Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,631)

Search Parameters:
Keywords = polymer/polymer interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 13010 KB  
Article
Multiscale Analysis of Styrene–Butadiene Latex Modified Rubber Concrete
by Weiming Wang, Yong Feng and Jingjie Feng
Buildings 2025, 15(21), 3881; https://doi.org/10.3390/buildings15213881 (registering DOI) - 27 Oct 2025
Abstract
Rubberized concrete is a novel green building material that enhances many features when rubber particles are incorporated into cement mortar, simultaneously yielding economic benefits through the recycling of waste tires. This study applies styrene–butadiene latex (SBL) for toughening treatment. The investigation delves into [...] Read more.
Rubberized concrete is a novel green building material that enhances many features when rubber particles are incorporated into cement mortar, simultaneously yielding economic benefits through the recycling of waste tires. This study applies styrene–butadiene latex (SBL) for toughening treatment. The investigation delves into the mechanism by which SBL improves the interface between rubber and cement, encompassing macroscopic mechanical properties, microscopic structural characteristics, and nano-scale interfacial interactions. Macroscopic mechanical tests reveal a significant increase in flexural strength, shear strength, and compressive strength of the composite concrete upon the introduction of SBL and rubber. Specifically, the compressive strength improved by 8.8%, shear strength by 13.7%, and flexural strength by 18.9% at 28 days. Through electron microscopy observation of corresponding polymer cement concrete sections, observations reveal that SBL reinforces both interfaces and elucidates its bonding impact at the micro-level interface. Molecular dynamics (MD) modeling of SBL/rubber/CSH is employed at the nanoscale to compute and examine the local structure, dynamic behavior, and binding energy of the interface. The findings indicate that SBL mitigates interface impacts, enhances interface hydrogen bonds, van der Waals interactions, CaH coordination bonds, and stability, consequently improving interfacial adhesion and fortifying the feeble interface bonding between organic polymers (rubber) and inorganic silicates (CSH). Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

28 pages, 1369 KB  
Article
Dendritic Polyglycerol Sulfate Reduces Inflammation Through Inhibition of the HMGB1/RAGE Axis in RAW 264.7 Macrophages
by Marten Kagelmacher, Cristina S. Quella, Emma Kautz, Anna Klumpp, Felix Weichert, Issan Zhang, Dusica Maysinger, Poornima G. Wedamulla, Suzana K. Straus, Thomas Risse, Rainer Haag, Marina Pigaleva and Jens Dernedde
Int. J. Mol. Sci. 2025, 26(21), 10440; https://doi.org/10.3390/ijms262110440 (registering DOI) - 27 Oct 2025
Abstract
High Mobility Group Box 1 (HMGB1) is a central pro-inflammatory mediator released from damaged or stressed cells, where it activates receptors such as the Receptor for Advanced Glycation Endproducts (RAGE). Dendritic polyglycerol sulfate (dPGS), a hyperbranched polyanionic polymer, is known for its anti-inflammatory [...] Read more.
High Mobility Group Box 1 (HMGB1) is a central pro-inflammatory mediator released from damaged or stressed cells, where it activates receptors such as the Receptor for Advanced Glycation Endproducts (RAGE). Dendritic polyglycerol sulfate (dPGS), a hyperbranched polyanionic polymer, is known for its anti-inflammatory activity. In this study, we examined how dPGS modulates HMGB1-driven signaling in RAW 264.7 macrophages and human microglia. Recombinant human HMGB1 expressed in Escherichia coli (E. coli) was purified by nickel-nitrilotriacetic acid (Ni-NTA) and heparin chromatography. Proximity ligation assays (PLA) revealed that dPGS significantly disrupted HMGB1/RAGE interactions, particularly under lipopolysaccharide (LPS) stimulation, thereby reducing inflammatory signaling complex formation. This correlated with reduced activation of the nuclear factor kappa B (NF-κB) pathway, demonstrated by decreased nuclear translocation and transcriptional activity. Reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR (RT-qPCR) showed that dPGS suppressed HMGB1- and LPS-induced transcription of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Enzyme-linked immunosorbent assay (ELISA) and Griess assays confirmed reduced TNF-α secretion and nitric oxide production. Electron paramagnetic resonance (EPR) spectroscopy further showed that dPGS altered HMGB1/soluble RAGE (sRAGE) complex dynamics, providing mechanistic insight into its receptor-disruptive action. Full article
Show Figures

