Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = polymer ceramic membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4914 KiB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 284
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

14 pages, 6077 KiB  
Article
Fabrication of Green PVDF/TiO2 Composite Membrane for Water Treatment
by Shuhang Lu and Dong Zou
Membranes 2025, 15(7), 218; https://doi.org/10.3390/membranes15070218 - 21 Jul 2025
Viewed by 509
Abstract
PVDF/TiO2 composite membranes show some potential to be used for water treatment as they combine the advantages of polymers and ceramics. However, conventional PVDF-based composite membranes are always fabricated by using conventional toxic solvents. Herein, PolarClean was used as a green solvent [...] Read more.
PVDF/TiO2 composite membranes show some potential to be used for water treatment as they combine the advantages of polymers and ceramics. However, conventional PVDF-based composite membranes are always fabricated by using conventional toxic solvents. Herein, PolarClean was used as a green solvent to fabricate PVDF/TiO2 composite membranes via the phase inversion method. In this process, Pluronic F127 was used as a dispersion agent to distribute TiO2 particles in the PVDF matrix and to serve as a pore former on the membrane surface. TiO2 particles were well distributed on the membrane surface and bulk. TiO2 particles in the PVDF matrix enhanced the mechanical strength and hydrophilic characteristics of the resulting composite membrane, facilitating water transport through the composite membranes and enhancing their water permeability. Membrane microstructures and mechanical strength of the composite membranes were finely tuned by varying the PVDF concentration, TiO2 concentration, and coagulation bath temperature. It was demonstrated that the resulting green PVDF/TiO2 composite membrane showed a high water permeance compared with those using conventional toxic solvents in terms of its small pore size. In addition, the particle rejection of green PVDF/TiO2 membrane showed a 99.9% rejection rate in all the filtration process, while those using NMP showed 91.1% after 30 min of filtration. The water flux was similar at 121 and 130 Lm−2h−1 for green and conventional solvents, respectively. This work provides important information for the future application of sustainable membranes. Full article
Show Figures

Figure 1

14 pages, 516 KiB  
Review
The Role of Membranes in Modern Winemaking: From Clarification to Dealcoholization
by Carolina E. Demaman Oro, Bruna M. Saorin Puton, Luciana D. Venquiaruto, Rogério Marcos Dallago, Giordana Demaman Arend and Marcus V. Tres
Membranes 2025, 15(1), 14; https://doi.org/10.3390/membranes15010014 - 9 Jan 2025
Cited by 4 | Viewed by 1873
Abstract
The utilization of membrane technologies in winemaking has revolutionized various stages of production, offering precise and efficient alternatives to traditional methods. Membranes, characterized by their selective permeability, play a pivotal role in enhancing wine quality across multiple processes. In clarification, microfiltration and ultrafiltration [...] Read more.
The utilization of membrane technologies in winemaking has revolutionized various stages of production, offering precise and efficient alternatives to traditional methods. Membranes, characterized by their selective permeability, play a pivotal role in enhancing wine quality across multiple processes. In clarification, microfiltration and ultrafiltration membranes, such as ceramic or polymeric membranes (e.g., polyethersulfone or PVDF), effectively remove suspended solids and colloids, resulting in a clearer wine without the need for chemical agents. During stabilization, membranes such as nanofiltration and reverse osmosis membranes, often made from polyamide composite materials, enable the selective removal of proteins, polysaccharides, and microorganisms, thereby improving the wine’s stability and extending its shelf life. Additionally, in dealcoholization, membranes like reverse osmosis and pervaporation membranes, typically constructed from polydimethylsiloxane (PDMS) or other specialized polymers, facilitate the selective removal of ethanol while preserving the wine’s flavor and aroma profile, addressing the increasing consumer demand for low-alcohol and alcohol-free wines. This article provides a comprehensive analysis of the advancements and applications of membrane technologies in winemaking. Full article
(This article belongs to the Special Issue Membrane Technologies in Food Processing)
Show Figures

