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Abstract: A simple model is introduced to describe phase behaviours of binary mixtures of a ther-
moreversible gel and a low-molecular-weight liquid crystal (LC). We predict novel phase diagrams on
the temperature–concentration plane, including sol–gel transition, nematic–isotropic phase transition,
and phase separation. At high temperatures, the phase separation between the isotropic sol and gel
phases appears. As the temperature decreases, we have the phase separation between nematic sol
and isotropic gel phases, in which the nematic domains are dispersed in the isotropic gel phase. We
suggest that thermoreversible gelation of reactive molecules mixed with LCs will become one of the
new classes of polymer-dispersed liquid crystals.

Keywords: thermoreversible gel; liquid crystal; sol–gel transition; nematic–isotropic transition;
phase separation

1. Introduction

Polymer-dispersed liquid crystals (PDLCs) are important to liquid crystal technology,
such as displays, switchable windows, light shutters, etc. [1,2]. In these systems, nematic
LC microdroplets are dispersed in a polymer matrix by using the phase separation between
isotropic polymer-rich and nematic LC-rich phases [3–11]. Typical examples of LC/polymer
mixtures are mixtures of (p-ethoxybenzylidene)-p-n-butylaniline (EBBA) and polystyrene
(PS) [3] and mixtures of 4-cyano-4′-n-heptylbiphenyl (7CB) and PS [7], etc. PDLC films are
formed by polymer compositions with LCs or mixtures of reactive monomers with LCs
followed by their photopolymerisation [1]. The photocrosslinking reaction of the matrix
polymer induces phase separation while the fluid mixture is hardened. The coexistence
curve of an LC/monomer mixture has an upper critical solution temperature (UCST), and
below UCST, phase separation between two isotropic phases appears. As polymerisation
proceeds, the coexistence curve moves to higher temperatures towards the higher LC con-
centrations. The coexistence curve of an LC/crosslinked polymer mixture makes an upward
turn near the pure LC axis on the temperature–concentration plane. When the coexistence
curve crosses a reaction temperature, the system becomes thermodynamically unstable and
undergoes phase separations [12]. These polymerisation-induced PDLCs are irreversible
processes, meaning the polymer networks can not be broken by temperature changes.

On the other hand, sol–gel transitions are thermoreversible processes [13–15]. For
example, intermolecular hydrogen bonding causes thermoreversible gelation in liquid crys-
talline systems [16,17]. The physical gelation has also been observed in atactic polystyrene
(at-PS) mixed with the solvent molecule of carbon disulfide (CS2), in which the sol–gel
transition and phase separations with UCST have been theoretically and experimentally
studied [18–24]. The chemical structure of the chains, in particular the side group of the
chain, has a significant influence on the gelation [24]. Thus, by using thermoreversible gela-
tion of reactive molecules mixed with LCs, we can control LC/monomer and LC/network
polymer mixtures by changing the temperature.

In this paper, we theoretically explore temperature-sensitive PDLCs formed by ther-
moreversible gels and LCs. We introduce a simple model to describe the phase behaviours
of binary mixtures of a thermoreversible gel and an LC. Based on the molecular-field
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theories for nematic ordering of PDLCs [8–11] and for thermoreversible gelation [21–23],
we construct the free energy of binary mixtures of reactive molecules and LCs. We cal-
culate phase diagrams on the temperature–concentration plane and predict novel phase
behaviours, such as phase separations between nematic sol and isotropic gel phases, caused
by three different phase transitions: sol–gel transition, nematic–isotropic phase transition
(NIT), and phase separation. We also discuss the phase behaviours of the mixture of an
at-PS and LC. In Section 2, we introduce a molecular-field theory to describe the phase
behaviours of the mixtures. In Section 3, we show some numerical results.

2. Theoretical Method

Let us consider binary mixtures of a thermoreversible reactive molecule and an LC.
The functional groups on a reactive molecule are assumed to be identical and capable of
forming physical bonds by pairwise association. The bonding energy considered here is of
the order of thermal energy, and then the bonding–unbinding equilibrium is established by
temperature changes. For example, hydrogen (physical) bonding becomes energetically
stable at lower temperatures. In thermal equilibrium, the intermolecular bonding yields
polydisperse molecular aggregates, and we call them ’m-cluster’ in the following, where
m(= 1, 2, · · · , ∞) is the number of reactive molecules on the cluster. To derive the size
distribution of such clusters, we consider the thermodynamics of the system.