Graphical abstract

13 pages, 2392 KB  
Article
Construction of Cr-MIL-101@PEDOT/MIP Composite Functionalized Glassy Carbon Electrode for PFOS Electrochemical Detection
by Jingru Liang, Haiying Ming, Yijun Meng, Qingyun Tian, Baoyang Lu, Chuanyi Wang, Haijun Du and Shuai Chen
Chemosensors 2025, 13(11), 378; https://doi.org/10.3390/chemosensors13110378 (registering DOI) - 27 Oct 2025
Abstract
Perfluorooctanesulfonate (PFOS) is a typical persistent organic pollutant, which presents a significant risk to the ecosystem and human health. Therefore, the development of a highly sensitive and effective detection technique for PFOS has aroused wide concern. In this study, for the mesoporous metal–organic [...] Read more.
Perfluorooctanesulfonate (PFOS) is a typical persistent organic pollutant, which presents a significant risk to the ecosystem and human health. Therefore, the development of a highly sensitive and effective detection technique for PFOS has aroused wide concern. In this study, for the mesoporous metal–organic frameworks (MOFs), Cr-MIL-101 were used as the precursor. And the poly(3,4-ethylenedioxythiophene) (PEDOT) using as molecularly imprinted polymers (MIPs) was loaded on Cr-MIL-101 to form a core–shell structure. The obtained Cr-MIL-101@PEDOT/MIP composites integrate the high specific surface area of Cr-MIL-101 and the specific recognition capability of PEDOT/MIP. The glassy carbon electrode (GCE) interface modified by them can specifically adsorb PFOS through electrostatic interactions, coordination by Cr metal nodes, hydrophobic interaction, and hydrogen bonding, etc. The adsorbed PFOS molecules could block the active sites at the electrode interface, causing the current decay of the redox probe. Following the quantitative analysis of peak current decay values using the Langmuir model and the Freundlich–Langmuir model, a wide detection range (0.1–200 nM) and a low detection limit (0.025 nM) were obtained. Characterization techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), and electrochemical methods were employed to validate the fabrication of the composites. Moreover, Cr-MIL-101@PEDOT/MIP/GCE showed satisfactory stability, repeatability, and selectivity, providing an effective method for the detection of PFOS in practical samples, showing a wide prospective application. Full article
(This article belongs to the Special Issue Application of Organic Conjugated Materials in Chemosensors)
Show Figures

Graphical abstract

15 pages, 750 KB  
Review
Computational Modeling Approaches for Optimizing Microencapsulation Processes: From Molecular Dynamics to CFD and FEM Techniques
by Karen Isela Vargas-Rubio, Efrén Delgado, Cristian Patricia Cabrales-Arellano, Claudia Ivette Gamboa-Gómez and Damián Reyes-Jáquez
Biophysica 2025, 5(4), 49; https://doi.org/10.3390/biophysica5040049 (registering DOI) - 25 Oct 2025
Viewed by 44
Abstract
Microencapsulation is a fundamental technology for protecting active compounds from environmental degradation by factors such as light, heat, and oxygen. This process significantly improves their stability, bioavailability, and shelf life by entrapping an active core within a protective matrix. Therefore, a thorough understanding [...] Read more.
Microencapsulation is a fundamental technology for protecting active compounds from environmental degradation by factors such as light, heat, and oxygen. This process significantly improves their stability, bioavailability, and shelf life by entrapping an active core within a protective matrix. Therefore, a thorough understanding of the physicochemical interactions between these components is essential for developing stable and efficient delivery systems. The composition of the microcapsule and the encapsulation method are key determinants of system stability and the retention of encapsulated materials. Recently, the application of computational tools to predict and optimize microencapsulation processes has emerged as a promising area of research. In this context, molecular dynamics (MD) simulation has become an indispensable computational technique. By solving Newton’s equations of motion, MD simulations enable a detailed study of the dynamic behavior of atoms and molecules in a simulated environment. For example, MD-based analyses have quantitatively demonstrated that optimizing polymer–core interaction energies can enhance encapsulation efficiency by over 20% and improve the thermal stability of active compounds. This approach provides invaluable insights into the molecular interactions between the core material and the matrix, ultimately facilitating the rational design of optimized microstructures for diverse applications, including pharmaceuticals, thereby opening new avenues for innovation in the field. Ultimately, the integration of computational modeling into microencapsulation research not only represents a methodological advancement but also pivotal opportunity to accelerate innovation, optimize processes, and develop more effective and sustainable therapeutic systems. Full article
Show Figures

