Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = polymer thermoreversible gels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5566 KiB  
Article
Hybrid Systems of Oleogels and Probiotic-Loaded Alginate Carriers for Potential Application in Cosmetics
by Anna Łętocha, Małgorzata Miastkowska, Elżbieta Sikora, Alicja Michalczyk, Marta Liszka-Skoczylas and Mariusz Witczak
Molecules 2024, 29(24), 5984; https://doi.org/10.3390/molecules29245984 - 19 Dec 2024
Cited by 2 | Viewed by 1495
Abstract
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic [...] Read more.
Oleogels (organogels) are systems resembling a solid substance based on the gelation of organic solvents (oil or non-polar liquid) through components of low molecular weight or oil-soluble polymers. Such compounds are organogelators that produce a thermoreversible three-dimensional gel network that captures liquid organic solvents. Oleogels based on natural oils are attracting more attention due to their numerous advantages, such as their unsaturated fatty acid contents, ease of preparation, and safety of use. As a result of the research, two oleogels were developed, into which freeze-dried alginate carriers with a probiotic, L. casei, were incorporated. Two techniques were used to produce probiotic-loaded capsules—extrusion and emulsification. Alginate beads obtained by the extrusion process have a size of approximately 1.2 mm, while much smaller microspheres were obtained using the emulsification technique, ranging in size from 8 to 17 µm. The trehalose was added as a cryoprotectant to improve the survival rate of probiotics in freeze-dried alginate carriers. The encapsulation efficiency for both of the methods applied, the emulsification and the extrusion technique, was high, with levels of 90% and 87%, respectively. The obtained results showed that the production method of probiotic-loaded microspheres influence the bacterial viability. The better strain survival in the developed systems was achieved in the case of microspheres produced by the emulsification (reduction in bacterial cell viability in the range of 1.98–3.97 log in silica oleogel and 2.15–3.81 log in sucragel oleogel after 7 and 30 days of storage) than by the extrusion technique (after a week and a month of oleogel storage, the decrease in cell viability was 2.52–4.52 log in silica oleogel and 2.48–4.44 log in sucragel oleogel). Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
Show Figures

Figure 1

11 pages, 2279 KiB  
Article
Reversibility in the Physical Properties of Agarose Gels following an Exchange in Solvent and Non-Solvent
by Denis C. D. Roux, François Caton, Isabelle Jeacomine, Guillaume Maîtrejean and Marguerite Rinaudo
Polymers 2024, 16(6), 811; https://doi.org/10.3390/polym16060811 - 14 Mar 2024
Cited by 2 | Viewed by 2621
Abstract
Agarose forms a homogeneous thermoreversible gel in an aqueous solvent above a critical polymer concentration. Contrary to the prevailing consensus, recent confirmations indicate that agarose gels are also stable in non-solvents like acetone and ethanol. A previous study compared gel characterisations and behaviours [...] Read more.
Agarose forms a homogeneous thermoreversible gel in an aqueous solvent above a critical polymer concentration. Contrary to the prevailing consensus, recent confirmations indicate that agarose gels are also stable in non-solvents like acetone and ethanol. A previous study compared gel characterisations and behaviours in water and ethanol, discussing the gelation mechanism. In the current work, the ethanol gel is exchanged with water to explore the potential reversibility of the displacement of water in agarose. Initially, the structure is characterised using 1H NMR in DMSO-d6 and D2O solvents. Subsequently, a very low yield (0.04) of methyl substitution per agarobiose unit is determined. The different gels after stabilisation are characterised using rheology, and their physical properties are compared based on the solvent used. The bound water molecules, acting as plasticizers in aqueous medium, are likely removed during the exchange process with ethanol, resulting in a stronger and more fragile gel. Next, the gel obtained after the second exchange from ethanol back to water is compared with the initial gel prepared in water. This is the first time where such gel has been characterised without undergoing a phase transition when switching from a good solvent to a non-solvent, and vice versa, thereby testing the reversibility of the solvent exchange. Reversibility of this behaviour is demonstrated through swelling and rheology experiments. This study extends the application of agarose in chromatography and electrophoresis. Full article
(This article belongs to the Special Issue Biopolymer Networks)
Show Figures

