Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Differential Scanning Calorimetry
2.2.2. Membrane Preparation Method
2.2.3. Measurement of Mechanical Properties of Films and Membranes
2.2.4. Scanning Electron Microscopy
2.2.5. Transport Properties of Membranes
2.2.6. Measurement of Water Contact Angle of Film and Membranes
2.2.7. Evaluation of the Membranes’ Thermal Stability
3. Results and Discussion
3.1. Theoretical Basis for the New Method of Membrane Formation
3.2. Thermal Behavior of UHMWPE Mixtures with O-xylene
3.3. UHMWPE Membrane Preparation
3.4. Thermophysical Properties of Membranes
3.5. Mechanical Properties of Membranes
3.6. Morphology of Membranes and Film
3.7. Transport Properties of Membranes
3.8. Mechanism of Structure Formation of Membranes Prepared by the Controlled Swelling/Deswelling Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, Y.; Yuan, J.; Ma, X.; Wang, S.; Liu, Y. Polymeric Nanocomposite Membranes for Water Treatment: A Review. Environ. Chem. Lett. 2019, 17, 1539–1551. [Google Scholar] [CrossRef]
- Tang, Y.; Lin, Y.; Ma, W.; Wang, X. A Review on Microporous Polyvinylidene Fluoride Membranes Fabricated via Thermally Induced Phase Separation for MF/UF Application. J. Membr. Sci. 2021, 639, 119759. [Google Scholar] [CrossRef]
- Jiang, X.; Shao, Y.; Sheng, L.; Li, P.; He, G. Membrane Crystallization for Process Intensification and Control: A Review. Engineering 2021, 7, 50–62. [Google Scholar] [CrossRef]
- Dehghan, R.; Barzin, J. Development of a Polysulfone Membrane with Explicit Characteristics for Separation of Low Density Lipoprotein from Blood Plasma. Polym. Test. 2020, 85, 106438. [Google Scholar] [CrossRef]
- Fuenmayor, C.A.; Lemma, S.M.; Mannino, S.; Mimmo, T.; Scampicchio, M. Filtration of Apple Juice by Nylon Nanofibrous Membranes. J. Food Eng. 2014, 122, 110–116. [Google Scholar] [CrossRef]
- Sukhanova, T.E.; Didenko, A.L.; Borisov, I.L.; Anokhina, T.S.; Ivanov, A.G.; Nesterova, A.S.; Kobykhno, I.A.; Yushkin, A.A.; Kudryavtsev, V.V.; Volkov, A.V. Morphological Analysis of Poly(4,4′-Oxydiphenylene-Pyromellitimide)-Based Organic Solvent Nanofiltration Membranes Formed by the Solution Method. Membranes 2022, 12, 1235. [Google Scholar] [CrossRef]
- Li, R.; Gao, P.; Li, R.; Gao, P. Nanoporous UHMWPE Membrane Separators for Safer and High-Power-Density Rechargeable Batteries. Glob. Chall. 2017, 1, 1700020. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, C.; Wu, T.; Yang, F.; Lan, F.; Cao, Y.; Xiang, M. Effect of Temperature on Compression Behavior of Polypropylene Separator Used for Lithium-Ion Battery. J. Power Sources 2020, 466, 228300. [Google Scholar] [CrossRef]
- Tan, X.M.; Rodrigue, D. A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene. Polymers 2019, 11, 1310. [Google Scholar] [CrossRef] [Green Version]
- Matveev, D.; Borisov, I.; Vasilevsky, V.; Karpacheva, G.; Volkov, V. Spinning of Polysulfone Hollow Fiber Membranes Using Constant Dope Solution Composition: Viscosity Control via Temperature. Membranes 2022, 12, 1257. [Google Scholar] [CrossRef]