Figure 1

16 pages, 4606 KB  
Article
AlOOH-Coated Glass Fiber-Reinforced Composites for Pipeline Rehabilitation: Enhancement of Interfacial Adhesion and Durability
by Mengfei Du, Xilai Yan, Chuandong Wu and Ke Wang
Materials 2025, 18(21), 4887; https://doi.org/10.3390/ma18214887 (registering DOI) - 24 Oct 2025
Viewed by 253
Abstract
Glass fiber (GF) reinforced unsaturated polyester resin (UP) composites are used in cured-in-place pipe (CIPP) rehabilitation technology of drainage systems due to their low cost and excellent force chemical properties. However, the weak interfacial compatibility between GF and the polymer matrix limits the [...] Read more.
Glass fiber (GF) reinforced unsaturated polyester resin (UP) composites are used in cured-in-place pipe (CIPP) rehabilitation technology of drainage systems due to their low cost and excellent force chemical properties. However, the weak interfacial compatibility between GF and the polymer matrix limits the stress transfer efficiency. Herein, a strategy of a polyhydric boehmite (AlOOH) layer coated on GF (GF-AlOOH) was developed for improving the mechanical properties of UP composites, and the enhancement effects of the coating process were analyzed. The AlOOH-modified GFs significantly improved the flexural and tensile strengths of the modified composites by 41.21% and 21.05%, respectively. Moreover, the enhancement mechanism was explored by analyzing the surface chemical structure of GF-AlOOHs. The nano-AlOOH was grafted on the GF surface by O=Al–OH. Meanwhile, the increase in the mechanical properties of UP/GF-AlOOH was mainly attributed to the combined effect of mechanical interlocking interaction, covalent bonding and hydrogen bonding, which improved the interfacial adhesion between GF and UP. In summary, this work provides effective guidance for achieving high-quality interfaces in GF composites and offers important insights into designing durable and cost-effective materials for CIPP rehabilitation and broader infrastructure applications. Full article
(This article belongs to the Special Issue Advanced Polymers and Composites for Multifunctional Applications)
Show Figures

Figure 1

26 pages, 7816 KB  
Article
Study on Fiber-Fabric Hierarchical Reinforcement for High-Toughness Magnesium Phosphate Cement Composites
by Weipeng Feng, Yuan Fang, Chengman Wang, Peng Cui, Kunde Zhuang, Wenyang Zhang and Zhijun Dong
Polymers 2025, 17(21), 2844; https://doi.org/10.3390/polym17212844 (registering DOI) - 24 Oct 2025
Viewed by 118
Abstract
Magnesium phosphate cement (MPC) has gained attention in specialized construction applications due to its rapid setting and high early strength, though its inherent brittleness limits structural performance. This study developed an innovative toughening strategy through synergistic reinforcement using hybrid fibers and carbon fiber-reinforced [...] Read more.
Magnesium phosphate cement (MPC) has gained attention in specialized construction applications due to its rapid setting and high early strength, though its inherent brittleness limits structural performance. This study developed an innovative toughening strategy through synergistic reinforcement using hybrid fibers and carbon fiber-reinforced polymer (CFRP) fabric capable of multi-scale crack control. The experimental program systematically evaluated the hybrid fiber system, dosage, and CFRP positioning effects through mechanical testing of 7-day cured specimens. The results indicated that 3.5% fiber dosage optimized flexural–compressive balance (45% flexural gain with <20% compressive reduction), while CFRP integration at 19 mm displacement enhanced flexural capacity via multi-scale reinforcement. Fracture analysis revealed that the combined system increases post-cracking strength by 60% through coordinated crack bridging at micro (fiber) and macro (CFRP) scales. These findings elucidated the mechanisms by which fiber–CFRP interaction mitigates MPC’s brittleness through hierarchical crack control while maintaining its rapid hardening advantages. The study established quantitative design guidelines, showing the fiber composition of CF/WSF/CPS15 = 1/1/1 with 19 mm CFRP placement achieves optimal toughness–flexural balance (ff/fc > 0.38). The developed composite system reduced brittleness through effective crack suppression across scales, confirming its capability to transform fracture behavior from brittle to quasi-ductile. This work advances MPC’s engineering applicability by resolving its mechanical limitations through rationally designed composite systems, with particular relevance to rapid repair scenarios requiring both early strength and damage tolerance, expanding its potential in specialized construction where conventional cement proves inadequate. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