The free energy of our system can be constructed by the sum of three terms:

F = Frea + Fmix + Fnem. (1)

The first term is the free energy change to form the clusters from the reference state, where
pure LC solvent and m-clusters are separately prepared by pairwise connections of the
functional group on the reactive molecules. It is given by

Frea =
∞

∑
m=1

Nmµ◦m, (2)

in terms of the chemical potential µ◦m of a pure m-cluster, where Nm is the number of the
m-cluster. The second term Fmix shows the mixing free energy change required in the
process of mixing m-clusters and LCs. According to the Flory–Huggins theory for polymer
blends, it is given by [22,23,25]

βFmix = Nt
[φr

nr
ln φr +

∞

∑
m=1

φm

nm
ln φm + χφr(1− φr)

]
, (3)

where φr(= nr Nr/Nt) is the volume fraction of the LCs with the number Nr of the
molecules, φm(= nmNm/Nt) is the volume fraction of the m-clusters, β = 1/(kBT): kB is
the Boltzmann constant and T is the absolute temperature, Nt(= nr Nr + n ∑∞

m=1 mNm) is
the total number of lattice cells in the system, n is the number of segments on the reactive
molecule, nr is the axial ratio of the LC, and χ is the Flory–Huggins interaction parameter
between the reactive molecule and LC. The volume of the system is given by V = a3Nt,
where a3 is the volume of a segment. The volume of the reactive molecule is given by
a3n, and the volume of the LC molecule is given by a3nr. This is a simple picture based
on the lattice model of Flory–Hugggins’ theory. The total volume fraction of the reactive
molecules is given by φ = ∑∞

m=1 φm and we have φr + φ = 1. The third term in Equation (1)
is the free energy for nematic ordering of LCs. Using the Maier–Saupe model for nematic
ordering [10,11,26], it is given by

βFnem = Nt
[φr

nr

∫
fd(θ) ln 4π fd(θ)dΩ− 1

2
νφ2

r S2], (4)
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where dΩ = 2πsinθdθ is the solid angle, fd(θ) is the orientational distribution function of
LCs, and we have the normalisation condition:∫

fd(θ)dΩ = 1. (5)

We define here the dimensionless anisotropic parameter ν(= βUa) > 0, where Ua is the
orientation-dependent (Maier–Saupe) interaction between LCs. The orientational order
parameter S of the LCs can be calculated by

S =
∫

P2(cos θ) fd(θ)dΩ, (6)

where P2(x) = (3/2)x2 − 1/2 shows the second Legendre polynomial.
The orientational distribution function fd(θ) is determined by minimising the free

energy (Equation (4)) with respect to this distribution function. We then obtain (see
Appendix A)

fd(θ) =
1

Z0
exp[ΓSP2(cos θ)], (7)

where
Γ = nrνφr, (8)

shows the strength of nematic ordering. Substituting Equation (7) into Equation (5), the
normalisation constant Z0 is given by Z0 = 4π I0(ΓS), where the function I0 is defined as

Iq(ΓS) =
∫ 1

0

(
P2(x)

)q exp(ΓSP2(x)
)
dx, (9)

where q = 0, 1 and x = cos θ. Substituting Equation (7) into Equation (6), the orientational
order parameter of the LCs is determined by the self-consistent equation

S = I1(ΓS)/I0(ΓS). (10)

Using Equation (7), the nematic free energy (Equation (4)) is given by

βFnem/Nt =
1
2

νφ2
r S2 − φr

nr
ln I0(ΓS). (11)

2.1. Sol–Gel Transition

In thermal equilibrium, each reactive molecule is in chemical equilibrium through bond-
ing and unbonding processes. This imposes the following multiple-equilibria condition [23]:

mµ1 = µm, (12)

where µm = (∂F/∂Nm)Nr is the chemical potential of the m-cluster:

βµm = βµ◦m + ln φm + 1− nm
nr

+ nm
(

φ

nr
− ∑ φm

n〈m〉

)
+ nmχ(1− φ)2 +

1
2

νφ2
r S2, (13)

µ1 is the chemical potential of the monomer (m = 1), and

〈m〉 =
∞

∑
m=1

φm/
∞

∑
m=1

(φm/m), (14)

is the number-average mean cluster size of m-clusters. We also have the chemical potential
of the LCs µr = (∂F/∂Nr)Nm :

βµr = βµ◦r + ln(1− φ) + φ− nr ∑ φm

n〈m〉 + nrχφ2 +
1
2

nrνS2φ2 − ln I0(ΓS). (15)
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where µ◦r is the chemical potential of a pure LC. Substituting the chemical potentials
(Equation (13)) into Equation (12), we obtain the volume fraction of the m-clusters:

φm = Kmφm
1 , (16)

where the association constant Km is given by

Km = exp
(
− (δm +

1
m
− 1)m

)
, (17)

in terms of the dimensionless free energy difference δm for the m-cluster formation:

δm = β(µ◦m −mµ◦1)/m. (18)

Within the radius of convergence, the equation φ = ∑ φm gives a one-to-one relationship
between the total volume fraction φ and the volume fraction of monomer φ1. By inverting
this relation, the monomer concentration φ1 is given as a function of the total concentration
φ: φ1(φ), for 0 ≤ φ1 ≤ φ.

We can define sol or gel states depending on the function δm [21]. Let m∗ be the cluster
size at which the volume fraction φm takes a maximum for a given φ1. Since the value of
φm does not exceed unity by definition, the monomer concentration φ1 is limited by the
inequality Km∗φ

m∗
1 ≤ 1 and hence we have

φ1 ≤ φ∗1 = exp(δm∗ + 1/m∗ − 1). (19)

When m∗ is finite, the upper bound of Equation (19) is called “critical micelle concentration”.
Sharpness in the appearance of the clusters is controlled by the curvature of the function
δm∗ + 1/m∗ − 1 around m∗. If the function δm is a monotonous decrease function of
m, the cluster size m∗ becomes infinite, and a macroscopic cluster (gelation) appears at
φ∗1 = exp(δ∞ − 1). We then have a sol–gel transition at the total volume fraction φ∗

obtained from φ∗1 . The summation of the power series ∑ φm does not reach φ for φ1 above
φ∗1 because it can not include the contribution from the infinite network φ∞. Then the excess
volume fraction φ−∑ φm corresponds to the gel component φG and φS = ∑ φm is the sol
component: φ = φS + φG. The chemical potential µG of a single molecule participating in
the gel network can be found by µm/m for m→ ∞, and we have an additional condition
µG = µ1 for the molecular association. The unimer concentration remains fixed at φ∗1 above
the gelation threshold, while the total concentration increases. This is a simple picture of
gelation based on the mean-field approximation [27,28].

To proceed a step further, we here consider a model for the internal structure of a
cluster in the form of the Kayley tree of f -functional molecules, where the intracluster loop
formation is neglected. This is a simple approximation based on the classical theory for
gelation. The internal partition function Zm of a single m cluster can be given by [28]

Zm = (Wm( f )/m!)pm−1(1− p) f m−2m+2, (20)

where p is the probability of bond formation for a pair of active groups and Wm( f ) is the
number of combinations in which m molecules form a tree. This combinatorial factor is
given by Wm( f ) = ( f m− m)! f m/( f m− 2m + 2)!, provided the f -functional groups are
indistinguishable [27]. The partition function Zm gives the free energy change δm through
the relation exp(−mδm) = Zm/Zm

1 , by definition. Then, the volume fraction of the m-cluster
is given by

φm =
(1− p)2

pe
( f m−m)!

m!( f m− 2m + 2)!
(
λφ1

)m, (21)

where we define the parameter λ = e f p/(1− p)2. According to the general prescription,
the infinite series ∑ φm can be explicitly summed up by introducing a parameter α defined
by λφ1 = α(1− α) f−2. We find λφ = α(1− f α)/(1− α)2 within the radius of conver-
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gence [27,28]. The limit of convergence is given by αc = 1/( f − 1), or equivalently, (see
Appendix B)

φ∗ =
1

2( f − 2)λ
. (22)

This equation shows the sol–gel transition. In our molecular-field theory, the reversible
gelation is the second-order phase transition, where the osmotic pressure has a kink at
the sol–gel transition point as a function of concentration φ [22]. The statistical weight
λ of a bond formation relative to the weight of two unbounded functionalities is ex-
pressed as p/(1− p)2 = exp(−β∆ f0) in terms of the free energy change ∆ f0 of a single
bond formation. Splitting the free energy into the entropy ∆s and energy ∆ε for the
physical bond formation, ∆ f0 = ∆ε − T∆s, the parameter λ is given as a function of
temperature, λ(T) = λ0 exp(−β∆ε), where λ0 = e f exp(∆s/kB) is the entropy parameter.
Then, we can calculate the sol–gel transition line from Equation (22) on the temperature–
concentration plane.