- Yushkin, A.; Basko, A.; Balynin, A.; Efimov, M.; Lebedeva, T.; Ilyasova, A.; Pochivalov, K.; Volkov, A. Effect of Acetone as Co-Solvent on Fabrication of Polyacrylonitrile Ultrafiltration Membranes by Non-Solvent Induced Phase Separation. Polymers 2022, 14, 4603. [Google Scholar] [CrossRef]
- Mosadegh-Sedghi, S.; Brisson, J.; Rodrigue, D.; Iliuta, M.C. Morphological, Chemical and Thermal Stability of Microporous LDPE Hollow Fiber Membranes in Contact with Single and Mixed Amine Based CO2 Absorbents. Sep. Purif. Technol. 2012, 96, 117–123. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, C.; Huang, Y.; Ji, D.; Chen, K. Effect of Additive and Coagulation Bath Temperature on Structure and Properties of HDPE Membranes via Thermally Induced Phase Separation. J. Mater. Sci. 2022, 57, 4834–4849. [Google Scholar] [CrossRef]
- Baena, J.C.; Wu, J.; Peng, Z. Wear Performance of UHMWPE and Reinforced UHMWPE Composites in Arthroplasty Applications: A Review. Lubricants 2015, 3, 413–436. [Google Scholar] [CrossRef] [Green Version]
- Jeeva Jothi, K.; Santhoskumar, A.U.; Amanulla, S.; Palanivelu, K. Thermally Sprayable Anti-Corrosion Marine Coatings Based on MAH-g-LDPE/UHMWPE Nanocomposites. J. Therm. Spray Technol. 2014, 23, 1413–1424. [Google Scholar] [CrossRef]
- Samad, M.A. Recent Advances in Uhmwpe/Uhmwpe Nanocomposite/Uhmwpe Hybrid Nanocomposite Polymer Coatings for Tribological Applications: A Comprehensive Review. Polymers 2021, 13, 608. [Google Scholar] [CrossRef] [PubMed]
- Ihm, D.W.; Noh, J.G.; Kim, J.Y. Effect of Polymer Blending and Drawing Conditions on Properties of Polyethylene Separator Prepared for Li-Ion Secondary Battery. J. Power Sources 2002, 109, 388–393. [Google Scholar] [CrossRef]
- Basko, A.; Pochivalov, K. Current State-of-the-Art in Membrane Formation from Ultra-High Molecular Weight Polyethylene. Membranes 2022, 12, 1137. [Google Scholar] [CrossRef]
- Otto, C.; Handge, U.A.; Georgopanos, P.; Aschenbrenner, O.; Kerwitz, J.; Abetz, C.; Metze, A.L.; Abetz, V. Porous UHMWPE Membranes and Composites Filled with Carbon Nanotubes: Permeability, Mechanical, and Electrical Properties. Macromol. Mater. Eng. 2017, 302, 1600405. [Google Scholar] [CrossRef]
- Liu, R.; Wang, X.; Yu, J.; Wang, Y.; Zhu, J.; Hu, Z. Development and Evaluation of UHMWPE/Woven Fabric Composite Microfiltration Membranes via Thermally Induced Phase Separation. RSC Adv. 2016, 6, 90701–90710. [Google Scholar] [CrossRef]
- Li, N.; Xiao, C.; Mei, S.; Zhang, S. The Multi-Pore-Structure of Polymer–Silicon Hollow Fiber Membranes Fabricated via Thermally Induced Phase Separation Combining with Stretching. Desalination 2011, 274, 284–291. [Google Scholar] [CrossRef]
- Quan, J.; Yu, J.; Wang, Y.; Hu, Z. Construction of Intrinsic Superhydrophobic Ultra-High Molecular Weight Polyethylene Composite Membrane for DCMD. J. Memb. Sci. 2022, 648, 120353. [Google Scholar] [CrossRef]
- Sun, S.; Zhu, L.; Liu, X.; Wu, L.; Dai, K.; Liu, C.; Shen, C.; Guo, X.; Zheng, G.; Guo, Z. Superhydrophobic Shish-Kebab Membrane with Self-Cleaning and Oil/Water Separation Properties. ACS Sustain. Chem. Eng. 2018, 6, 9866–9875. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, T.; Chen, M.; Li, C.; Wu, H.; Guo, S. Constructing Tunable Bimodal Porous Structure in Ultrahigh Molecular Weight Polyethylene Membranes with Enhanced Water Permeance and Retained Rejection Performance. J. Memb. Sci. 2021, 619, 118778. [Google Scholar] [CrossRef]