32 pages, 6328 KB  
Article
A Combined Experimental, Theoretical, and Simulation Approach to the Effects of GNPs and MWCNTs on Joule Heating Behavior of 3D Printed PVDF Nanocomposites
by Giovanni Spinelli, Rosella Guarini, Rumiana Kotsilkova, Evgeni Ivanov and Vladimir Georgiev
Polymers 2025, 17(21), 2835; https://doi.org/10.3390/polym17212835 (registering DOI) - 24 Oct 2025
Viewed by 182
Abstract
The thermal behavior of 3D-printed polyvinylidene fluoride (PVDF)-based composites enhanced with carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and their hybrid formulations was investigated under Joule heating at applied voltages of 2, 3, and 4 V. The influence of filler type and weight fraction [...] Read more.
The thermal behavior of 3D-printed polyvinylidene fluoride (PVDF)-based composites enhanced with carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and their hybrid formulations was investigated under Joule heating at applied voltages of 2, 3, and 4 V. The influence of filler type and weight fraction on both electrical and thermal conductivity was systematically assessed using a Design of Experiments (DoE) approach. Response Surface Methodology (RSM) was employed to derive an analytical relationship linking conductivity values to filler loading, revealing clear trends and interaction effects. Among all tested formulations, the composite containing 6 wt% of GNPs exhibited the highest performance in terms of thermal response and electrical conductivity, reaching a steady-state temperature of 88.1 °C under an applied voltage of just 4 V. This optimal formulation was further analyzed through multiphysics simulations, validated against experimental data and theoretical predictions, to evaluate its effectiveness for potential practical applications—particularly in de-icing systems leveraging Joule heating. The integrated experimental–theoretical–numerical workflow proposed herein offers a robust strategy for guiding the development and optimization of next-generation polymer nanocomposites for thermal management technologies. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

19 pages, 1540 KB  
Article
Polymer-Driven Fuel Conditioning: A Novel Approach to Improving the Stability and Environmental Performance of Marine Fuels
by George Tzilantonis, Eleni Zafeiriou, Adam Stimoniaris, Athanasios Kanapitsas and Constantinos Tsanaktsidis
Resources 2025, 14(11), 167; https://doi.org/10.3390/resources14110167 (registering DOI) - 24 Oct 2025
Viewed by 124
Abstract
The precise regulation of water content plays a pivotal role in determining several the critical properties of marine fuels, including combustion stability, corrosion resistance, and the mitigation of pollutant emissions. The present study introduces an innovative, additive-free technique for moisture extraction from Marine [...] Read more.
The precise regulation of water content plays a pivotal role in determining several the critical properties of marine fuels, including combustion stability, corrosion resistance, and the mitigation of pollutant emissions. The present study introduces an innovative, additive-free technique for moisture extraction from Marine Gasoil (MGO) utilizing the hydrophilic polymer polyacrylamide, which leverages its polar amino groups to attract water molecules. This process facilitates the physical extraction of moisture without modifying the fuel’s composition, in contrast to traditional drying techniques or chemical additions. Experimental findings indicate a 34.6% decrease in water content in MGO (from 29.3 mg/kg to 19.15 mg/kg) and a 36.5% reduction in MGO–biodiesel blends (from 32.04 mg/kg to 20.34 mg/kg), accomplished within one hour of treatment. The scientific significance of this work lies in its discovery of polyacrylamide’s ability to retain moisture within a nonpolar fuel matrix—a phenomenon not previously investigated in maritime fuel applications. The findings highlight the potential for further research into polymer–fuel interactions and non-chemical strategies for fuel enhancement. Economically, the proposed technology reduces dependence on costly chemical additives and energy-intensive drying processes, while environmentally, it improves combustion efficiency and lowers emissions of hydrocarbons (HC), carbon monoxide (CO), and smoke. Overall, the results introduce a novel, sustainable, and practical process for improving maritime fuel quality, while supporting compliance with increasingly stringent regional and global environmental regulations. Full article
Show Figures