Figure 1

18 pages, 5490 KiB  
Article
UV-Crosslinked Poly(N-isopropylacrylamide) Interpenetrated into Chitosan Structure with Enhancement of Mechanical Properties Implemented as Anti-Fouling Materials
by Isala Dueramae, Fumihiko Tanaka, Naoki Shinyashiki, Shin Yagihara and Rio Kita
Gels 2024, 10(1), 20; https://doi.org/10.3390/gels10010020 - 25 Dec 2023
Cited by 3 | Viewed by 2779
Abstract
High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this [...] Read more.
High-performance properties of interpenetration polymer network (IPN) hydrogels, based on physically crosslinked chitosan (CS) and chemically crosslinked poly(N-isopropylacrylamide) (PNiPAM), were successfully developed. The IPN of CS/PNiPAM is proposed to overcome the limited mechanical properties of the single CS network. In this study, the viscoelastic behaviors of prepared materials in both solution and gel states were extensively examined, considering the UV exposure time and crosslinker concentration as key factors. The effect of these factors on gel formation, hydrogel structures, thermal stabilities of networks, and HeLa cell adhesion were studied sequentially. The sol–gel transition was effectively demonstrated through the scaling law, which agrees well with Winter and Chambon’s theory. By subjecting the CS hydrogel to the process operation in an ethanol solution, its properties can be significantly enhanced with increased crosslinker concentration, including the shear modulus, crosslinking degree, gel strength, and thermal stability in its swollen state. The IPN samples exhibit a smooth and dense surface with irregular pores, allowing for much water absorption. The HeLa cells were adhered to and killed using the CS surface cationic charges and then released through hydrolysis by utilizing the hydrophilic/hydrophobic switchable property or thermo-reversible gelation of the PNiPAM network. The results demonstrated that IPN is a highly attractive candidate for anti-fouling materials. Full article
(This article belongs to the Special Issue Recent Advances in Crosslinked Gels)
Show Figures

Graphical abstract

14 pages, 1340 KiB  
Article
Thermoreversible Gel-Dispersed Liquid Crystals
by Akihiko Matsuyama
Gels 2023, 9(12), 965; https://doi.org/10.3390/gels9120965 - 8 Dec 2023
Cited by 1 | Viewed by 1845
Abstract
A simple model is introduced to describe phase behaviours of binary mixtures of a thermoreversible gel and a low-molecular-weight liquid crystal (LC). We predict novel phase diagrams on the temperature–concentration plane, including sol–gel transition, nematic–isotropic phase transition, and phase separation. At high temperatures, [...] Read more.
A simple model is introduced to describe phase behaviours of binary mixtures of a thermoreversible gel and a low-molecular-weight liquid crystal (LC). We predict novel phase diagrams on the temperature–concentration plane, including sol–gel transition, nematic–isotropic phase transition, and phase separation. At high temperatures, the phase separation between the isotropic sol and gel phases appears. As the temperature decreases, we have the phase separation between nematic sol and isotropic gel phases, in which the nematic domains are dispersed in the isotropic gel phase. We suggest that thermoreversible gelation of reactive molecules mixed with LCs will become one of the new classes of polymer-dispersed liquid crystals. Full article
(This article belongs to the Special Issue Recent Advances in Thermoreversible Gelation)
Show Figures