Figure 1

34 pages, 5456 KiB  
Review
Advancements in Mixed-Matrix Membranes for Various Separation Applications: State of the Art and Future Prospects
by Bhoga Arundhathi, Manideep Pabba, Shrisha S. Raj, Nivedita Sahu and Sundergopal Sridhar
Membranes 2024, 14(11), 224; https://doi.org/10.3390/membranes14110224 - 25 Oct 2024
Cited by 10 | Viewed by 5402
Abstract
Integrating nanomaterials into membranes has revolutionized selective transport processes, offering enhanced properties and functionalities. Mixed-matrix membranes (MMMs) are nanocomposite membranes (NCMs) that incorporate inorganic nanoparticles (NPs) into organic polymeric matrices, augmenting mechanical strength, thermal stability, separation performance, and antifouling characteristics. Various synthesis methods, [...] Read more.
Integrating nanomaterials into membranes has revolutionized selective transport processes, offering enhanced properties and functionalities. Mixed-matrix membranes (MMMs) are nanocomposite membranes (NCMs) that incorporate inorganic nanoparticles (NPs) into organic polymeric matrices, augmenting mechanical strength, thermal stability, separation performance, and antifouling characteristics. Various synthesis methods, like phase inversion, layer-by-layer assembly, electrospinning, and surface modification, enable the production of tailored MMMs. A trade-off exists between selectivity and flux in pristine polymer membranes or plain inorganic ceramic/zeolite membranes. In contrast, in MMMs, NPs exert a profound influence on membrane performance, enhancing both permeability and selectivity simultaneously, besides exhibiting profound antibacterial efficacy. Membranes reported in this work find application in diverse separation processes, notably in niche membrane-based applications, by addressing challenges such as membrane fouling and degradation, low flux, and selectivity, besides poor rejection properties. This review comprehensively surveys recent advances in nanoparticle-integrated polymeric membranes across various fields of water purification, heavy metal removal, dye degradation, gaseous separation, pervaporation (PV), fuel cells (FC), and desalination. Efforts have been made to underscore the role of nanomaterials in advancing environmental remediation efforts and addressing drinking water quality concerns through interesting case studies reported in the literature. Full article
Show Figures

Figure 1

24 pages, 4097 KiB  
Review
Application Progress of Multi-Functional Polymer Composite Nanofibers Based on Electrospinning: A Brief Review
by Shuai Ma, An Li and Ligang Pan
Polymers 2024, 16(17), 2459; https://doi.org/10.3390/polym16172459 - 29 Aug 2024
Cited by 8 | Viewed by 2338
Abstract
Nanomaterials are known as the most promising materials of the 21st century, among which nanofibers have become a hot research and development topic in academia and industry due to their high aspect ratio, high specific surface area, high molecular orientation, high crystallinity, excellent [...] Read more.
Nanomaterials are known as the most promising materials of the 21st century, among which nanofibers have become a hot research and development topic in academia and industry due to their high aspect ratio, high specific surface area, high molecular orientation, high crystallinity, excellent mechanical properties, and many other advantages. Electrospinning is the most important preparation method for nanofibers and their thin membranes due to its controllability, versatility, low cost, and simplicity. Adding nanofillers such as ceramics, metals, and carbon materials to the electrospinning polymer solutions to prepare composites can further improve the mechanical strength and multi-functionality of nanofibers and their thin membranes and also provide possibilities for their widespread applications. Based on the rapid development in the field of polymer composite nanofibers, this review focuses on polyurethane (PU)-based composite nanofibers as the main representative and reviews their latest practical applications in many fields such as sound-absorbing materials, biomedical materials (including tissue engineering implants, drug delivery systems, wound dressings and other anti-bacterial materials, health materials, etc.), wearable sensing devices and energy harvesters, adsorbent materials, electromagnetic shielding materials, and reinforcement materials. Finally, a summary of their performance–application relationship and prospects for further development are given. This review is expected to provide some practical experience and theoretical guidance for further developments in related fields. Full article
(This article belongs to the Special Issue Advanced Electrospinning Fibers II)
Show Figures