Figure 1

26 pages, 7095 KB  
Article
How Do Cryo-Milling and Lyophilization Affect the Properties of Solid Dispersions with Etodolac?
by Anna Czajkowska-Kośnik, Radosław A. Wach, Eliza Wolska and Katarzyna Winnicka
Pharmaceutics 2025, 17(11), 1379; https://doi.org/10.3390/pharmaceutics17111379 (registering DOI) - 24 Oct 2025
Viewed by 273
Abstract
Background: Solid dispersions (SDs) of etodolac (ETD), a poorly water-soluble drug model, were developed to enhance its solubility and dissolution rate by employing various preparation methods and hydrophilic or amphiphilic polymers. Methods: Polyvinylpyrrolidone-poly(vinyl acetate) copolymers (PVP/VA), hydroxypropyl methylcellulose (HPMC) and poloxamer were used [...] Read more.
Background: Solid dispersions (SDs) of etodolac (ETD), a poorly water-soluble drug model, were developed to enhance its solubility and dissolution rate by employing various preparation methods and hydrophilic or amphiphilic polymers. Methods: Polyvinylpyrrolidone-poly(vinyl acetate) copolymers (PVP/VA), hydroxypropyl methylcellulose (HPMC) and poloxamer were used as carriers, while cryo-milling and lyophilization were utilized as routine methods to SDs preparation. Obtained SDs were characterized by drug content, solubility, dissolution rate and moisture content. The physical structure of SDs was estimated via scanning electron microscopy (SEM), whereas differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were employed to assess the potential drug-carrier interactions. Results: SD formulations demonstrated enhanced solubility of ETD in aqueous media, including water and buffers (pH 5.5 and 7.4). DSC analysis confirmed that PVP/VA and poloxamer ensured better ETD dissolution and protection against recrystallization. Furthermore, FTIR indicated the formation of hydrogen bonds between ETD and polymer, particularly in lyophilized dispersions. Conclusions: The optimized SD formulation for ETD contained PVP/VA and/or poloxamer as carriers and was obtained via lyophilization. This SD formulation exhibited the most favorable properties, enhanced the solubility and dissolution of ETD in aqueous media and effectively reduced its crystallinity. Full article
Show Figures