Figure 1

23 pages, 785 KiB  
Article
Thermoreversible Gelation with Supramolecularly Polymerized Cross-Link Junctions
by Fumihiko Tanaka
Gels 2023, 9(10), 820; https://doi.org/10.3390/gels9100820 - 15 Oct 2023
Cited by 2 | Viewed by 2298
Abstract
Structure and reversibility of cross-link junctions play pivotal roles in determining the nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer networks. We attempt to theoretically explore new types of sol–gel transitions with mechanical sharpness by allowing cross-links to grow [...] Read more.
Structure and reversibility of cross-link junctions play pivotal roles in determining the nature of thermoreversible gelation and dynamic mechanical properties of the produced polymer networks. We attempt to theoretically explore new types of sol–gel transitions with mechanical sharpness by allowing cross-links to grow without upper bound. We consider thermoreversible gelation of the primary molecules R{Af} carrying the number f of low molecular weight functional groups (gelators) A. Gelators A are assumed to form supramolecular assemblies. Some examples are: telechelic polymers (f=2) carrying ππ stacking benzene derivatives at their both ends, and trifunctional star molecules (f=3) bearing multiple hydrogen-bonding gelators. The sol–gel transition of the primary molecules becomes sharper with the cooperativity parameter of the stepwise linear growth of the cross-links. There is a polymerization transition (crossover without singularity) of the junctions in the postgel region after the gel point is passed. If the gelator A tends to form supramolecular rings competitively with linear chains, there is another phase transition in the deep postgel region where the average molecular weight of the rings becomes infinite (Bose–Einstein condensation of rings). As a typical example of binary cross-links where gelators A and B form mixed junctions, we specifically consider metal-coordinated binding of ligands A by metal ions B. Two types of multi-nuclear supramolecular complexes are studied: (i) linear stacking (ladder) of the sandwich A2B units, and (ii) linear train of egg-box A4B units. To find the strategy towards experimental realization of supramolecular cross-links, the average molecular weight, the gel fraction, the average length of the cross-link junctions are numerically calculated for all of these models as functions of the functionality f, the concentration of the solute molecules, and the temperature. Potential candidates for the realization of these new types of thermoreversible gelation are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Thermoreversible Gelation)
Show Figures

Figure 1

20 pages, 5023 KiB  
Article
Lamotrigine-Loaded Poloxamer-Based Thermo-Responsive Sol–Gel: Formulation, In Vitro Assessment, Ex Vivo Permeation, and Toxicology Study
by Maria Riaz, Muhammad Zaman, Huma Hameed, Hafiz Shoaib Sarwar, Mahtab Ahmad Khan, Ali Irfan, Gamal A. Shazly, Ana Cláudia Paiva-Santos and Yousef A. Bin Jardan
Gels 2023, 9(10), 817; https://doi.org/10.3390/gels9100817 - 14 Oct 2023
Cited by 13 | Viewed by 3185
Abstract
The present study aimed to prepare, characterize, and evaluate a thermo-responsive sol–gel for intranasal delivery of lamotrigine (LTG), which was designed for sustained drug delivery to treat epilepsy. LTG sol–gel was prepared using the cold method by changing the concentrations of poloxamer 407 [...] Read more.
The present study aimed to prepare, characterize, and evaluate a thermo-responsive sol–gel for intranasal delivery of lamotrigine (LTG), which was designed for sustained drug delivery to treat epilepsy. LTG sol–gel was prepared using the cold method by changing the concentrations of poloxamer 407 and poloxamer 188, which were used as thermo-reversible polymers. The optimized formulations of sol–gel were analyzed for clarity, pH, viscosity, gelation temperature, gelation time, spreadability, drug content, in vitro drug release studies, ex vivo permeation studies, and in vivo toxicological studies. FTIR, XRD, and DSC were performed to determine the thermal stability of the drug and polymers. The prepared formulations had a clear appearance in sol form; they were liquid at room temperature and became gel at temperatures between 31 °C and 36 °C. The pH was within the range of the nasal pH, between 6.2 and 6.4. The drug content was found to be between 92% and 94%. In vitro drug release studies indicated that the formulations released up to 92% of the drug within 24 h. The FTIR, DSC, and XRD analyses showed no interaction between the drug and the polymer. A short-term stability study indicated that the formulation was stable at room temperature and at 4–8 °C. There was a slight increase in viscosity at room temperature, which may be due to the evaporation of the vehicle. A histological study indicated that there were no signs of toxicity seen in vital organs, such as the brain, kidney, liver, heart, and spleen. It can be concluded from the above results that the prepared intranasal sol–gel for the delivery of LTG is safe for direct nose-to-brain delivery to overcome the first-pass effect and thus enhance bioavailability. It can be considered an effective alternative to conventional drug delivery for the treatment of epilepsy. Full article
(This article belongs to the Special Issue Advances in Responsive Hydrogels)
Show Figures