- Cao, X.; Li, Y.; He, G. Fabrication of Self-Lubricating Porous UHMWPE with Excellent Mechanical Properties and Friction Performance via Rotary Sintering. Polymers 2020, 12, 1335. [Google Scholar] [CrossRef]
- Lermontov, S.A.; Malkova, A.N.; Sipyagina, N.A.; Straumal, E.A.; Maksimkin, A.V.; Kolesnikov, E.A.; Senatov, F.S. Properties of Highly Porous Aerogels Prepared from Ultra-High Molecular Weight Polyethylene. Polymer 2019, 182, 121824. [Google Scholar] [CrossRef]
- Mizerovskii, L.N.; Lebedeva, T.N.; Pochivalov, K.V. The Phase Diagram of the High-Density Polyethylene-m-Xylene System. Polym. Sci.-Ser. A 2015, 57, 257–260. [Google Scholar] [CrossRef]
- Pochivalov, K.V.; Basko, A.V.; Lebedeva, T.N.; Antina, L.A.; Golovanov, R.Y.; Artemov, V.V.; Ezhov, A.A.; Kudryavtsev, Y.V. Low-Density Polyethylene-Thymol: Thermal Behavior and Phase Diagram. Thermochim. Acta 2018, 659, 113–120. [Google Scholar] [CrossRef]
- Pochivalov, K.V.; Lebedeva, T.N.; Ilyasova, A.N.; Basko, A.V.; Kudryavtsev, Y.V. Thermal Behavior of Poly[3,3-Bis(Azidomethyl)Oxetane] Compositions with an Energetic Plasticizer: Calorimetric and Optical Studies. J. Mol. Liq. 2019, 283, 366–373. [Google Scholar] [CrossRef]
- Basko, A.V.; Pochivalov, K.V.; Chalykh, T.I.; Shandryuk, G.A.; Ezhov, A.A.; Artemov, V.V.; Kudryavtsev, Y.V. Combining Optical Microscopy, Turbidimetry, and DSC to Study Structural Transformations in the Mixtures of Semicrystalline Polymers with Low-Molar-Mass Crystallizable Substances. Thermochim. Acta 2020, 690, 178671. [Google Scholar] [CrossRef]
- Pochivalov, K.V.; Basko, A.V.; Lebedeva, T.N.; Ilyasova, A.N.; Yurov, M.Y.; Golovanov, R.Y.; Artemov, V.V.; Volkov, V.V.; Ezhov, A.A.; Volkov, A.V.; et al. Thermally Induced Phase Separation in Semicrystalline Polymer Solutions: How Does the Porous Structure Actually Arise? Mater. Today Commun. 2021, 28, 102558. [Google Scholar] [CrossRef]
- Pochivalov, K.V.; Basko, A.V.; Lebedeva, T.N.; Ilyasova, A.N.; Guseinov, S.S.; Kudryavtsev, Y.V. Thermodynamically-Informed Approach to the Synthesis of 3D Printing Powders from the Mixtures of Polyamide 12 with Benzyl Alcohol. Powder Technol. 2022, 408, 117685. [Google Scholar] [CrossRef]
- Wang, Y. Nondestructive Creation of Ordered Nanopores by Selective Swelling of Block Copolymers: Toward Homoporous Membranes. Acc. Chem. Res. 2016, 49, 1401–1408. [Google Scholar] [CrossRef]
- Zhong, D.; Zhou, J.; Wang, Y. Hollow-Fiber Membranes of Block Copolymers by Melt Spinning and Selective Swelling. J. Membr. Sci. 2021, 632, 119374. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Wang, Y.; Wang, Y. Producing Nanoporosities in Block Copolymers within 30 s by Microwave-Boosted Selective Swelling. Macromolecules 2020, 53, 3619–3626. [Google Scholar] [CrossRef]