Figure 1

38 pages, 1493 KB  
Review
From Mineral Salts to Smart Hybrids: Coagulation–Flocculation at the Nexus of Water, Energy, and Resources—A Critical Review
by Faiçal El Ouadrhiri, Ebraheem Abdu Musad Saleh and Amal Lahkimi
Processes 2025, 13(11), 3405; https://doi.org/10.3390/pr13113405 - 23 Oct 2025
Viewed by 325
Abstract
Coagulation–flocculation, historically reliant on simple inorganic salts, has evolved into a technically sophisticated process that is central to the removal of turbidity, suspended solids, organic matter, and an expanding array of micropollutants from complex wastewaters. This review synthesizes six decades of research, charting [...] Read more.
Coagulation–flocculation, historically reliant on simple inorganic salts, has evolved into a technically sophisticated process that is central to the removal of turbidity, suspended solids, organic matter, and an expanding array of micropollutants from complex wastewaters. This review synthesizes six decades of research, charting the transition from classical aluminum and iron salts to high-performance polymeric, biosourced, and hybrid coagulants, and examines their comparative efficiency across multiple performance indicators—turbidity removal (>95%), COD/BOD reduction (up to 90%), and heavy metal abatement (>90%). Emphasis is placed on recent innovations, including magnetic composites, bio–mineral hybrids, and functionalized nanostructures, which integrate multiple mechanisms—charge neutralization, sweep flocculation, polymer bridging, and targeted adsorption—within a single formulation. Beyond performance, the review highlights persistent scientific gaps: incomplete understanding of molecular-scale interactions between coagulants and emerging contaminants such as microplastics, per- and polyfluoroalkyl substances (PFAS), and engineered nanoparticles; limited real-time analysis of flocculation kinetics and floc structural evolution; and the absence of predictive, mechanistically grounded models linking influent chemistry, coagulant properties, and operational parameters. Addressing these knowledge gaps is essential for transitioning from empirical dosing strategies to fully optimized, data-driven control. The integration of advanced coagulation into modular treatment trains, coupled with IoT-enabled sensors, zeta potential monitoring, and AI-based control algorithms, offers the potential to create “Coagulation 4.0” systems—adaptive, efficient, and embedded within circular economy frameworks. In this paradigm, treatment objectives extend beyond regulatory compliance to include resource recovery from coagulation sludge (nutrients, rare metals, construction materials) and substantial reductions in chemical and energy footprints. By uniting advances in material science, process engineering, and real-time control, coagulation–flocculation can retain its central role in water treatment while redefining its contribution to sustainability. In the systems envisioned here, every floc becomes both a vehicle for contaminant removal and a functional carrier in the broader water–energy–resource nexus. Full article
Show Figures

Figure 1

25 pages, 3766 KB  
Article
Development and Structural Characterization of Pullulan/Lecithin/Zein Composite Nanofibers Loaded with Mountain Germander (Teucrium montanum) Polyphenolic Extract
by Ana Mandura Jarić, Darija Domazet Jurašin, Predrag Petrović, Sunčica Kuzmić, Laura Nižić Nodilo, Aleksandra Vojvodić Cebin, Danijela Šeremet and Draženka Komes
Foods 2025, 14(21), 3619; https://doi.org/10.3390/foods14213619 - 23 Oct 2025
Viewed by 108
Abstract
In this study, the electrospinning technique was employed to encapsulate mountain germander (MG) polyphenolic extract into pullulan/zein (PUL:ZE) delivery systems stabilized with sunflower lecithin. The rheological and physical properties of the pullulan (PUL), PUL:ZE, and zein (ZE) polymer solutions were evaluated to assess [...] Read more.
In this study, the electrospinning technique was employed to encapsulate mountain germander (MG) polyphenolic extract into pullulan/zein (PUL:ZE) delivery systems stabilized with sunflower lecithin. The rheological and physical properties of the pullulan (PUL), PUL:ZE, and zein (ZE) polymer solutions were evaluated to assess their electrospinnability potential. Fabricated nanofibers were then characterized for their morphology, physicochemical, and thermal properties, as well as encapsulation efficiency and simulated in vitro digestion. The elastic component of the polymer solution, quantified by the Deborah number, showed a strong correlation with nanofiber diameter (r = 0.75). FT-IR spectra confirmed the role of sunflower lecithin as a mediator in the formation of hydrogen and hydrophobic interactions among PUL, ZE, and polyphenols. The circular dichroism spectra confirmed the influence of the MG extract on the change in the secondary conformation of the protein structure. The PUL:ZE delivery matrix proved to be suitable for the retention of phenylethanoid glycosides (encapsulation efficiency > 73%). The formulation 50PUL:50ZE was found to have the highest potential for prolonged release of polyphenols under gastrointestinal in vitro conditions. These findings propose a water-based electrospinning approach for designing polyphenolic delivery systems stabilized with lecithin for potential applications in active food packaging or nutraceutical products. Full article
(This article belongs to the Special Issue Encapsulation-Based Technologies for Bioactive Compounds in Foods)
Show Figures

