) and benzoyl peroxide (BPO). The prepared microcapsules were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), particle size distribution (PSD), scanning electron microscope (SEM), and optical microscopy (OM). Additionally, the microcapsules were subjected to multiple melting and freezing cycles to assess their thermal reliability and performance stability. DSC results revealed that the microcapsules using BPO exhibited a latent heat of melting comparable to those produced with Azo-65 at an operating temperature of 75 °C. However, the onset crystallization temperature for the BPO-encapsulated PCMs was approximately 2 °C lower than that of the Azo-65-encapsulated PCMs. The greatest latent heat of melting, 107.76 J/g, was exhibited by microcapsules produced at 45 °C, representing a PCM content of 82 wt. %. On the other hand, microcapsules synthesized at 55 °C and 75 °C showed latent heats of 96.02 J/g and 95.66 J/g, respectively. The degree of supercooling for PCM microcapsules was reduced by decreasing the polymerization temperature, with the lowest supercooling observed for microcapsules synthesized at 45 °C. All microcapsules exhibited a monodisperse and narrow PSD of ~10 µm, indicating uniformity in microcapsule size and demonstrating that temperature variations had no significant impact on the particle size distribution. Future research should focus on low-temperature polymerization with extended polymerization times. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

17 pages, 3279 KiB  
Article
Fabrication of Functional Polymers with Gradual Release of a Bioactive Precursor for Agricultural Applications
by Oscar G. Marambio, Rudy Martin-Trasancos, Julio Sánchez, Felipe A. Ramos and Guadalupe del C. Pizarro
Gels 2025, 11(2), 90; https://doi.org/10.3390/gels11020090 - 24 Jan 2025
Viewed by 913
Abstract
Biodegradable and biocompatible polymeric materials and stimulus-responsive hydrogels are widely used in the pharmaceutical, agricultural, biomedical, and consumer sectors. The effectiveness of these formulations depends significantly on the appropriate selection of polymer support. Through chemical or enzymatic hydrolysis, these materials can gradually release [...] Read more.
Biodegradable and biocompatible polymeric materials and stimulus-responsive hydrogels are widely used in the pharmaceutical, agricultural, biomedical, and consumer sectors. The effectiveness of these formulations depends significantly on the appropriate selection of polymer support. Through chemical or enzymatic hydrolysis, these materials can gradually release bioactive agents, enabling controlled drug release. The objective of this work is to synthesize, characterize, and apply two controlled-release polymeric systems, focusing on the release of a phyto-pharmaceutical agent (herbicide) at varying pH levels. The copolymers were synthesized via free radical polymerization in solution, utilizing tetrahydrofuran (THF) as the organic solvent and benzoyl peroxide (BPO) as the initiator, without the use of a cross-linking agent. Initially, the herbicide was grafted onto the polymeric chains, and its release was subsequently tested across different pH environments in a heterogeneous phase using an ultrafiltration (UF) system. The development of these two controlled-release polymer systems aimed to measure the herbicide’s release across different pH levels. The goal is to adapt these materials for agricultural use, enhancing soil quality and promoting efficient water usage in farming practices. The results indicate that the release of the herbicide from the conjugate systems exceeded 90% of the bioactive compound after 8 days at pH 10 for both systems. Furthermore, the two polymeric systems demonstrated first-order kinetics for herbicide release in aqueous solutions at different pH levels. The kinetic constant was found to be higher at pH 7 and 10 compared to pH 3. These synthetic hydrogels are recognized as functional polymers suitable for the sustained release of herbicides in agricultural applications. Full article
Show Figures