Figure 1

26 pages, 9403 KiB  
Review
Advanced Preparation Methods for Ceramic Membrane Materials in Electrochemical Applications
by Keqiang Fan, Mengyang Yu, Jincheng Lei and Shenglong Mu
Crystals 2024, 14(7), 623; https://doi.org/10.3390/cryst14070623 - 6 Jul 2024
Cited by 5 | Viewed by 3359
Abstract
The outstanding thermal, chemical, and mechanical properties of ceramic membranes have attracted increasing attention, offering advantages over polymer and metal counterparts. Exploring the specialized applications of ceramic membranes through various preparation methods poses a daunting challenge for contemporary researchers. Traditional preparation methods are [...] Read more.
The outstanding thermal, chemical, and mechanical properties of ceramic membranes have attracted increasing attention, offering advantages over polymer and metal counterparts. Exploring the specialized applications of ceramic membranes through various preparation methods poses a daunting challenge for contemporary researchers. Traditional preparation methods are essentially unable to meet the requirements of complex membrane structures. For instance, in ceramic fuel cell applications, cells composed of ceramic membrane materials exhibit high resistance and low conductivity, which seriously hinders the progress of new high-performance ceramic fuel cells. Therefore, it is necessary to improve preparation methods to improve the electrochemical performance of devices composed of ceramic membrane materials. In recent years, breakthroughs in various new processing technologies have propelled the performance of ceramic membrane devices. This paper will focus on the following aspects. Firstly, traditional preparation methods and advanced preparation methods of ceramic membrane materials will be discussed. Secondly, high-performance ceramic membrane materials prepared by different advanced preparation methods are introduced, and the electrochemical properties of the devices composed of ceramic membrane materials are elaborated in combination with different testing and characterization methods. Finally, the prospects and future direction of the preparation of ceramic membrane materials by advanced preparation methods are summarized. Full article
(This article belongs to the Special Issue Advanced Ferroelectric, Piezoelectric and Dielectric Ceramics)
Show Figures

Figure 1

34 pages, 8871 KiB  
Review
Cellulose Membranes: Synthesis and Applications for Water and Gas Separation and Purification
by Jinwu Wang, Syed Comail Abbas, Ling Li, Colleen C. Walker, Yonghao Ni and Zhiyong Cai
Membranes 2024, 14(7), 148; https://doi.org/10.3390/membranes14070148 - 30 Jun 2024
Cited by 10 | Viewed by 11705
Abstract
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and [...] Read more.
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and repel specific species. Membranes can purify air and water by allowing only air and water molecules to pass through, while preventing contaminants such as microorganisms and particles, or to separate a target gas or vapor, such as H2 and CO2, from other gases. The higher the flux and selectivity, the better a material is for membranes. The desirable performance can be tuned through material type (polymers, ceramics, and biobased materials), microstructure (porosity and tortuosity), and surface chemistry. Most membranes are made from plastic from petroleum-based resources, contributing to global climate change and plastic pollution. Cellulose can be an alternative sustainable resource for making renewable membranes. Cellulose exists in plant cell walls as natural fibers, which can be broken down into smaller components such as cellulose fibrils, nanofibrils, nanocrystals, and cellulose macromolecules through mechanical and chemical processing. Membranes made from reassembling these particles and molecules have variable pore architecture, porosity, and separation properties and, therefore, have a wide range of applications in nano-, micro-, and ultrafiltration and forward osmosis. Despite their advantages, cellulose membranes face some challenges. Improving the selectivity of membranes for specific molecules often comes at the expense of permeability. The stability of cellulose membranes in harsh environments or under continuous operation needs further improvement. Research is ongoing to address these challenges and develop advanced cellulose membranes with enhanced performance. This article reviews the microstructures, fabrication methods, and potential applications of cellulose membranes, providing some critical insights into processing–structure–property relationships for current state-of-the-art cellulosic membranes that could be used to improve their performance. Full article
(This article belongs to the Special Issue Cellulose Membranes: From Synthesis to Applications)
Show Figures