Graphical abstract

12 pages, 1108 KiB  
Article
New Biopharmaceutical Characteristics of In Situ Systems Based on Poloxamer 407
by Elena O. Bakhrushina, Elizaveta V. Novozhilova, Marina M. Shumkova, Victor S. Pyzhov, Maria S. Nikonenko, Alexander I. Bardakov, Natalia B. Demina, Ivan I. Krasnyuk and Ivan I. Krasnyuk
Gels 2023, 9(7), 508; https://doi.org/10.3390/gels9070508 - 21 Jun 2023
Cited by 6 | Viewed by 2472
Abstract
Thermosensitive systems based on poloxamer 407 are widely used in targeted drug delivery; however, the stability of the phase transition temperature remains insufficiently studied. This article presents the results of a study on the effect of adding polyethylene glycols (PEG) with different molecular [...] Read more.
Thermosensitive systems based on poloxamer 407 are widely used in targeted drug delivery; however, the stability of the phase transition temperature remains insufficiently studied. This article presents the results of a study on the effect of adding polyethylene glycols (PEG) with different molecular weights and some classical gel-forming polymers on the gelation temperature of thermoreversible compositions based on poloxamer 407 in a long-term experiment. The study showed a positive effect of PEG addition with average molecular weights at concentrations of 1.5–2.0%, as well as gelling agents at a concentration below the critical gelation concentration. The proposed rheological test for studying the samples’ adhesion can give an indirect forecast of the composition adhesive rate. Based on the conducted studies, three experimental binary systems based on poloxamer 407 were selected, with the addition of HPMC 0.5%, sodium alginate 0.5%, and PEG 1500 1.5%. These systems are the most promising for the further development of in situ targeted drug delivery systems. Full article
(This article belongs to the Special Issue Properties and Applications of Biomaterials Related to Gels)
Show Figures

Figure 1

23 pages, 17809 KiB  
Article
Thermoreversible Gels Based on Chitosan Copolymers as “Intelligent” Drug Delivery System with Prolonged Action for Intramuscular Injection
by Igor D. Zlotnikov, Stanislav M. Malashkeevich, Natalia G. Belogurova and Elena V. Kudryashova
Pharmaceutics 2023, 15(5), 1478; https://doi.org/10.3390/pharmaceutics15051478 - 12 May 2023
Cited by 11 | Viewed by 2325
Abstract
Thermosensitive gels based on copolymers (PEG–chitosan, chitosan–polyethylenimine, chitosan–arginine and glycol–chitosan–spermine) are presented as promising polycations for the formation of DNA polyplexes and the potential for the development of drugs with prolonged release (up to 30 days). Being in liquid form at room temperature, [...] Read more.
Thermosensitive gels based on copolymers (PEG–chitosan, chitosan–polyethylenimine, chitosan–arginine and glycol–chitosan–spermine) are presented as promising polycations for the formation of DNA polyplexes and the potential for the development of drugs with prolonged release (up to 30 days). Being in liquid form at room temperature, such compounds can be injected into muscle tissue with rapid gel formation at human body temperature. An intramuscular depot is formed with a therapeutic agent that provides a gradual release of the drug, such as an antibacterial or cytostatic. The physico-chemical parameters of the formation of polyplexes between polycationic polymers of various compositions and molecular architecture and DNA were studied via FTIR, UV-vis and fluorescence spectroscopy using the dyes rhodamine 6G (R6G) and acridine orange (AO). The competitive displacement of AO from AO-DNA complexes showed that, with a ratio of N/P = 1, most of the DNA is bound to a polycation. During the formation of polyplexes, the DNA charge is neutralized by a polycation, which is reflected in electrophoretic immobility. The cationic polymers described in this work at a concentration of 1–4% are capable of forming gels, and the thermoreversible property is most characteristic of pegylated chitosan. BSA, as a model anionic molecule, is released by half in 5 days from the Chit5-PEG5 gel; full release is achieved in 18–20 days. At the same time, in 5 days, the gel is destroyed up to 30%, and in 20 days, by 90% (release of chitosan particles). For the first time, flow cytometry was used to study DNA polyplexes, which showed the existence of fluorescent particles in a much larger number in combination with free DNA. Thus, functional stimulus-sensitive polymers are potentially applicable for the creation of prolonged therapeutic formulations for gene delivery systems, which were obtained. The revealed regularities appear to be a platform for the design of polyplexes with controllable stability, in particular, fulfilling the requirements imposed for gene delivery vehicles. Full article
(This article belongs to the Special Issue Functional Polymers in Drug Delivery)
Show Figures