Graphical abstract

10 pages, 4399 KiB  
Article
Bubble-Free Frontal Polymerization of Acrylates via Redox-Initiated Free Radical Polymerization
by Morteza Ziaee and Mostafa Yourdkhani
Polymers 2024, 16(19), 2830; https://doi.org/10.3390/polym16192830 - 7 Oct 2024
Cited by 2 | Viewed by 2384
Abstract
Thermal frontal polymerization (FP) of acrylate monomers mixed with conventional peroxide initiators leads to significant bubble formation at the polymerizing front, limiting their practical applications. Redox initiators present a promising alternative to peroxide initiators, as they prevent the formation of gaseous byproducts during [...] Read more.
Thermal frontal polymerization (FP) of acrylate monomers mixed with conventional peroxide initiators leads to significant bubble formation at the polymerizing front, limiting their practical applications. Redox initiators present a promising alternative to peroxide initiators, as they prevent the formation of gaseous byproducts during initiator decomposition and lower the front temperature, thereby enabling bubble-free FP. In this study, we investigate the FP of acrylate monomers of varying functionalities, including methyl methacrylate (MMA), 1,6-hexanediol diacrylate (HDDA), and trimethylolpropane triacrylate (TMPTA), using N,N-dimethylaniline/benzoyl peroxide (DMA/BPO) redox couple at room temperature and compare their front behavior, pot life, and bubble formation with those of same resin systems mixed with a conventional peroxide initiator, Luperox 231. The use of redox couples in FP of acrylates shows promise for rapid, energy-efficient manufacturing of polyacrylates and can enable new applications such as 3D printing and composite manufacturing. Full article
(This article belongs to the Special Issue Cross-Linked Polymers II)
Show Figures

Figure 1

17 pages, 5215 KiB  
Article
Preparation and Oil Adsorption of Cellulose-graft-poly(butyl acrylate-N,N′-methylene Bisacrylamide)
by Peng-Xiang Guo, Xin-Gang Wang, Mao-Qian Yang, Jian-Xin Wang and Fan-Jun Meng
Materials 2024, 17(2), 325; https://doi.org/10.3390/ma17020325 - 9 Jan 2024
Cited by 4 | Viewed by 1989
Abstract
With the advancement of industrial economies, incidents involving spills of petroleum products have become increasingly frequent. The resulting pollutants pose significant threats to air, water, soil, plant and animal survival, as well as human health. In this study, microcrystalline cellulose served as the [...] Read more.
With the advancement of industrial economies, incidents involving spills of petroleum products have become increasingly frequent. The resulting pollutants pose significant threats to air, water, soil, plant and animal survival, as well as human health. In this study, microcrystalline cellulose served as the matrix and benzoyl peroxide (BPO) as the initiator, while butyl acrylate (BA) and N,N′-methylene bisacrylamide (MBA) were employed as graft monomers. Through free radical graft polymerization, cellulose-graft-poly(butyl acrylate-N,N′-methylene bisacrylamide) [Cell-g-P(BA-MBA)], possessing oil-adsorbing properties, was synthesized. The chemical structure, elemental composition, surface morphology and wetting properties of the graft polymerization products have been characterized, using infrared spectroscopy, elemental analysis, scanning electron microscopy and contact angle testing. The adsorption properties of Cell-g-P(BA-MBA) for various organic solvents and oils were then assessed. The experimental results demonstrated that Cell-g-P(BA-MBA) exhibited a maximum adsorption capacity of 37.55 g/g for trichloromethane. Adsorption kinetics experiments indicated a spontaneous and exothermic process involving physical adsorption, conforming to the Freundlich isotherm model. Furthermore, adsorption kinetics experiments revealed that Cell-g-P(BA-MBA) displayed favorable reuse and regeneration performance, maintaining its adsorption capacity essentially unchanged over fifteen adsorption–desorption cycles. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

15 pages, 2814 KiB  
Article
Synthesis and Characterization of Pressure-Sensitive Adhesives Based on a Naphthyl Curing Agent
by Junhua Chen, Shiting Li, Xuan Wang, Lili Fang, Dingding Huang, Lin Ke, Jinlian Chen, Qingwei Wang, He Zhang, Yinping Wu, Dongyu Zhu, Chunsheng Li and Xiangying Hao
Polymers 2023, 15(23), 4516; https://doi.org/10.3390/polym15234516 - 24 Nov 2023
Cited by 4 | Viewed by 2633
Abstract
The incorporation of a naphthyl curing agent (NCA) can enhance the thermal stability of pressure-sensitive adhesives (PSAs). In this study, a PSA matrix was synthesized using a solution polymerization process and consisted of butyl acrylate, acrylic acid, and an ethyl acrylate within an [...] Read more.
The incorporation of a naphthyl curing agent (NCA) can enhance the thermal stability of pressure-sensitive adhesives (PSAs). In this study, a PSA matrix was synthesized using a solution polymerization process and consisted of butyl acrylate, acrylic acid, and an ethyl acrylate within an acrylic copolymer. Benzoyl peroxide was used as an initiator during the synthesis. To facilitate the UV curing of the solvent-borne PSAs, glycidyl methacrylate was added to introduce unsaturated carbon double bonds. The resulting UV-curable acrylic PSA tapes exhibited longer holding times at high temperatures (150 °C) compared to uncross-linked PSA tapes, without leaving any residues on the substrate surface. The thermal stability of the PSA was further enhanced by adding more NCA and increasing the UV dosage. This may be attributed to the formation of cross-linking networks within the polymer matrix at higher doses. The researchers successfully balanced the adhesion performance and thermal stability by modifying the amount of NCA and UV radiation, despite the peel strength declining and the holding duration shortening. This research also investigated the effects of cross-linking density on gel content, molecular weight, glass transition temperature, and other properties of the PSAs. Full article
(This article belongs to the Special Issue Advance in Polymer Composites: Fire Protection and Thermal Management)
Show Figures