- Qiu, S.; Li, Z.; Ye, X.; Ying, X.; Zhou, J.; Wang, Y. Selective Swelling of Polystyrene(PS)/Poly(dimethylsiloxane) (PDMS) Block Copolymers in Alkanes. Macromolecules 2023, 56, 215–225. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, Y.; Choi, T.L.; Lim, J.; Char, K. Swelling-Induced Pore Generation in Fluorinated Polynorbornene Block Copolymer Films. Polym. Chem. 2018, 9, 3536–3542. [Google Scholar] [CrossRef]
- Guo, L.; Ntetsikas, K.; Zapsas, G.; Thankamony, R.; Lai, Z.; Hadjichristidis, N. Highly Efficient Production of Nanoporous Block Copolymers with Arbitrary Structural Characteristics for Advanced Membranes. Angew. Chem. 2022, 135, e202212400. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, Y.; Wang, F.; Zhou, X.; Liao, W. Finely Controlled Swelling: A Shortcut to Construct Ion-Selective Channels in Polymer Membranes. Polymer 2021, 225, 123793. [Google Scholar] [CrossRef]
- Gierszewska, M.; Ostrowska-Czubenko, J.; Chrzanowska, E. PH-Responsive Chitosan/Alginate Polyelectrolyte Complex Membranes Reinforced by Tripolyphosphate. Eur. Polym. J. 2018, 101, 282. [Google Scholar] [CrossRef]
- Shevate, R.; Karunakaran, M.; Kumar, M.; Peinemann, K.V. Polyanionic PH-Responsive Polystyrene-b-Poly(4-Vinyl Pyridine-N-Oxide) Isoporous Membranes. J. Memb. Sci. 2016, 501, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Mizerovskii, L.N.; Pochivalov, K.V.; Afanas’eva, V.V. A Semicrystalline Polymer as a Metastable Microheterogeneous Liquid. Polym. Sci. Ser. A 2010, 52, 973–984. [Google Scholar] [CrossRef]
- Chvalun, S.N.; Odarchenko, Y.I.; Meshchankina, M.Y.; Shcherbina, M.A.; Bessonova, N.P.; Deblieck, R.A.C.; Boerakker, M.; Remerie, K.; Litvinov, V. Looking for the Simplicity in Polymer Networks—Structure Changes and Comparative Analysis of Theoretical Approaches to Deformation of Semi-Crystalline Polymers. Polymer 2018, 157, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Hosseinnezhad, R.; Vozniak, I.; Romano, D.; Rastogi, S.; Regnier, G.; Piorkowska, E.; Galeski, A. Formation of UHMWPE Nanofibers during Solid-State Deformation. Nanomaterials 2022, 12, 3825. [Google Scholar] [CrossRef]
- Yushkin, A.A.; Efimov, M.N.; Malakhov, A.O.; Karpacheva, G.P.; Bondarenko, G.; Marbelia, L.; Vankelecom, I.F.J.; Volkov, A.V. Creation of Highly Stable Porous Polyacrylonitrile Membranes Using Infrared Heating. React. Funct. Polym. 2021, 158, 104793. [Google Scholar] [CrossRef]
- Lloyd, D.R.; Kinzer, K.E.; Tseng, H.S. Microporous Membrane Formation via Thermally Induced Phase Separation. I. Solid-Liquid Phase Separation. J. Memb. Sci. 1990, 52, 239. [Google Scholar] [CrossRef]
- Lloyd, D.R.; Kim, S.S.; Kinzer, K.E. Microporous Membrane Formation via Thermally-Induced Phase Separation. II. Liquid-Liquid Phase Separation. J. Memb. Sci. 1991, 64, 1–11. [Google Scholar] [CrossRef]
- Yang, F.; Liu, C.; Yang, F.; Xiang, M.; Wu, T.; Fu, Q. Effects of Diluent Content on the Crystallization Behavior and Morphology of Polyethylene Membrane Fabricated via Thermally Induced Phase Separation Process. Polymer 2022, 255, 125104. [Google Scholar] [CrossRef]