Figure 1

16 pages, 7081 KiB  
Article
Characterization of Agarose Gels in Solvent and Non-Solvent Media
by Denis C. D. Roux, Isabelle Jeacomine, Guillaume Maîtrejean, François Caton and Marguerite Rinaudo
Polymers 2023, 15(9), 2162; https://doi.org/10.3390/polym15092162 - 30 Apr 2023
Cited by 11 | Viewed by 4429
Abstract
Agarose is known to form a homogeneous thermoreversible gel in an aqueous medium over a critical polymer concentration. The solid-liquid phase transitions are thermoreversible but depend on the molecular structure of the agarose sample tested. The literature has mentioned that agarose gels could [...] Read more.
Agarose is known to form a homogeneous thermoreversible gel in an aqueous medium over a critical polymer concentration. The solid-liquid phase transitions are thermoreversible but depend on the molecular structure of the agarose sample tested. The literature has mentioned that agarose gels could remain stable in non-solvents such as acetone or ethanol. However, there has been no characterization of their behavior nor a comparison with the gels formed in a good solvent such as water. In the first step of this article, the structure was characterized using 1H and 13C NMR in both D2O and DMSO-d6 solvents. DMSO is a solvent that dissolves agarose regardless of the temperature. First, we have determined a low yield of methyl substitution on the D-galactose unit. Then, the evolution of the 1H NMR spectrum was monitored as a function of temperature during both increasing and decreasing temperature processes, ranging from 25 to 80 °C. A large thermal hysteresis was obtained and discussed, which aided in the interpretation of rheological behavior. The hysteresis of NMR signals is related to the mobility of the agarose chains, which follows the sol/gel transition depending on the chains’ association with H-bonds between water and the -OH groups of agarose for tightly bound water and agarose/agarose in chain packing. In the second step of the study, the water in the agarose gel was exchanged with ethanol, which is a non-solvent for agarose. The resulting gel was stable, and its properties were characterized using rheology and compared to its behavior in aqueous media. The bound water molecules that act as plasticizers were likely removed during the exchange process, resulting in a stronger and more brittle gel in ethanol, with higher thermal stability compared to the aqueous gel. It is the first time that such gel is characterized without phase transition when passing from a good solvent to a non-solvent. This extends the domains of application of agarose. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