Figure 1

16 pages, 15406 KiB  
Article
Experimental and Numerical Study of Healing Effect on Delamination Defect in Infusible Thermoplastic Composite Laminates
by Paulius Griskevicius, Kestutis Spakauskas, Swarup Mahato, Valdas Grigaliunas, Renaldas Raisutis, Darius Eidukynas, Dariusz M. Perkowski and Andrius Vilkauskas
Materials 2023, 16(20), 6764; https://doi.org/10.3390/ma16206764 - 19 Oct 2023
Cited by 3 | Viewed by 2028
Abstract
The integrity of delaminated composite structures can be restored by introducing a thermally-based healing effect on continuous fiber-reinforced thermoplastic composites (CFRTPC). The phenomenon of thermoplastics retaining their properties after melting and consolidation has been applied by heating the delaminated composite plates above their [...] Read more.
The integrity of delaminated composite structures can be restored by introducing a thermally-based healing effect on continuous fiber-reinforced thermoplastic composites (CFRTPC). The phenomenon of thermoplastics retaining their properties after melting and consolidation has been applied by heating the delaminated composite plates above their glass transition temperature under pressure. In the current investigation, the composite is comprised of Methyl methacrylate (MMA)-based infusible lamination resin combined with benzoyl peroxide initiator, which polymerizes into a Polymethyl methacrylate (PMMA) matrix. For the reinforcement, unidirectional 220 gr/m2 glass filament fabric was used. Delamination damage is artificially induced during the fabrication of laminate plates. The distributed delamination region before and after thermally activated healing was determined by using non-destructive testing with active thermography. An experimental approach is employed to characterize the thermal healing effect on mechanical properties. Experimentally determined technological parameters for thermal healing have been successfully applied to repair delamination defects on composite plates. Based on the compression-after-impact (CAI) test methodology, the intact, damaged, and healed composite laminates were loaded cyclically to evaluate the healing effect on stiffness and strength. During the CAI test, the 3D digital image correlation (DIC) technique was used to measure the displacement and deformation fields. Experimental results reveal the difference between the behavior of healed and damaged specimens. Additionally, the numerical models of intact, damaged, and healed composite laminates were developed using the finite element code LS-Dyna. Numerical models with calibrated material properties and tie-break contact constants provide good correlation with experimental results and allow for the prediction of the mechanical behavior of intact, damaged, and healed laminated plates. The comparison analysis based on CAI test results and modal characteristics obtained by the 3D Laser Doppler Vibrometer (Polytec GmbH, Karlsbad, Germany) proved that thermal healing partially restores the mechanical properties of damaged laminate plates. In contrast, active thermography does not necessarily indicate a healing effect. Full article
Show Figures