Figure 1

14 pages, 1317 KiB  
Review
Challenges and Advancements in All-Solid-State Battery Technology for Electric Vehicles
by Rajesh Shah, Vikram Mittal and Angelina Mae Precilla
J 2024, 7(3), 204-217; https://doi.org/10.3390/j7030012 - 27 Jun 2024
Cited by 3 | Viewed by 15635
Abstract
Recent advances in all-solid-state battery (ASSB) research have significantly addressed key obstacles hindering their widespread adoption in electric vehicles (EVs). This review highlights major innovations, including ultrathin electrolyte membranes, nanomaterials for enhanced conductivity, and novel manufacturing techniques, all contributing to improved ASSB performance, [...] Read more.
Recent advances in all-solid-state battery (ASSB) research have significantly addressed key obstacles hindering their widespread adoption in electric vehicles (EVs). This review highlights major innovations, including ultrathin electrolyte membranes, nanomaterials for enhanced conductivity, and novel manufacturing techniques, all contributing to improved ASSB performance, safety, and scalability. These developments effectively tackle the limitations of traditional lithium-ion batteries, such as safety issues, limited energy density, and a reduced cycle life. Noteworthy achievements include freestanding ceramic electrolyte films like the 25 μm thick Li0.34La0.56TiO3 film, which enhance energy density and power output, and solid polymer electrolytes like the polyvinyl nitrile boroxane electrolyte, which offer improved mechanical robustness and electrochemical performance. Hybrid solid electrolytes combine the best properties of inorganic and polymer materials, providing superior ionic conductivity and mechanical flexibility. The scalable production of ultrathin composite polymer electrolytes shows promise for high-performance, cost-effective ASSBs. However, challenges remain in optimizing manufacturing processes, enhancing electrode-electrolyte interfaces, exploring sustainable materials, and standardizing testing protocols. Continued collaboration among academia, industry, and government is essential for driving innovation, accelerating commercialization, and achieving a sustainable energy future, fully realizing the transformative potential of ASSB technology for EVs and beyond. Full article
Show Figures

Figure 1

35 pages, 6472 KiB  
Review
Progress and Perspectives in the Development of Inorganic-Carbonate Dual-Phase Membrane for CO2 Separation
by Liyin Fu, Xiaojie Shi, Huiling Wu, Yabin Ma, Xuechao Hu and Tianjia Chen
Processes 2024, 12(2), 240; https://doi.org/10.3390/pr12020240 - 23 Jan 2024
Cited by 8 | Viewed by 1990
Abstract
The inorganic-carbonate dual-phase membrane represents a class of dense membranes that are fabricated using diverse support materials, ranging from metals to ceramics. This dual-phase membrane consists of a porous metal or ceramic support with an introduced carbonate phase within the support pores. Compared [...] Read more.
The inorganic-carbonate dual-phase membrane represents a class of dense membranes that are fabricated using diverse support materials, ranging from metals to ceramics. This dual-phase membrane consists of a porous metal or ceramic support with an introduced carbonate phase within the support pores. Compared with polymer and zeolite membranes, inorganic-carbonate dual-phase membranes exhibit exceptional CO2 selectivity at elevated temperatures (>500 °C), making them an ideal choice for high-temperature CO2 separation in power plant systems. The present paper provides a comprehensive overview of the separation principle, significant models, and preparation techniques employed in carbonate dual-phase membranes for CO2 separation. The present study aims to discuss key factors that limit the CO2 permeation performance and stability of membranes, while also exploring the potential applications of dual-phase membranes in various fields. The identification of key challenges in the future development of the carbonate dual-phase membrane has been highlighted in this work. The future trajectory of research and development should be directed toward overcoming these challenges, encompassing the synthesis technology of membranes, balance optimization of membrane structure and performance, modification of physical and chemical properties of molten carbonate, and advancement in high-temperature sealing techniques, as well as exploration of diverse membrane reactors based on carbonate dual-phase membranes for prospective applications. Full article
Show Figures