2.2. Nematic–Isotropic Phase Transition

Figure 1a shows the nematic free energy (βFnem/Nt) of Equation (11) plotted against
the order parameter S for various values of Γ. For lower values of Γ < Γc(' 4.49), the free
energy has a single minimum at S = 0, which corresponds to an isotropic phase. The closed
circle shows a critical point (CP) at Γ = Γc. When Γ exceeds the critical value Γc, another
minimum appears at a positive S, which corresponds to a metastable nematic phase. The
first-order phase transition from an isotropic to a nematic phase takes place at

ΓNI = nrνφr ' 4.55, (23)

where the free energy of the isotropic phase becomes equal to that of the nematic phase.
For intermediate values ΓNI < Γ < Γ∗(= 5), two minima are observed: one (S = 0) is
metastable, and the other (S > 0) shows a stable state. For larger values of Γ > Γ∗, the free
energy has a single minimum at S > 0, which corresponds to the nematic phase.

Figure 1. (a) Nematic free energy (βFnem/Nt) of Equation (11) plotted against the order parameter S
for various values of Γ(= nrνφr). (b) Orientational order parameter S plotted against Γ.

Figure 1b shows the order parameter S plotted against Γ. The first-order NIT occurs
at ΓNI , where the orientational order parameter S jumps from 0 to 0.44. The value of
the order parameter increases from 0.44 to 1 with increasing Γ. Using Equation (8), the
volume fraction at which the NIT takes place is given by φr,NI = 4.55/(nrν). Between
Γc < Γ < ΓNI , the system corresponds to a metastable region and the pre-transitional
behaviours have been observed [29]. In this region, we have various anomalies in the
physical properties such as a steep increase of the birefringence, and a slowing down of the
relaxation process [30].
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2.3. Solution Properties

Due to the Gibbs–Duhem relation for multi-component systems, the free energy
(Equation (1)) can be expressed as

F = Nt

(
µr

nr
φr +

∞

∑
m=1

µm

nm
φm

)
. (24)

Using the chemical equilibrium condition (Equation (12)), the free energy can be written as

F = Nt

(
µr

nr
φr +

∞

∑
m=1

µ1

n
φm

)
= Nt

(
µr

nr
φr +

µ1

n
φ

)
, (25)

and results in the free energy of binary mixtures. The chemical potentials µ1 and µr are
given by Equation (13) and Equation (15), respectively. Then, the free energy difference
from that Fre f of the reference state, where pure solvent and unreacted molecules are
separately prepared, is given by

∆F = F− Fre f = Nt

(
∆µr

nr
φr +

∆µ1

n
φ

)
, (26)

where we define ∆µr = µr − µ◦r and ∆µ1 = µ1 − µ◦1 . Substituting Equations (13) and (15)
into Equation (26), we obtain

β∆F/Nt =
1− φ

nr
ln(1− φ) +

φ

n
ln φ1 + χφ(1− φ) +

1
n
(
φ− φS
〈m〉

)
+

1
2

νS2φ2
r −

φr

nr
ln I0(ΓS). (27)

The value of the φ1 is given as a function of φ for the sol region (φ ≤ φ∗), however, becomes
a constant φ∗1 for the gel region (φ > φ∗). The value of 〈m〉 also becomes a constant 〈m〉∗
for the gel region.

The conditions of binodal curves for two-phase coexistence are given by

µr(φ
′) = µr(φ

′′), (28)

and
µm(φ

′) = µm(φ
′′), (29)

for m = 1, 2, · · ·∞, where the concentration φ′ and φ′′ show the volume fraction of reactive
molecules in lower and higher concentrations in two coexisting phases, respectively. Using
the chemical equilibrium condition (Equation (12)), Equation (29) results in

µ1(φ
′) = µ1(φ

′′). (30)

The coupled equations above (Equations (28) and (30)) correspond to the common tangent
method, namely the free energy has a common tangent at φ′ and φ′′ [11].