Figure 1

17 pages, 3467 KiB  
Article
Vinylbenzyl Chloride/Styrene-Grafted SBS Copolymers via TEMPO-Mediated Polymerization for the Fabrication of Anion Exchange Membranes for Water Electrolysis
by Andrea Roggi, Elisa Guazzelli, Claudio Resta, Gabriele Agonigi, Antonio Filpi and Elisa Martinelli
Polymers 2023, 15(8), 1826; https://doi.org/10.3390/polym15081826 - 8 Apr 2023
Cited by 9 | Viewed by 3685
Abstract
In this work, a commercial SBS was functionalized with the 2,2,6,6-tetramethylpiperidin-N-oxyl stable radical (TEMPO) via free-radical activation initiated with benzoyl peroxide (BPO). The obtained macroinitiator was used to graft both vinylbenzyl chloride (VBC) and styrene/VBC random copolymer chains from SBS to [...] Read more.
In this work, a commercial SBS was functionalized with the 2,2,6,6-tetramethylpiperidin-N-oxyl stable radical (TEMPO) via free-radical activation initiated with benzoyl peroxide (BPO). The obtained macroinitiator was used to graft both vinylbenzyl chloride (VBC) and styrene/VBC random copolymer chains from SBS to create g-VBC-x and g-VBC-x-co-Sty-z graft copolymers, respectively. The controlled nature of the polymerization as well as the use of a solvent allowed us to reduce the extent of the formation of the unwanted, non-grafted (co)polymer, thereby facilitating the graft copolymer’s purification. The obtained graft copolymers were used to prepare films via solution casting using chloroform. The –CH2Cl functional groups of the VBC grafts were then quantitatively converted to –CH2(CH3)3N+ quaternary ammonium groups via reaction with trimethylamine directly on the films, and the films, therefore, were investigated as anion exchange membranes (AEMs) for potential application in a water electrolyzer (WE). The membranes were extensively characterized to assess their thermal, mechanical, and ex situ electrochemical properties. They generally presented ionic conductivity comparable to or higher than that of a commercial benchmark as well as higher water uptake and hydrogen permeability. Interestingly, the styrene/VBC-grafted copolymer was found to be more mechanically resistant than the corresponding graft copolymer not containing the styrene component. For this reason, the copolymer g-VBC-5-co-Sty-16-Q with the best balance of mechanical, water uptake, and electrochemical properties was selected for a single-cell test in an AEM-WE. Full article
(This article belongs to the Special Issue Advanced Polymer for Membrane Applications)
Show Figures

Figure 1

29 pages, 3850 KiB  
Article
A Comprehensive Study on the Styrene–GTR Radical Graft Polymerization: Combination of an Experimental Approach, on Different Scales, with Machine Learning Modeling
by Cindy Trinh, Sandrine Hoppe, Richard Lainé and Dimitrios Meimaroglou
Macromol 2023, 3(1), 79-107; https://doi.org/10.3390/macromol3010007 - 22 Feb 2023
Viewed by 2316
Abstract
The study of the styrene–Ground Tire Rubber (GTR) graft radical polymerization is particularly challenging due to the complexity of the underlying kinetic mechanisms and nature of GTR. In this work, an experimental study on two scales (∼10 mL and ∼100 mL) and a [...] Read more.
The study of the styrene–Ground Tire Rubber (GTR) graft radical polymerization is particularly challenging due to the complexity of the underlying kinetic mechanisms and nature of GTR. In this work, an experimental study on two scales (∼10 mL and ∼100 mL) and a machine learning (ML) modeling approach are combined to establish a quantitative relationship between operating conditions and styrene conversion. The two-scale experimental approach enables to verify the impact of upscaling on thermal and mixing effects that are particularly important in this heterogeneous system, as also evidenced in previous works. The adopted experimental setups are designed in view of multiple data production, while paying specific attention in data reliability by eliminating the uncertainty related to sampling for analyses. At the same time, all the potential sources of uncertainty, such as the mass loss along the different steps of the process and the precision of the experimental equipment, are also carefully identified and monitored. The experimental results on both scales validate previously observed effects of GTR, benzoyl peroxide initiator and temperature on styrene conversion but, at the same time, reveal the need of an efficient design of the experimental procedure in terms of mixing and of monitoring uncertainties. Subsequently, the most reliable experimental data (i.e., 69 data from the 10 mL system) are used for the screening of a series of diverse supervised-learning regression ML models and the optimization of the hyperparameters of the best-performing ones. These are gradient boosting, multilayer perceptrons and random forest with, respectively, a test R2 of 0.91 ± 0.04, 0.90 ± 0.04 and 0.89 ± 0.05. Finally, the effect of additional parameters, such as the scaling method, the number of folds and the random partitioning of data in the train/test splits, as well as the integration of the experimental uncertainties in the learning procedure, are exploited as means to improve the performance of the developed models. Full article
Show Figures