Figure 1

24 pages, 4860 KiB  
Review
Proton-Conducting Ceramic Membranes for the Production of Hydrogen via Decarbonized Heat: Overview and Prospects
by Maria Giovanna Buonomenna
Hydrogen 2023, 4(4), 807-830; https://doi.org/10.3390/hydrogen4040050 - 13 Oct 2023
Cited by 9 | Viewed by 4519
Abstract
Proton-conducting ceramic membranes show high hydrogen ion conductivity in the temperature range of 300–700 °C. They are attracting significant attention due to their relevant characteristics compared to both higher-temperature oxygen ion-conducting ceramic membranes and lower-temperature proton-conducting polymers. The aim of this review is [...] Read more.
Proton-conducting ceramic membranes show high hydrogen ion conductivity in the temperature range of 300–700 °C. They are attracting significant attention due to their relevant characteristics compared to both higher-temperature oxygen ion-conducting ceramic membranes and lower-temperature proton-conducting polymers. The aim of this review is to integrate the fundamentals of proton-conducting ceramic membranes with two of their relevant applications, i.e., membrane reactors (PCMRs) for methane steam reforming (SMR) and electrolysis (PCEC). Both applications facilitate the production of pure H2 in the logic of process intensification via decarbonized heat. Firstly, an overview of various types of hydrogen production is given. The fundamentals of proton-conducting ceramic membranes and their applications in PCMRs for SMR and reversible PCEC (RePCEC), respectively, are given. In particular, RePCECs are of particular interest when renewable power generation exceeds demand because the excess electrical energy is converted to chemical energy in the electrolysis cell mode, therefore representing an appealing solution for energy conversion and grid-scale storage. Full article
(This article belongs to the Topic Hydrogen Production Processes)
Show Figures

Figure 1

21 pages, 1373 KiB  
Review
Nanocomposite Coatings for Anti-Corrosion Properties of Metallic Substrates
by Liana Maria Muresan
Materials 2023, 16(14), 5092; https://doi.org/10.3390/ma16145092 - 19 Jul 2023
Cited by 51 | Viewed by 8593
Abstract
Nanocomposites are high-performance materials with exceptional characteristics that possess properties that their individual constituents, by themselves, cannot provide. They have useful applications in many fields, ranging from membrane processes to fuel cells, biomedical devices, and anti-corrosion protection. Well-tailored nanocomposites are promising materials for [...] Read more.
Nanocomposites are high-performance materials with exceptional characteristics that possess properties that their individual constituents, by themselves, cannot provide. They have useful applications in many fields, ranging from membrane processes to fuel cells, biomedical devices, and anti-corrosion protection. Well-tailored nanocomposites are promising materials for anti-corrosion coatings on metals and alloys, exhibiting simple barrier protection or even smart auto-responsive and self-healing functionalities. Nanocomposite coatings can be prepared by using a large variety of matrices and reinforcement materials, often acting in synergy. In this context, recent advances in the preparation and characterization of corrosion-resistant nanocomposite coatings based on metallic, polymeric, and ceramic matrices, as well as the incorporation of various reinforcement materials, are reviewed. The review presents the most important materials used as matrices for nanocomposites (metals, polymers, and ceramics), the most popular fillers (nanoparticles, nanotubes, nanowires, nanorods, nanoplatelets, nanosheets, nanofilms, or nanocapsules), and their combinations. Some of the most important characteristics and applications of nanocomposite coatings, as well as the challenges for future research, are briefly discussed. Full article
(This article belongs to the Special Issue Friction, Corrosion and Protection of Material Surfaces)
Show Figures