22 pages, 5851 KiB  
Article
Caspofungin-Loaded Formulations for Treating Ocular Infections Caused by Candida spp.
by Noelia Pérez-González, María J. Rodríguez-Lagunas, Ana C. Calpena-Campmany, Nuria Bozal-de Febrer, Lyda Halbaut-Bellowa, Mireia Mallandrich and Beatriz Clares-Naveros
Gels 2023, 9(4), 348; https://doi.org/10.3390/gels9040348 - 20 Apr 2023
Cited by 6 | Viewed by 2640
Abstract
Fungal keratitis causes corneal blindness worldwide. The treatment includes antibiotics, with Natamycin being the most commonly used; however, fungal keratitis is difficult to treat, so alternative therapies are needed. In situ gelling formulations are a promising alternative; this type of formulation has the [...] Read more.
Fungal keratitis causes corneal blindness worldwide. The treatment includes antibiotics, with Natamycin being the most commonly used; however, fungal keratitis is difficult to treat, so alternative therapies are needed. In situ gelling formulations are a promising alternative; this type of formulation has the advantages of eye drops combined with the advantages of ointments. This study was designed to develop and characterize three formulations containing 0.5% CSP: CSP-O1, CSP-O2, and CSP-O3. CSP is an antifungal drug that acts against a diverse variety of fungi, and Poloxamer 407 (P407) is a polymer of synthetic origin that is able to produce biocompatible, biodegradable, highly permeable gels and is known to be thermoreversible. Short-term stability showed that formulations are best stored at 4 °C, and rheological analysis showed that the only formulation able to gel in situ was CSP-O3. In vitro release studies indicated that CSP-O1 releases CSP most rapidly, while in vitro permeation studies showed that CSP-O3 permeated the most. The ocular tolerance study showed that none of the formulations caused eye irritation. However, CSP-O1 decreased the cornea’s transparency. Histological results indicate that the formulations are suitable for use, with the exception of CSP-O3, which induced slight structural changes in the scleral structure. All formulations were shown to have antifungal activity. In view of the results obtained, these formulations could be promising candidates for use in the treatment of fungal keratitis. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery)
Show Figures

Graphical abstract

21 pages, 6930 KiB  
Article
Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes
by Konstantin Pochivalov, Andrey Basko, Tatyana Lebedeva, Mikhail Yurov, Alexey Yushkin, Alexey Volkov and Sergei Bronnikov
Membranes 2023, 13(4), 422; https://doi.org/10.3390/membranes13040422 - 9 Apr 2023
Cited by 5 | Viewed by 2307
Abstract
A new method of fabricating porous membranes based on ultra-high molecular weight polyethylene (UHMWPE) by controlled swelling of the dense film was proposed and successfully utilized. The principle of this method is based on the swelling of non-porous UHMWPE film in organic solvent [...] Read more.
A new method of fabricating porous membranes based on ultra-high molecular weight polyethylene (UHMWPE) by controlled swelling of the dense film was proposed and successfully utilized. The principle of this method is based on the swelling of non-porous UHMWPE film in organic solvent at elevated temperatures, followed by its cooling and further extraction of organic solvent, resulting in the formation of the porous membrane. In this work, we used commercial UHMWPE film (thickness 155 μm) and o-xylene as a solvent. Either homogeneous mixtures of the polymer melt and solvent or thermoreversible gels with crystallites acting as crosslinks of the inter-macromolecular network (swollen semicrystalline polymer) can be obtained at different soaking times. It was shown that the porous structure and filtration performance of the membranes depended on the swelling degree of the polymer, which can be controlled by the time of polymer soaking in organic solvent at elevated temperature (106 °C was found to be the optimal temperature for UHMWPE). In the case of homogeneous mixtures, the resulting membranes possessed both large and small pores. They were characterized by quite high porosity (45–65% vol.), liquid permeance of 46–134 L m−2 h−1 bar−1, a mean flow pore size of 30–75 nm, and a very high crystallinity degree of 86–89% at a decent tensile strength of 3–9 MPa. For these membranes, rejection of blue dextran dye with a molecular weight of 70 kg/mol was 22–76%. In the case of thermoreversible gels, the resulting membranes had only small pores located in the interlamellar spaces. They were characterized by a lower crystallinity degree of 70–74%, a moderate porosity of 12–28%, liquid permeability of up to 12–26 L m−2 h−1 bar−1, a mean flow pore size of up to 12–17 nm, and a higher tensile strength of 11–20 MPa. These membranes demonstrated blue dextran retention of nearly 100%. Full article
(This article belongs to the Special Issue Mixed-Matrix Membranes and Polymeric Membranes 2.0)
Show Figures