Figure 1

14 pages, 7500 KiB  
Article
Microanalytical Characterization of an Innovative Modern Mural Painting Technique by SEM-EDS, NMR and Micro-ATR-FTIR among Others
by Pablo Aguilar-Rodríguez, Sandra Zetina, Adrián Mejía-González and Nuria Esturau-Escofet
Molecules 2023, 28(2), 564; https://doi.org/10.3390/molecules28020564 - 5 Jan 2023
Cited by 3 | Viewed by 2795
Abstract
During the 20th century, modern painters experimented with different mediums and painting techniques, one of them was Rafael Coronel in his mural painting, Paisaje Abstracto (Abstract landscape). The painting was created with a peculiar pouring technique and an unknown binding medium; [...] Read more.
During the 20th century, modern painters experimented with different mediums and painting techniques, one of them was Rafael Coronel in his mural painting, Paisaje Abstracto (Abstract landscape). The painting was created with a peculiar pouring technique and an unknown binding medium; ageing produced fractures and severe conservation problems. Therefore, the characterization of the painting medium became an urgent matter in order to understand the current condition of the painting and to develop a proper treatment. The aim of this research was to characterize the chemical composition and painting technique of Paisaje Abstracto. To approach this goal two microsamples were taken and analyzed by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), nuclear magnetic resonance (NMR) spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), micro attenuated total reflection Fourier transform infrared spectroscopy (micro-ATR-FTIR) and gas chromatography/mass spectrometry (GC/MS). The analysis allowed for the identification of cadmium sulfide (CdS) and titanium dioxide (TiO2) as inorganic pigments; aluminosilicate fillers; poly(methyl methacrylate) (pMMA) as a binder; MMA monomer, red organic pigment PR181; benzoyl peroxide, dibutyl phthalate and 1-octadecanol as organic additives. This study presents an innovative painting technique with pMMA, a medium not commonly used by artists, which was probably polymerized onto the painting support. Full article
(This article belongs to the Special Issue Advances in Analytical Strategies to Study Cultural Heritage Samples)
Show Figures

Graphical abstract

16 pages, 2359 KiB  
Article
Novel Tuning of PMMA Orthopedic Bone Cement Using TBB Initiator: Effect of Bone Cement Extracts on Bioactivity of Osteoblasts and Osteoclasts
by Keiji Komatsu, Kosuke Hamajima, Ryotaro Ozawa, Hiroaki Kitajima, Takanori Matsuura and Takahiro Ogawa
Cells 2022, 11(24), 3999; https://doi.org/10.3390/cells11243999 - 10 Dec 2022
Cited by 13 | Viewed by 2563
Abstract
Bone cement containing benzoyl peroxide (BPO) as a polymerization initiator are commonly used to fix orthopedic metal implants. However, toxic complications caused by bone cement are a clinically significant problem. Poly (methyl methacrylate) tri-n-butylborane (PMMA-TBB), a newly developed material containing TBB as a [...] Read more.
Bone cement containing benzoyl peroxide (BPO) as a polymerization initiator are commonly used to fix orthopedic metal implants. However, toxic complications caused by bone cement are a clinically significant problem. Poly (methyl methacrylate) tri-n-butylborane (PMMA-TBB), a newly developed material containing TBB as a polymerization initiator, was found to be more biocompatible than conventional PMMA-BPO bone cements due to reduced free radical generation during polymerization. However, free radicals might not be the only determinant of cytotoxicity. Here, we evaluated the response and functional phenotypes of cells exposed to extracts derived from different bone cements. Bone cement extracts were prepared from two commercial PMMA-BPO cements and an experimental PMMA-TBB. Rat bone marrow-derived osteoblasts and osteoclasts were cultured in a medium supplemented with bone cement extracts. More osteoblasts survived and attached to the culture dish with PMMA-TBB extract than in the culture with PMMA-BPO extracts. Osteoblast proliferation and differentiation were higher in the culture with PMMA-TBB extract. The number of TRAP-positive multinucleated cells was significantly lower in the culture with PMMA-TBB extract. There was no difference in osteoclast-related gene expression in response to different bone cement extracts. In conclusion, PMMA-TBB extract was less toxic to osteoblasts than PMMA-BPO extracts. Although extracts from the different cement types did not affect osteoclast function, PMMA-TBB extract seemed to reduce osteoclastogenesis, a possible further advantage of PMMA-TBB cement. These implied that the reduced radical generation during polymerization is not the only determinant for the improved biocompatibility of PMMA-TBB and that the post-polymerization chemical elution may also be important. Full article
(This article belongs to the Special Issue Cellular Response to Biomaterials Designed for Tissue Engineering)
Show Figures