Figure 1

16 pages, 3722 KiB  
Article
Mesoporous SiC-Based Photocatalytic Membranes and Coatings for Water Treatment
by Karla Begonia Cervantes-Diaz, Martin Drobek, Anne Julbe, André Ayral and Julien Cambedouzou
Membranes 2023, 13(7), 672; https://doi.org/10.3390/membranes13070672 - 16 Jul 2023
Cited by 3 | Viewed by 1984
Abstract
Photocatalytically active silicon carbide (SiC)-based mesoporous layers (pore sizes between 5 and 30 nm) were synthesized from preceramic polymers (polymer-derived ceramic route) on the surface and inside the pores of conventional macroporous α-alumina supports. The hybrid membrane system obtained, coupling the separation and [...] Read more.
Photocatalytically active silicon carbide (SiC)-based mesoporous layers (pore sizes between 5 and 30 nm) were synthesized from preceramic polymers (polymer-derived ceramic route) on the surface and inside the pores of conventional macroporous α-alumina supports. The hybrid membrane system obtained, coupling the separation and photocatalytical properties of SiC thin films, was characterized by different static and dynamic techniques, including gas and liquid permeation measurements. The photocatalytic activity was evaluated by considering the degradation efficiency of a model organic pollutant (methylene blue, MB) under UV light irradiation in both diffusion and permeation modes using SiC-coated macroporous supports. Specific degradation rates of 1.58 × 10−8 mol s−1 m−2 and 7.5 × 10−9 mol s−1 m−2 were obtained in diffusion and permeation modes, respectively. The performance of the new SiC/α-Al2O3 materials compares favorably to conventional TiO2-based photocatalytic membranes, taking advantage of the attractive physicochemical properties of SiC. The developed synthesis strategy yielded original photocatalytic SiC/α-Al2O3 composites with the possibility to couple the ultrafiltration SiC membrane top-layer with the SiC-functionalized (photocatalytic) macroporous support. Such SiC-based materials and their rational associations on porous supports offer promising potential for the development of efficient photocatalytic membrane reactors and contactors for the continuous treatment of polluted waters. Full article
(This article belongs to the Special Issue Honorary Issue for Prof João G. Crespo)
Show Figures

Graphical abstract

11 pages, 12196 KiB  
Article
Fabrication of Composite Gel Electrolyte and F-Doping Carbon/Silica Anode from Electro-Spun P(VDF-HFP)/Silica Composite Nanofiber Film for Advanced Lithium-Ion Batteries
by Caiyuan Liu, Xin Fang, Hui Peng, Yi Li and Yonggang Yang
Molecules 2023, 28(14), 5304; https://doi.org/10.3390/molecules28145304 - 10 Jul 2023
Cited by 3 | Viewed by 2056
Abstract
The aim of this work is to effectively combine the advantages of polymer and ceramic nanoparticles and improve the comprehensive performance of lithium-ion batteries (LIBs) diaphragm. A flexible film composed of electro-spun P(VDF-HFP) nanofibers covered by a layer of mesoporous silica (P(VDF-HFP)@SiO2 [...] Read more.
The aim of this work is to effectively combine the advantages of polymer and ceramic nanoparticles and improve the comprehensive performance of lithium-ion batteries (LIBs) diaphragm. A flexible film composed of electro-spun P(VDF-HFP) nanofibers covered by a layer of mesoporous silica (P(VDF-HFP)@SiO2) was synthesized via a sol–gel transcription method, then used as a scaffold to absorb organic electrolyte to make gel a electrolyte membrane (P(VDF-HFP)@SiO2-GE) for LIBs. The P(VDF-HFP)@SiO2-GE presents high electrolyte uptake (~1000 wt%), thermal stability (up to ~350 °C), ionic conductivity (~2.6 mS cm−1 at room temperature), and excellent compatibility with an active Li metal anode. Meanwhile, F-doping carbon/silica composite nanofibers (F-C@SiO2) were also produced by carbonizing the P(VDF-HFP)@SiO2 film under Ar and used to make an electrode. The assembled F-C@SiO2|P(VDF-HFP)@SiO2-GE|Li half-cell showed long-cycle stability and a higher discharge specific capacity (340 mAh g−1) than F-C@SiO2|Celgard 2325|Li half-cell (175 mAh g−1) at a current density of 0.2 A g−1 after 300 cycles, indicating a new way for designing and fabricating safer high-performance LIBs. Full article
(This article belongs to the Special Issue Advances in Carbon-Based Materials for Lithium Ion Batteries)
Show Figures