The metastable and unstable regions on the temperature–concentration plane are
separated by spinodal curve, (∂µr/∂φ)T = 0, which corresponds to the inflexion points of
the free energy (∂2(F/Nt)/∂φ2)T = 0. This leads to

1
1− φ

− 2χnr +
nrκ(φ)

nφ
− nrνS2 = 0, (31)

where κ(φ) = φd ln φ1(φ)/dφ for φ < φ∗ and κ(φ) = 0 for φ > φ∗ as a function of φ.
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The number-average mean cluster size (Equation (20)) for φ < φ∗ is given by

〈m〉 =
∞

∑
m=1

mNm/
∞

∑
m=1

Nm =
∞

∑
m

φm/
∞

∑
m
(

φm

m
) = φ/

∫ φ

0
κ(φ)dφ, (32)

and becomes a constant for φ∗ ≤ φ:

〈m〉∗ = φS/
∫ φS

0
κ(φ)dφ. (33)

3. Results and Discussion

In this section, we show some numerical results of phase diagrams. For the numerical
calculations, we define the reduced-temperature τ = 1/χ. Using Equation (8), we obtain
the NIT temperature as a function of the volume fraction of the reactive molecules,

τNI = nrαN(1− φ)/4.55, (34)

where we define the dimensionless nematic parameter αN = ν/χ [10]. The smaller values
of αN correspond to larger values of the χ parameter, and the solubility between solute
and solvent molecules becomes poorer. When τ < τNI , the nematic phase is stable and
when τ > τNI , the isotropic phase is stable. The orientational order parameter S jumps
from 0 to 0.44 at τ = τNI [11]. For the pure LCs (φ = 0), the NIT temperature is given by
τ◦NI = nrαN/4.55. It is convenient to introduce the temperature parameter T̃(= T/T◦NI =
τ/τ◦NI) divided by the NIT temperature T◦NI , or τ◦NI , and then the NIT temperature is given by

T̃NI = TNI/T◦NI = τNI/τ◦NI = 1− φ. (35)

Note that the NIT temperature T̃NI is the universal function of φ for any LC, which does
not depend on molecular characteristics such as nr and ν. We also define the dimensionless
boding energy parameter γ1 = −∆ε/(kBT◦NI) and then we have λ(T) = λo exp(γ1/T̃).
Using Equation (22), the sol–gel transition temperature TSG is given by

T̃SG = TSG/T◦NI =
−γ1

ln
(
2( f − 2)λ0φ

) , (36)

as a function of φ. (Note that ln
(
2( f − 2)λ0φ

)
< 0). On increasing the value of the bonding

energy parameter γ1, the temperature T̃SG increases higher.
In the following, we take n = 1, nr = 2, f = 3, γ1 = 2.5, and λ0 = 0.1 for a

typical example. Figure 2a shows the orientational order parameter S plotted against the
concentration φ for various values of T̃. The orientational order parameter S jumps from 0
to 0.44 at the NIT, which shows the first-order phase transition. The value of S increases
with decreasing concentration φ and temperature T̃. Figure 2b shows phase transition
curves on the temperature–concentration plane. The red broken line is the first-order
NIT (Equation (35)) and the blue broken line is the second-order sol–gel transition line
(Equation (36)). The concentration φ∗NI of the intersection between NIT and sol–gel lines is
given by T̃NI = T̃SG, which satisfies

(1− φ∗NI) ln
(
2( f − 2)λ0φ∗NI

)
= −γ1, (37)

and we obtain φ∗NI ' 0.21 and T∗NI ' 0.79. We find four different regions. The region (I,
Sol) above the NIT and sol–gel lines shows the isotropic sol phase, (I, Gel) is the isotropic
gel phase, and (N, Sol) shows the nematic sol state. The (N, Gel) region shows the ne-
matic gel phase, where the nematic LCs are dispersed in the isotropic gel. Because the
concentration of LCs is high and we have large values of the order parameter, S ' 0.8
(see Figure 2a), the whole system seems to be nematic gel. Due to these regions, we have
various phase separations. However, the intersection disappears inside the coexistence
curves, as shown below.
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Figure 2. (a) Orientational order parameter S plotted against φ for T̃ = 0.7, 0.8, 0.9. (b) Phase transition
curves on the temperature–concentration plane. The red broken line is the NIT (Equation (35)) and
the blue broken line shows the sol–gel transition line (Equation (36)).