Figure 1

31 pages, 887 KiB  
Article
Comparative Study on the Models of Thermoreversible Gelation
by Fumihiko Tanaka
Int. J. Mol. Sci. 2022, 23(18), 10325; https://doi.org/10.3390/ijms231810325 - 7 Sep 2022
Cited by 3 | Viewed by 1965
Abstract
A critical survey on the various theoretical models of thermoreversible gelation, such as the droplet model of condensation, associated-particle model, site–bond percolation model, and adhesive hard sphere model, is presented, with a focus on the nature of the phase transition predicted by them. [...] Read more.
A critical survey on the various theoretical models of thermoreversible gelation, such as the droplet model of condensation, associated-particle model, site–bond percolation model, and adhesive hard sphere model, is presented, with a focus on the nature of the phase transition predicted by them. On the basis of the classical tree statistics of gelation, combined with a thermodynamic theory of associating polymer solutions, it is shown that, within the mean-field description, the thermoreversible gelation of polyfunctional molecules is a third-order phase transition analogous to the Bose–Einstein condensation of an ideal Bose gas. It is condensation without surface tension. The osmotic compressibility is continuous, but its derivative with respect to the concentration of the functional molecule reveals a discontinuity at the sol–gel transition point. The width of the discontinuity is directly related to the amplitude of the divergent term in the weight-average molecular weight of the cross-linked three-dimensional polymers. The solution remains homogeneous in the position space, but separates into two phases in the momentum space; particles with finite translational momentum (sol) and a network with zero translational momentum (gel) coexist in a spatially homogeneous state. Experimental methods used to detect the singularity at the sol–gel transition point are suggested. Full article
(This article belongs to the Special Issue Biopolymer Composites 2022)
Show Figures

Figure 1

14 pages, 3496 KiB  
Article
Linking Processing Parameters and Rheology to Optimize Additive Manufacturing of k-Carrageenan Gel Systems
by Simona Russo Spena, Nino Grizzuti and Daniele Tammaro
Gels 2022, 8(8), 493; https://doi.org/10.3390/gels8080493 - 9 Aug 2022
Cited by 17 | Viewed by 2550
Abstract
Additive manufacturing—in particular, three-dimensional (3D) printing—has been introduced since the late 1980s, offering a novel paradigm for engineering design and manufacturing, as it allows the fabrication of very complex structures. Additive manufacturing of hydrogels is a very popular method to produce scaffolds to [...] Read more.
Additive manufacturing—in particular, three-dimensional (3D) printing—has been introduced since the late 1980s, offering a novel paradigm for engineering design and manufacturing, as it allows the fabrication of very complex structures. Additive manufacturing of hydrogels is a very popular method to produce scaffolds to be used in tissue engineering and other biomedical applications, as well as in other advanced technological areas. When printing a thermoreversible physical hydrogel, a subtle balance between thermal and rheological parameters exists. The characteristic times of the sol–gel transition, regulated by a well-defined thermal history, must be optimized with respect to the characteristic processing times. In this work, we use this thermo-rheological approach to the additive manufacturing of a physical hydrogel. A low-cost desktop 3D printer for thermoplastic polymers was suitably modified to print a 1.5 wt% solution of k-carrageenan. The thermal behavior of the printer was determined by performing experimental measurements of the temperature–time evolution during the different processing steps, from solution loading, to the extrusion of the incoming gel, to the final solidification stage. In parallel, linear viscoelastic oscillatory shear measurements were performed in a rotational rheometer under thermal histories as close as possible to those previously measured in the printing process. The comparison between the rheological results and the quality of printing under different thermal histories is presented and discussed, highlighting the main relations between rheological and processing behavior, which are helpful in the assessment and optimization of the printing conditions. Full article
(This article belongs to the Special Issue Advances in Polymer Rheology)
Show Figures