Figure 1

15 pages, 1820 KB  
Article
Detection of Inosine Monophosphate and the Umami Synergistic Effect Using a Taste Sensor with a Surface-Modified Membrane
by Sota Otsuka, Mariko Koshi, Takeshi Onodera, Rui Yatabe, Toshiro Matsui and Kiyoshi Toko
Molecules 2025, 30(21), 4171; https://doi.org/10.3390/molecules30214171 - 23 Oct 2025
Viewed by 216
Abstract
A taste sensor composed of a lipid/polymer membrane using tetradodecylammonium bromide (TDAB) as the lipid and modified with 2,6-dihydroxyterephthalic acid (2,6-DHTPA) has recently been reported to exhibit high sensitivity and selectivity toward the umami substance monosodium L-glutamate (MSG). In this study, we aimed [...] Read more.
A taste sensor composed of a lipid/polymer membrane using tetradodecylammonium bromide (TDAB) as the lipid and modified with 2,6-dihydroxyterephthalic acid (2,6-DHTPA) has recently been reported to exhibit high sensitivity and selectivity toward the umami substance monosodium L-glutamate (MSG). In this study, we aimed to investigate whether this sensor can also detect another umami substance, inosine monophosphate (IMP), and whether it can evaluate the umami synergistic effect—an enhancement of umami intensity—observed when IMP is mixed with MSG. Furthermore, 1H-NMR analysis was conducted to examine the nature of interactions between the membrane modifier and umami substances. The results demonstrated that IMP can be successfully detected using the sensor, and that, as previously reported for MSG, sensor sensitivity is influenced by the presence or absence of intramolecular hydrogen bonding within the modifier and intermolecular hydrogen bonding between the modifier and the umami substance. In addition, the response to mixed solutions of MSG and IMP was greater than the sum of individual responses, indicating that the umami synergistic effect can be evaluated using the taste sensor. NMR measurements also revealed that the presence of the membrane modifier enhances the interaction between IMP and MSG, supporting the observed synergistic effect. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

13 pages, 4131 KB  
Article
A Novel Strategy for Introducing Metal-Organic Frameworks into Carbon Fiber to Improve the Interfacial and Mechanical Properties of Carbon Fiber/Epoxy Composites
by Jin Yan, Hongyi Ma, Qiyu Deng, Hongyun Li and Lei Xiong
Materials 2025, 18(21), 4856; https://doi.org/10.3390/ma18214856 - 23 Oct 2025
Viewed by 177
Abstract
The interfacial properties in carbon fiber (CF)-reinforced polymer composites are substantially limited by the chemically inactive and smooth CF surfaces. In this study, zeolitic imidazolate framework 90 (ZIF90) was chemically grafted onto CF surfaces via polyethyleneimine (PEI) as a coupling agent to construct [...] Read more.
The interfacial properties in carbon fiber (CF)-reinforced polymer composites are substantially limited by the chemically inactive and smooth CF surfaces. In this study, zeolitic imidazolate framework 90 (ZIF90) was chemically grafted onto CF surfaces via polyethyleneimine (PEI) as a coupling agent to construct a hierarchical reinforcement interface in CF/epoxy composite. The successful synthesis of CF grafted with PEI and ZIF90 (CF-PEI-ZIF90) was systematically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The incorporation of ZIF90 nanocrystals and PEI molecules into CF surfaces effectively improved interfacial adhesion through mechanical interlocking and chemical interactions, thereby optimizing stress transfer efficiency at the fiber–matrix interface and improving the interfacial properties of the composite. Additionally, the resultant CF-PEI-ZIF90/epoxy composite demonstrated significant mechanical enhancement, with the tensile and bending strengths increasing by 33.5% and 21.4%, respectively, compared to unmodified CF/epoxy composites. This work provides a novel strategy for enhancing the interfacial performance of CF composites by leveraging the unique properties of metal-organic frameworks, which is critical for advancing high-performance structural materials in aerospace and automotive applications. Full article
Show Figures