Figure 3 shows the phase diagram on the temperature–concentration plane for αN = 5.
The solid curve shows the binodal line (coexistence curve), the red broken line is the NIT
(Equation (35)), and the blue broken line is the sol–gel transition line (Equation (36)). The
dotted lines show the spinodal curve below which corresponds to unstable regions. The
region between the spinodal and binodal lines shows metastable states. A part of the
spinodal curve overlaps with the sol–gel line. On the phase diagram, we have four different
regions (I, Sol), (I, Gel), (N, Sol), and (N, Gel). Due to these regions, we find four phase
separations (1)–(4). Below the NIT temperature T̃ < 1, we have the phase separation (1)
between the nematic and isotropic phases, observed in typical PDLC systems, such as
mixtures of 7CB (LC) and PS, etc., [3,7]. In region (2), the phase separation between the
isotropic sol and gel phases occurs. In our molecular-field theory, the reversible gelation is
the second-order phase transition; therefore, the point where the gelation line meets the
binodal at the top of the unstable region shows a tricritical point (TCP) [22]. On increasing
the value of αN , or decreasing the χ parameter, the TCP shifts to lower concentrations
and the phase separation (2) disappears. The intersection between the first-order NIT and
sol–gel transition lines also shows TCP; however, this TCP is hidden inside the coexistence
curves. We also find the triple point (TP) (3) where the nematic sol, isotropic sol, and
isotropic gel phases coexist. Below the TP, we have the broad biphasic region between the
nematic sol and isotropic gel phases (4), where the nematic phase consists of almost pure
LCs and the isotropic gel phase consists of isotropic LCs and networks. In region (4), the
nematic domains of LCs are dispersed in the isotropic gel. We predict that temperature
changes can control these phase behaviours: (1)↔(3)↔(4) and (2)↔(3)↔(4).

Figure 4 shows the phase diagram on the temperature–concentration plane for αN = 2.0.
On decreasing the value of the nematic parameter aN(= ν/χ), meaning the value of the
χ-parameter increases [10], the binodal curve in the (I, Sol) region shifts upward, and we
have three different phase separations (1)–(3). In region (1), we have the phase separation
between the isotropic sol and gel phases. At the NIT temperature (2), the phase separation
between the pure LC phase, where the I and N sol phases coexist, and the isotropic gel
phase appears. Below the NIT temperature, we have the broad biphasic region between the
nematic sol and isotropic gel phases (3), which appears in Figure 3.

Figure 5 shows the phase diagram on the temperature–concentration plane for αN = 1.5.
Further decreasing the value of the nematic parameter aN(= ν/χ), the binodal curve in the
(I, Sol) region shifts upward, and we have the isotropic–isotropic phase separation (1) with
a UCST. The closed circle shows the CP. At the TCP temperature (2), two isotropic phases
and a gel phase coexist. In region (3), the phase separation between the isotropic sol and gel
phases occurs. At the NIT temperature (4), we have the phase separation between the pure
LC phase, where the I and N sol phases coexist, and the isotropic gel phase. Below the NIT
temperature (5), we have the broad biphasic region between the nematic sol and isotropic gel
phases, which appears in Figure 3.
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Figure 3. Phase diagram on the temperature–concentration plane for αN = 5. The solid curve shows
the binodal line, the red broken line is the NIT (Equation (35)), and the blue broken line is the sol–gel
transition (Equation (36)). The dotted lines show the spinodal curve below which corresponds to the
unstable region. We have four different phase separations (1)–(4). See text for details.

Figure 4. Phase diagram on the temperature–concentration plane for αN = 2.0. The solid curve
shows the binodal line, the red broken line is the NIT (Equation (35)), and the blue broken line is the
sol–gel transition (Equation (36)). The dotted lines show the spinodal curve below which corresponds
to the unstable region. We have three different phase separations (1)–(3). See text for details.

The number-average mean cluster size 〈m〉 of m-clusters can be calculated by
〈m〉 = ∑∞

m=1 φm/ ∑(φm/m). Figure 6 shows the average number 〈m〉 of m-clusters plotted
against the concentration φ for various temperatures T̃ in Figure 5. The average number
increases with the concentration φ and becomes a constant, 〈m〉∗ ' 1.52, at the sol–gel
transition φ∗. In the sol phase, the clusters are almost monomers and dimers. Due to the
Flory–Huggins theory for non-reactive polymer blends, the CP concentration in the (I, Sol)
region is given by

φc =

√
nr√

n +
√

nr
. (38)

When n = 1 and nr = 2, we have φc = 0.58, which is almost the same as the CP concentra-
tion in Figure 5 because the number-average cluster size is a small number: 〈m〉 ' 1.3 in
the sol region. On increasing the number n of the segments on the reactive molecules, the
CP shifts to lower concentrations.
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Figure 5. Phase diagram on the temperature–concentration plane for αN = 1.5. The solid curve
shows the binodal line, the red broken line is the NIT (Equation (35)), and the blue broken line is the
sol–gel transition (Equation (36)). The dotted lines show the spinodal curve below which corresponds
to the unstable region. We have five different phase separations: (1)–(5). See text for details.