Figure 1

13 pages, 3661 KiB  
Article
Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications
by Shuo Zhuo, Elaine Halligan, Billy Shu Hieng Tie, Colette Breheny and Luke M. Geever
Polymers 2022, 14(15), 3155; https://doi.org/10.3390/polym14153155 - 2 Aug 2022
Cited by 12 | Viewed by 2718
Abstract
The phase transitions of poly (N-vinyl caprolactam) (PNVCL) hydrogels are currently under investigation as possible materials for biomedical applications thanks to their thermosensitive properties. This study aims to use the photopolymerisation process to simulate the 4D printing process. NVCL-based polymers with different thermal [...] Read more.
The phase transitions of poly (N-vinyl caprolactam) (PNVCL) hydrogels are currently under investigation as possible materials for biomedical applications thanks to their thermosensitive properties. This study aims to use the photopolymerisation process to simulate the 4D printing process. NVCL-based polymers with different thermal properties and swellability were prepared to explore the possibility of synthetic hydrogels being used for 4D printing. In this contribution, the thermal behaviours of novel photopolymerised NVCL-based hydrogels were analysed. The lower critical solution temperature (LCST) of the physically crosslinked gels was detected using differential scanning calorimetry (DSC), ultraviolet (UV) spectroscopy, and cloud point measurement. The chemical structure of the xerogels was characterised by means of Fourier transform infrared spectroscopy (FTIR). Pulsatile swelling studies indicated that the hydrogels had thermo-reversible properties. As a result, the effect of varying the macromolecular monomer concentration was apparent. The phase transition temperature is increased when different concentrations of hydrophilic monomers are incorporated. The transition temperature of the hydrogels may allow for excellent flexibility in tailoring transition for specific applications, while the swelling and deswelling behaviour of the gels is strongly temperature- and monomer feed ratio-dependent. Full article
(This article belongs to the Special Issue 3D Printing of Functional Polymer Composites)
Show Figures

Figure 1

14 pages, 2503 KiB  
Article
The Effect of Molecular Weight on the (Re)-Processability and Material Properties of Bio-Based, Thermoreversibly Cross-Linked Polyesters
by Martijn Beljaars, Arjen J. Kamphuis, Hero J. Heeres, Antonius A. Broekhuis and Francesco Picchioni
Appl. Sci. 2022, 12(14), 7287; https://doi.org/10.3390/app12147287 - 20 Jul 2022
Cited by 1 | Viewed by 2011
Abstract
A (partially) bio-based short-chain polyester is prepared through interfacial polycondensation of furan-functionalized diphenolic acid with terephthalic chloride. The furan groups along the backbone of the obtained polyester are able to form a covalent network (PE-fur/Bism) with various ratios of 1,1′-(methylenedi-4,1-phenylene)bismaleimide via the thermoreversible [...] Read more.
A (partially) bio-based short-chain polyester is prepared through interfacial polycondensation of furan-functionalized diphenolic acid with terephthalic chloride. The furan groups along the backbone of the obtained polyester are able to form a covalent network (PE-fur/Bism) with various ratios of 1,1′-(methylenedi-4,1-phenylene)bismaleimide via the thermoreversible Diels–Alder (DA) reaction. Several techniques have been employed to characterize the polyester network, including 1H-NMR, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA). The polyester base polymer displays a glass transition temperature of 115 °C, whereas the temperatures at which the retro-Diels–Alder (rDA) reaction takes place lie above 130 °C for the various polyester/bismaleimide networks. Excellent thermoreversibility and recyclability of the polyester resin have been shown through DSC and DMTA measurements. Full article
(This article belongs to the Special Issue New Frontiers in Recycling and Reuse of Plastic Wastes)
Show Figures

Figure 1

Back to TopTop