Figure 1

13 pages, 2170 KiB  
Article
Influence of Initiator Concentration on the Polymerization Course of Methacrylate Bone Cement
by Grzegorz Przesławski, Katarzyna Szcześniak, Piotr Gajewski and Agnieszka Marcinkowska
Polymers 2022, 14(22), 5005; https://doi.org/10.3390/polym14225005 - 18 Nov 2022
Cited by 20 | Viewed by 5071
Abstract
Background: The amount of oxidant (initiator) and reductant (co-initiator) and their ratio have a significant effect on the properties of polymethacrylate bone cement, such as maximum temperature (Tmax), setting time (tset) and compressive strength (σ). The increase in [...] Read more.
Background: The amount of oxidant (initiator) and reductant (co-initiator) and their ratio have a significant effect on the properties of polymethacrylate bone cement, such as maximum temperature (Tmax), setting time (tset) and compressive strength (σ). The increase in the initiating system concentration causes an increase in the number of generated radicals and a faster polymerization rate, which shortens the setting time. The influence of the redox-initiating composition on the course of polymerization (rate of polymerization and degree of double bond conversion) and the mechanical properties of bone cement will be analyzed. Methods: Bone cements were synthesized by mixing a powder phase composed of two commercially available methacrylate copolymers (Evonic) and a liquid phase containing 2-hydroxyethyl methacrylate (HEMA), methyl methacrylate (MMA), and triethylene glycol dimethacrylate (D3). As an initiating system, the benzoyl peroxide (BPO) as an oxidant (initiator) in combination with a reducing agent (co-initiator), N,N-dimethylaniline (DMA), was used. Samples were prepared with various amounts of peroxide BPO (0.05%, 0.1%, 0.2%, 0.3%, 0.5% and 0.7% by weight) with a constant amount of reducing agent DMA (0.5 wt.%), and various amounts of DMA (0.25%, 0.35% and 0.5% by weight) with a constant amount of BPO (0.3 wt.%). The polymerization kinetics were studied by differential scanning calorimetry (DSC). Doughing time and compressive strength tests were carried out according to the requirements of the ISO 5833:2002 standard. Results: The increase in polymerization rate was due to the increase in the amount of BPO. In addition, the curing time was shortened, as well as the time needed to achieve the maximum polymerization rate. The final conversion of the double bonds in the studied compositions was in the range 74–100%, and the highest value of this parameter was obtained by the system with 0.3 wt.% of BPO. The doughing times for each BPO concentration were in the range of 90–140 s. The best mechanical properties were obtained for the cement following the initiating system concentrations: 0.3 wt.% of BPO and 0.5 wt.% of DMA. Nevertheless, all tested cements met the requirements of the ISO 5833:2002 standard. Conclusions: Based on the conducted polymerization kinetic studies, the best reaction conditions are provided by an initiating system containing 0.3 wt.% of BPO oxidant (initiator) and 0.5 wt.% of DMA reductant (co-initiator). A decrease in the DMA amount caused a decrease in the polymerization rate and the amount of heat released during the reaction. The change in BPO and DMA concentrations in the composition had little effect on the doughing time of the studied bone cement. The cements showed similar doughing times, ranging from 90–225 s, which is comparable to the bone cement available on the market. Full article
(This article belongs to the Special Issue Recent Developments in Polymerization Kinetics)
Show Figures