Figure 6. Average number 〈m〉 of m-clusters plotted against the concentration φ for various tempera-
tures T̃(= 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5) in Figure 5.

It has been observed that at-PS can gel in a series of solvent molecules, including
toluene and tetrahydrofuran [18,19]. In our previous paper [22], we showed the comparison
of the theoretical calculation with the observed phase diagram for the monodisperse at-PS
in the solvent molecule CS2. The theory can properly describe the global characteristics of
the phase behaviour of the thermoreversible gelation. Then, it is informative to calculate
the phase diagram for the mixture of at-PS and LC, by using some numerical parameters
which were used in the previous paper.

Figure 7 shows the calculated-phase diagrams on the temperature–concentration plane
for the mixture of a reactive polymer (at-PS) and LC. We here use the numerical parameters
as follows: γ1 = 4, λ0 = 0.004, n = 100, f = 15, nr = 2, αN = 6 (a), and αN = 10 (b). In
Figure 7a, we predict CP, TCP, and five different phase separations (1)–(5) as shown in
Figure 5. The binodal line of the (N, Sol) region shifts to lower concentrations because
the number n of segments on the reactive polymer is large. The nematic phase almost
consists of pure LCs, coexisting with the isotropic gel phase. The physical gelation of at-PS
is universal, and so our results may be confirmed by the mixtures of at-PS and LC, such as
7CB or EBBA, etc. The UCST on Figure 7a depends on the nematic parameter αN . Figure 7b
shows the phase diagram for αN = 10. The CP disappears, and we have three different
phase separations (1)–(3). Near T̃ = 1, we have the phase separation (1) between a nematic
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sol and an isotropic gel phase. At the TCP temperature (2), a pure nematic LC phase and
isotropic sol, and gel phase coexist. Below TCP temperature (3), a pure nematic LC sol and
an isotropic gel phase coexist. The spinodal region, or unstable region, appears only below
the NIT line.

Figure 7. Phase diagrams on the temperature–concentration plane for the binary mixture of a reactive
polymer and an LC for αN = 6 (a) and αN = 10 (b). The solid curve shows the binodal line, the red
broken line is the NIT (Equation (35)), and the blue broken line is the sol–gel transition (Equation (36)).
The dotted lines show the spinodal curve below which corresponds to the unstable region.

According to the Flory–Huggins theory for nonreactive polymer blends, the UCST, or
CP temperature, in the (I, Sol) region is given by

χc =
(
√

n +
√

nr)2

2nnr
. (39)

We then obtain the UCST temperature

T̃c =
τc

τ◦NI
=

1
χcτ◦NI

=
9.1n

αN(
√

n +
√

nr)2 . (40)

(Note that Equation (40) is the UCST for nonreactive polymer blends.) Using Equation (36)
and Equation (40), we can estimate the condition that satisfies T̃c > T̃SG at the CP concen-
tration φc as

αN ≤
−9.1n

γ1(
√

n +
√

nr)2 ln
(
2( f − 2)λ0φc

)
. (41)

Using the numerical parameters of Figure 7, we have the condition αN ≤ 7.7 for T̃c > T̃SG.
Figure 7a shows the result of αN = 6 and we have T̃c > T̃SG. Of course, our system has
〈m〉 ' 1.2 in the (I, Sol) region as shown in Figure 5 and the UCST in Figure 7a is higher
than T̃c = 1.12 obtained from Equation (40) because the UCST increases with increasing
cluster size 〈m〉. Equation (41) is not an exact condition for T̃c > T̃SG for our systems;
however, it will be the index in order to consider experimental results and the meaning of
the nematic parameter αN . For example, when the bonding energy parameter γ1 is large, it
is hard to be T̃c > T̃SG. On increasing the value of αN , the CP in Figure 7a disappears inside
the (I, Gel) or (N, Sol) regions as shown in Figure 7b [10].

In our model, we neglect the nematic interactions between the LC and polymer
network and then the (N, Gel) region becomes unstable on the phase diagrams. It has been
reported these orientational-dependent interactions between unlike molecules also affect
phase behaviours [11,31]. When the anisotropic coupling between the LC and polymer is
strong, the NIT curve has a maximum as a function of φ on the temperature–concentration
plane, and induced-nematic phases have been predicted [11]. In this case, the (N, Gel)
region shifts to higher temperatures, and we can expect that a stable (N, Gel) region appears
on the phase diagram. We also neglect the excluded volume interaction between rodlike
molecules. In long rodlike molecular solutions, chimney-type phase separations between
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isotropic and nematic phases appear on the temperature–concentration plane [11]. Then,
we can expect the interference between the chimney-type phase separation and the sol–
gel transition. In this paper, we focus on nematic–isotropic phase transitions. Smectic
A-isotropic and smectic A-nematic–isotropic phase transitions are also crucial to further
fundamental research.