- Ito, A.; Hioki, K.; Kono, K.; Hiejima, Y.; Nitta, K.H. Effects of Liquid Paraffin on Dynamic Mechanical Properties of Linear High-Density Polyethylene. Macromolecules 2020, 53, 8459–8466. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, Z.; Ismail, N.; Tocci, E.; Figoli, A.; Khayet, M.; Matsuura, T.; Cui, Z.; Tavajohi, N. Membrane Formation by Thermally Induced Phase Separation: Materials, Involved Parameters, Modeling, Current Efforts and Future Directions. J. Memb. Sci. 2023, 669, 121303. [Google Scholar] [CrossRef]
- Shen, H.; He, L.; Fan, C.; Xie, B.; Yang, W.; Yang, M. Improving the Integration of HDPE/UHMWPE Blends by High Temperature Melting and Subsequent Shear. Mater. Lett. 2015, 138, 247–250. [Google Scholar] [CrossRef]
- Natta, G.; Pasquon, I.; Zambelli, A.; Gatti, G. Dependence of the Melting Point of Isotactic Polypropylenes on Their Molecular Weight and Degree of Stereospecificity of Different Catalytic Systems. Makromol. Chem. 1964, 70, 191. [Google Scholar] [CrossRef]
- Cuissinat, C.; Navard, P.; Heinze, T. Swelling and Dissolution of Cellulose. Part IV: Free Floating Cotton and Wood Fibres in Ionic Liquids. Carbohydr. Polym. 2008, 72, 590–596. [Google Scholar] [CrossRef]
- Tardy, B.L.; Mattos, B.D.; Otoni, C.G.; Beaumont, M.; Majoinen, J.; Kämäräinen, T.; Rojas, O.J. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem. Rev. 2021, 121, 14088–14188. [Google Scholar] [CrossRef]
- Oparaji, O.; Zuo, X.; Hallinan, D.T. Crystallite Dissolution in PEO-Based Polymers Induced by Water Sorption. Polymer 2016, 100, 206–218. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Lu, Q.; Yin, W.; Xiao, C.; Li, J. The Structure and Properties of Poly(Vinylidene Fluoride)/Ultrahigh-Molecular -Weight Polyethylene Blend Hollow Fiber Membranes via TIPS with Mixed Diluents. J. Memb. Sci. 2020, 595, 117527. [Google Scholar] [CrossRef]
- Su, M.; Pan, Y.; Zheng, G.; Liu, C.; Shen, C.; Liu, X. An Ultra-Light, Superhydrophobic and Thermal Insulation Ultra-High Molecular Weight Polyethylene Foam. Polymer 2021, 218, 123528. [Google Scholar] [CrossRef]
- Quan, J.; Song, Q.; Yu, J.; Wang, Y.; Zhu, J.; Hu, Z. Atmospheric Drying UHMWPE Membranes via Multiple Stage Extractant Exchange Drying Technique. Adv. Fiber Mater. 2022, 4, 235–245. [Google Scholar] [CrossRef]
- Sui, Y.; Li, J.; Qiu, Z.; Cui, Y.; Cong, C.; Meng, X.; Ye, H.; Zhou, Q. Effects of the Sintering Temperature on the Superior Cryogenic Toughness of Ultra-High Molecular Weight Polyethylene (UHMWPE). Chem. Eng. J. 2022, 444, 136366. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, C.; Yu, W. Phase Separation and Structure Control in Ultra-High Molecular Weight Polyethylene Microporous Membrane. J. Memb. Sci. 2011, 379, 268–278. [Google Scholar] [CrossRef]
- Galeski, A.; Bartczak, Z.; Vozniak, A.; Pawlak, A.; Walkenhorst, R. Morphology and Plastic Yielding of Ultrahigh Molecular Weight Polyethylene. Macromolecules 2020, 53, 6063–6077. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Morlanes, M.J.; Castell, P.; Martínez-Nogués, V.; Martinez, M.T.; Alonso, P.J.; Puértolas, J.A. Effects of Gamma-Irradiation on UHMWPE/MWNT Nanocomposites. Compos. Sci. Technol. 2011, 71, 282–288. [Google Scholar] [CrossRef]