Figure 1

34 pages, 9039 KiB  
Review
A Brief Overview of the Microstructural Engineering of Inorganic–Organic Composite Membranes Derived from Organic Chelating Ligands
by Sulaiman Oladipo Lawal and Masakoto Kanezashi
Membranes 2023, 13(4), 390; https://doi.org/10.3390/membranes13040390 - 30 Mar 2023
Cited by 7 | Viewed by 2407
Abstract
This review presents a concise conceptual overview of membranes derived from organic chelating ligands as studied in several works. The authors’ approach is from the viewpoint of the classification of membranes by matrix composition. The first part presents composite matrix membranes as a [...] Read more.
This review presents a concise conceptual overview of membranes derived from organic chelating ligands as studied in several works. The authors’ approach is from the viewpoint of the classification of membranes by matrix composition. The first part presents composite matrix membranes as a key class of membranes and makes a case for the importance of organic chelating ligands in the formation of inorganic–organic composites. Organic chelating ligands, categorized into network-modifying and network-forming types, are explored in detail in the second part. Four key structural elements, of which organic chelating ligands (as organic modifiers) are one and which also include siloxane networks, transition-metal oxide networks and the polymerization/crosslinking of organic modifiers, form the building blocks of organic chelating ligand-derived inorganic–organic composites. Three and four parts explore microstructural engineering in membranes derived from network-modifying and network-forming ligands, respectively. The final part reviews robust carbon–ceramic composite membranes as important derivatives of inorganic–organic hybrid polymers for selective gas separation under hydrothermal conditions when the proper organic chelating ligand and crosslinking conditions are chosen. This review can serve as inspiration for taking advantage of the wide range of possibilities presented by organic chelating ligands. Full article
(This article belongs to the Special Issue Structure and Performance of Porous Polymer Membranes)
Show Figures

Figure 1

18 pages, 4853 KiB  
Article
Performance Enhancement of Kaolin/Chitosan Composite-Based Membranes by Cross-Linking with Sodium Tripolyphosphate: Preparation and Characterization
by S. Bouzid Rekik, S. Gassara, J. Bouaziz, S. Baklouti and A. Deratani
Membranes 2023, 13(2), 229; https://doi.org/10.3390/membranes13020229 - 14 Feb 2023
Cited by 8 | Viewed by 2907
Abstract
A new family of environmentally friendly and low-cost membranes based on readily available mineral and polymeric materials has been developed from cast suspensions of kaolin and chitosan using aqueous phase separation and polyethylene glycol as a pore-forming agent. The as-fabricated membranes were further [...] Read more.
A new family of environmentally friendly and low-cost membranes based on readily available mineral and polymeric materials has been developed from cast suspensions of kaolin and chitosan using aqueous phase separation and polyethylene glycol as a pore-forming agent. The as-fabricated membranes were further cross-linked with sodium tripolyphosphate (STPP) in order to strengthen the properties of the obtained samples. The functional groups determined by FTIR and EDX confirmed that the reaction occurred. A detailed study of the effects of cross-linking time on the physicochemical, surface and permeation properties showed that a 30-minute reaction enabled the composite membrane to be stable in acidic media (up to pH 2) and increased the mechanical strength twofold compared to the non-cross-linked membrane. A similar morphology to that generally observed in polymeric membranes was obtained, with a sponge-like surface overlaying a finger-like through structure. The top layer and cross-section thicknesses of the membranes increased during STPP post-treatment, while the pore size decreased from 160 to 15 nm. At the same time, the molecular weight cut-off and permeance decreased due to the increase in cross-linking density. These results observed in a series of kaolin/chitosan composite membranes showed that STPP reaction can provide control over the separation capability range, from microfiltration to ultrafiltration. Full article
(This article belongs to the Special Issue Surface Modification and Performance Enhancement for Membranes)
Show Figures

Graphical abstract

Back to TopTop