4. Conclusions

We predict the novel phase behaviours of thermoreversible gel-dispersed LCs. By
changing temperature and concentration, the interference between sol–gel transition, ne-
matic ordering, and phase separations causes new phenomena, such as TP, and TCP, and
the coexistence between nematic sol and isotropic gel phases. Outside the binodal line of an
isotropic phase in conventional polymer and LC mixtures, we have a miscible region where
the mixture is in an isotropic fluid phase. However, our systems have the (I, Gel) region,
where the mixtures exhibit an elastic response due to the gel. Thus, NIT and gelation are
advantageous for integrating optical and mechanical devices for various chemical and
biological sensing applications. We conclude that thermoreversible gel-dispersed LCs can
be one of the new classes of temperature-sensitive PDLCs. These phase diagrams have
not been observed yet, and we hope to achieve this with the experimental evidence of
our results.
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Appendix A. Derivation of Orientational Distribution Function

In this appendix, we derive the orientational distribution function fd(θ), which is
determined by minimising the free energy (Equation (4)). The minimum is found by
introducing a Lagrange multiplier Λ and solving

δ

δ fd(θ)

[
Fnem( fd(θ))−Λ

∫
fd(θ)dΩ

]
= 0. (A1)

with the condition Equation (5). This yields∫
dΩ
(φr

nr
ln 4π fd(θ)− νφ2

r SP2(cos θ)−Λ
)
= 0, (A2)

and leads to
ln 4π fd(θ) = nrνφrSP2(cos θ) + Λ. (A3)

Then we obtain the distribution function (Equation (7)):

fd(θ) =
1

4π
exp(Λ + nrνφrSP2(cos θ)

)
=

1
Z0

exp(nrνφrSP2(cos θ)
)
. (A4)

where the constant Z0(= 4π/ exp(Λ)) is determined by the normalisation condition
(Equation (5)).
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Appendix B. Application of Stockmayer’s Distribution Function

In this appendix, we derive the sum of the infinite series ∑ φm explicitly [27]. Using
Equation (21), the total volume fraction of reactive molecules is given by

φ =
(1− p)2

pe

∞

∑
m=1

( f m−m)!
m!( f m− 2m + 2)!

xm. (A5)

where x = λφ1. We here define the function Si(x):

Si(x) =
∞

∑
m=1

mi( f m−m)!
m!( f m− 2m + 2)!

xm, (A6)

for i = 0, 1, 2. For f = 2 the results are well known. Using the parameter α defined as
x = α(1− α) f−2, we obtain

S0(x) =
α(1− f α/2)
(1− α)2 f

, (A7)

S1(x) =
α

(1− α)2 f
, (A8)

and

S2(x) =
α(1 + α)

(1− α)2 f (1− ( f − 1)α)
. (A9)

Substituting Equation (A7) into Equation (A5), we obtain

λφ =
α(1− f α/2)
(1− α)2 , (A10)

where λ = e f p/(1− p)2. The solution is given by

α =
1 + 2y− a(y)

f + 2y
, (A11)

where we define a(y) =
√

1− 2y( f − 2) and y = λφ for y ≤ 1/(2( f − 2)). When
y = 1/(2( f − 2)), we have a critical value of αc = 1/( f − 1) and the sums S0 and S1
converge, but S2 diverges. The value of αc yields the sol–gel transition point (Equation (22)).
Substituting Equation (A11) into x = α(1− α) f−2, we obtain the volume fraction φ1 as a
function of φ:

λφ1 =
(1 + 2y− a(y))( f − 1 + a(y)) f−2

( f + 2y) f−1 , (A12)

When λ is given as a function of T at a given φ, we obtain the value of α from Equation (A11)
and the value of φ1 from Equation (A12). The function κ(φ) in Equation (31) is given by

κ(φ) = φ

(
d ln φ1

dφ

)
=

1
2( f + 2y)

(
f (1 + a(y))− 2y( f − 2)

)
. (A13)

For a gel phase, the value of φ1 is a constant φ∗1 = ( f − 2) f−2/(λ( f − 1) f−1) and we have
κ(φ) = 0.
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