Figure 1

16 pages, 3193 KiB  
Article
Thermal Stability of Polycaprolactone Grafted Densely with Maleic Anhydride Analysed Using the Coats–Redfern Equation
by Kotchaporn Thangunpai, Donghao Hu, Xianlong Su, Mikio Kajiyama, Marcos A. Neves and Toshiharu Enomae
Polymers 2022, 14(19), 4100; https://doi.org/10.3390/polym14194100 - 30 Sep 2022
Cited by 11 | Viewed by 2868
Abstract
The plastic waste problem has recently attracted unprecedented attention globally. To reduce the adverse eff ects on environments, biodegradable polymers have been studied to solve the problems. Poly(ε-caprolactone) (PCL) is one of the common biodegradable plastics used on its own or blended with [...] Read more.
The plastic waste problem has recently attracted unprecedented attention globally. To reduce the adverse eff ects on environments, biodegradable polymers have been studied to solve the problems. Poly(ε-caprolactone) (PCL) is one of the common biodegradable plastics used on its own or blended with natural polymers because of its excellent properties after blending. However, PCL and natural polymers are difficult to blend due to the polymers’ properties. Grafted polymerization of maleic anhydride and dibenzoyl peroxide (DBPO) with PCL is one of the improvements used for blending immiscible polymers. In this study, we first focused on the effects of three factors (stirring time, maleic anhydride (MA) amount and benzoyl peroxide amount) on the grafting ratio with a maximum value of 4.16% when applying 3.000 g MA and 1.120 g DBPO to 3.375 g PCL with a stirring time of 18 h. After that, the grafting condition was studied based on the kinetic thermal decomposition and activation energy by the Coats–Redfern method. The optimal fitting model was confirmed by the determination coefficient of nearly 1 to explain the contracting volume mechanism of synthesized PCL-g-MA. Consequently, grafted MA hydrophilically augmented PCL as the reduced contact angle of water suggests, facilitating the creation of a plastic–biomaterial composite. Full article
(This article belongs to the Special Issue Thermal Characterization and Applications of Polymer Composites)
Show Figures

Figure 1

18 pages, 3985 KiB  
Article
Hybrid Coatings of SiO2–Recycled PET Unsaturated Polyester Resin by Sol-Gel Process
by Adrián Bórquez-Mendivil, Abel Hurtado-Macías, Jesús Eduardo Leal-Pérez, Joaquín Flores-Valenzuela, Ramón Álvaro Vargas-Ortíz, Francisca Guadalupe Cabrera-Covarrubias and Jorge Luis Almaral-Sánchez
Polymers 2022, 14(16), 3280; https://doi.org/10.3390/polym14163280 - 12 Aug 2022
Cited by 10 | Viewed by 4237
Abstract
Hybrid coatings of SiO2 and recycled unsaturated polyester resin (R-UPR) from recycled polyethylene-terephthalate (PET) were prepared by the sol-gel process on glass substrates. First, SiO2 was synthesized by the sol-gel process using a tetraethyl orthosilicate (TEOS) solution. Next, bis(2-hydroxypropyl-terephthalate) (BHPT) was [...] Read more.
Hybrid coatings of SiO2 and recycled unsaturated polyester resin (R-UPR) from recycled polyethylene-terephthalate (PET) were prepared by the sol-gel process on glass substrates. First, SiO2 was synthesized by the sol-gel process using a tetraethyl orthosilicate (TEOS) solution. Next, bis(2-hydroxypropyl-terephthalate) (BHPT) was synthesized from mechanical and chemical recycling (glycolysis) of post-consumer PET bottles in propylene glycol (PG) using ZnA as catalyst, in a Vessel-type reactor (20–200 °C); maleic anhydride (MA) was added and, following the same procedure, the unsaturated polyester (UP) was synthetized, which was cooled to room temperature. Next, styrene (St) and benzoyl-peroxide (PBO)-initiator were added to obtain R–UPR. TEOS (T) and three hybrid solutions were synthesized, with molar ratios of 0:1:0 (T), 1:2:0.25 (H1), 1:1:0.25 (H2), and 1:0:0.25 (H3) for R–UPR:TEOS:3-trimethoxy-(silyl)-propyl-methacrylate (TMSPM), respectively, with which TC, HC1, HC2, and HC3 coatings were elaborated using the immersion technique and polymerized (120 °C for 24 h). The solutions were characterized by FT–IR and TGA, and the coatings by SEM, nanoindentation, AFM, adhesion, and contact angle. The results showed that SiO2 enhanced mechanical (hardness and Young’s modulus) and thermal properties of the R-UPR. The coatings adhered perfectly to the substrate, with thicknesses of micrometer units and a flat surface; in addition, hydrophilicity decreased as SiO2 decreased. Full article
(This article belongs to the Special Issue Advances and Innovations in Recycled Polymer Composites)
Show Figures