- Stephens, C.P.; Benson, R.S.; Esther Martinez-Pardo, M.; Barker, E.D.; Walker, J.B.; Stephens, T.P. The Effect of Dose Rate on the Crystalline Lamellar Thickness Distribution in Gamma-Radiation of UHMWPE. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 236, 540–545. [Google Scholar] [CrossRef]
Sample | Swelling Time, min | Swelling Temperature, °C | Swelling Degree (Q) | Volume Fraction of O-xylene in Swollen Film | Mass Fraction of UHMWPE in the Swollen Film |
---|---|---|---|---|---|
M1 | 20 | 106 | 1.7 | 0.630 | 0.380 |
M2 | 35 | 106 | 2.4 | 0.706 | 0.303 |
M3 | 45 | 106 | 4 | 0.800 | 0.207 |
M4 | 60 | 106 | 6 | 0.857 | 0.148 |
M5 | 100 | 106 | 11 | 0.917 | 0.087 |
Sample | Swelling Time, min | Swelling Degree (Q) | Volume Fraction of O-xylene in Swollen Film | Volume Porosity (P) | Mass Fraction of UHMWPE in the Swollen Film | Crystallinity Degree (α) |
---|---|---|---|---|---|---|
M1 | 20 | 1.7 | 0.630 | 0.120 | 0.380 | 0.7 |
M2 | 35 | 2.4 | 0.706 | 0.275 | 0.303 | 0.741 |
M3 | 45 | 4 | 0.800 | 0.458 | 0.207 | 0.867 |
M4 | 60 | 6 | 0.857 | 0.553 | 0.148 | 0.87 |
M5 | 100 | 11 | 0.917 | 0.648 | 0.087 | 0.89 |
Sample | F | M1 | M2 | M3 | M4 | M5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Direction | TD | LD | TD | LD | TD | LD | TD | LD | TD | LD | TD | LD |
σ, MPa | 27 | 33.7 | 16.6 | 19.5 | 11.4 | 14 | 8.2 | 8.8 | 7.4 | 7.8 | 3.3 | 3.1 |
ε, % | 200 | 323 | 53 | 255 | 32 | 243 | 95 | 107 | 80 | 86 | 67 | 74 |
σtrue, MPa | 81.2 | 143 | 28.9 | 78.7 | 20.8 | 66.3 | 29.6 | 33.5 | 29.8 | 32.4 | 15.6 | 15.4 |
E, MPa | 303 | 275 | 287 | 240 | 160 | 175 | 109 | 125 | 92 | 98 | 37 | 33 |
Sample | F | M1 | M2 | M3 | M4 | M5 | |
---|---|---|---|---|---|---|---|
The biggest through pore, nm | – | 62 | 82 | 142 | 240 | 259 | |
MFP, nm | – | 12 | 17 | 30 | 51 | 75 | |
Permeance, L m−2 h−1 bar−1 | – | 11.6 | 25.6 | 46.4 | 81 | 134 | |
Rejection, % | – | >99 | >99 | 76 | 53 | 22 | |
water contact angle, ° | 125 | 128 | 128 | 131 | 129 | 130 | |
Volume shrinkage (%) at a temperature | 90 °C | 0 | 0 | 0 | 0 | 0 | 0 |
100 °C | 0 | 0 | 0 | 0 | 0.9 | 1.3 | |
110 °C | 0 | 0 | 0 | 0.7 | 3.1 | 5.2 | |
120 °C | 0 | 0 | 0 | 1.5 | 5.1 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pochivalov, K.; Basko, A.; Lebedeva, T.; Yurov, M.; Yushkin, A.; Volkov, A.; Bronnikov, S. Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes. Membranes 2023, 13, 422. https://doi.org/10.3390/membranes13040422
Pochivalov K, Basko A, Lebedeva T, Yurov M, Yushkin A, Volkov A, Bronnikov S. Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes. Membranes. 2023; 13(4):422. https://doi.org/10.3390/membranes13040422
Chicago/Turabian StylePochivalov, Konstantin, Andrey Basko, Tatyana Lebedeva, Mikhail Yurov, Alexey Yushkin, Alexey Volkov, and Sergei Bronnikov. 2023. "Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes" Membranes 13, no. 4: 422. https://doi.org/10.3390/membranes13040422
APA StylePochivalov, K., Basko, A., Lebedeva, T., Yurov, M., Yushkin, A., Volkov, A., & Bronnikov, S. (2023). Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes. Membranes, 13(4), 422. https://doi.org/10.3390/membranes13040422