Figure 1

16 pages, 5065 KiB  
Article
Grafting of Poly(ethylene imine) to Silica Nanoparticles for Odor Removal from Recycled Materials
by Sarah Cohen, Itamar Chejanovsky and Ran Yosef Suckeveriene
Nanomaterials 2022, 12(13), 2237; https://doi.org/10.3390/nano12132237 - 29 Jun 2022
Cited by 14 | Viewed by 4122
Abstract
One of the major obstacles to the reuse of recycled plastic materials is the emanation of after-process odors from recycled polymers and composites. Typically, recycled polymers are blended with an off-odor adsorbent additive in the recycling chain to eliminate these smells. This article [...] Read more.
One of the major obstacles to the reuse of recycled plastic materials is the emanation of after-process odors from recycled polymers and composites. Typically, recycled polymers are blended with an off-odor adsorbent additive in the recycling chain to eliminate these smells. This article describes an innovative ultrasonically assisted method of grafting poly(ethylene imine) (PEI) to silica nanoparticles (SiO2) initiated by benzoyl peroxide (BP) which acts as an odor remover. To prepare the PEI/Si, the branched PEI was grafted onto the silica surface without a coupling agent. This made the grafting process straightforward, easy and low in cost. Fourier Transform Infrared (FTIR) analysis confirmed the successful grafting of PEI to silica. The thermogravimetric analysis (TGA) indicated the formation of two different fractions: a polymeric fraction covalently attached to the nanoparticle surface and a non-grafted PEI fraction that was removed during extraction. Up to 30% of the grafted-PEI fractions were produced at the lowest BP concentration with the highest PEI molecular weight at silica-to-PEI weight ratios of (1:1) to (3:1). The sensory assessment showed a substantial reduction in overall odor intensity for 30% of the recycled plastic-containing materials and a ~75% reduction in volatile organic compounds (VOCs) for 100% of the recycled plastics. These results strongly suggest that this innovative PEI/Si nanocomposite can be successfully commercialized for odor removal. To the authors’ best knowledge, this is the first reported work describing a one-pot reaction for grafting PEI to different nanoparticle surfaces. Full article
Show Figures

Graphical abstract

11 pages, 3764 KiB  
Article
Free Radical Copolymerization of Diallylamine and Itaconic Acid for the Synthesis of Chitosan Base Superabsorbent
by Wafa Al-Mughrabi, Abeer O. Al-dossary and Abir Abdel-Naby
Polymers 2022, 14(9), 1707; https://doi.org/10.3390/polym14091707 - 22 Apr 2022
Cited by 6 | Viewed by 2528
Abstract
Copolymerization of diallylamine (DAA) and itaconic acid (IA) was synthesized using benzoyl peroxide as a free radical initiator, in dioxane as the solvent. The composition of the copolymer was determined by the nitrogen content using Edx. The solubility of the copolymer was also [...] Read more.
Copolymerization of diallylamine (DAA) and itaconic acid (IA) was synthesized using benzoyl peroxide as a free radical initiator, in dioxane as the solvent. The composition of the copolymer was determined by the nitrogen content using Edx. The solubility of the copolymer was also investigated. The water solubility of the synthesized copolymer depends on the comonomers’ ratio. The structure of the copolymer was confirmed by 13C-NMR spectroscopy. To increase the water insolubility of the copolymers, and keep their hydrophilicity, the copolymer was allowed to react with chitosan to form a superabsorbent polymeric material (SP). The structure of the synthesized superabsorbent was confirmed using 13C-NMR spectroscopy. The thermal property of the (SP) was also investigated by TGA. The investigation of the chitosan-based superabsorbent, as water-retaining agents, was studied. The results revealed that the superabsorbent polymers exhibited a good swelling ability and salt tolerance. Full article
(This article belongs to the Special Issue Functional Natural-Based Polymers)
Show Figures

Graphical abstract

Back to TopTop