Figure 1

15 pages, 746 KB  
Article
Influence of Pristine and Photoaging Polystyrene Microspheres on Sperm Quality and DNA Integrity of the Sand Dollars Scaphechinus mirabilis
by Andrey Alexandrovich Mazur, Sergey Petrovich Kukla, Victor Pavlovich Chelomin, Valentina Vladimirovna Slobodskova and Nadezhda Vladimirovna Dovzhenko
J. Xenobiot. 2025, 15(6), 176; https://doi.org/10.3390/jox15060176 - 23 Oct 2025
Viewed by 198
Abstract
Plastic pollution represents a significant emerging environmental problem. Micro-sized particles of synthetic polymers—microplastics (MPs)—have been identified in all parts of marine ecosystems. In the marine environment, organisms are exposed to MPs, which undergo a constant process of physicochemical and biological degradation. Utilization of [...] Read more.
Plastic pollution represents a significant emerging environmental problem. Micro-sized particles of synthetic polymers—microplastics (MPs)—have been identified in all parts of marine ecosystems. In the marine environment, organisms are exposed to MPs, which undergo a constant process of physicochemical and biological degradation. Utilization of UV irradiation as the optimal exposure factor in the simulation of fundamental natural conditions is a widely accepted approach. This enables the study of the harmful effects of such particles when interacting with aquatic organisms. This study aimed to investigate the effect of pristine and photoaging primary polystyrene microspheres (µPS) at three concentrations on the viability and DNA integrity of the sperm of the sand dollars Scaphechinus mirabilis. The results of the investigation demonstrated that IR spectroscopy revealed structural changes in polystyrene, confirming the oxidative degradation of the polymer under UV irradiation. The study demonstrated that artificially aged µPS exhibited a more pronounced effect than pristine particles, as evidenced by reduced sperm viability and increased DNA damage. Thus, the resazurin test showed that after exposure to UV-irradiated µPS, sperm viability decreased to 83–85% at concentrations of 10 and 100 particles and to 70% at a concentration of 1000. In addition, the Comet assay showed that the particles increased the percentage of DNA in the tail from 20% to 30% in a dose-dependent manner. The findings substantiate and augment the existing body of experimental data of the toxicity of aged plastic fragments, thereby underscoring the need for further study into the toxicity of aged MPs on marine invertebrates. Full article
Show Figures

Graphical abstract

31 pages, 5318 KB  
Review
Recent Advances in Doping and Polymer Hybridization Strategies for Enhancing ZnO-Based Gas Sensors
by Nazir Mustapha, Boutheina Ben Abdelaziz, Majdi Benamara and Mokhtar Hjiri
Nanomaterials 2025, 15(21), 1609; https://doi.org/10.3390/nano15211609 - 22 Oct 2025
Viewed by 215
Abstract
Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for gas sensing applications due to their high sensitivity, fast response–recovery cycles, thermal and chemical stability, and low fabrication cost. However, the performance of pristine ZnO remains limited by high operating temperatures, poor selectivity, [...] Read more.
Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for gas sensing applications due to their high sensitivity, fast response–recovery cycles, thermal and chemical stability, and low fabrication cost. However, the performance of pristine ZnO remains limited by high operating temperatures, poor selectivity, and suboptimal detection at low gas concentrations. To address these limitations, significant research efforts have focused on dopant incorporation and polymer hybridization. This review summarizes recent advances in dopant engineering using elements such as Al, Ga, Mg, In, Sn, and transition metals (Co, Ni, Cu), which modulate ZnO’s crystal structure, defect density, carrier concentration, and surface activity—resulting in enhanced gas adsorption and electron transport. Furthermore, ZnO–polymer nanocomposites (e.g., with polyaniline, polypyrrole, PEG, and chitosan) exhibit improved flexibility, surface functionality, and room-temperature responsiveness due to the presence of active functional groups and tunable porosity. The synergistic combination of dopants and polymers facilitates enhanced charge transfer, increased surface area, and stronger gas–molecule interactions. Where applicable, sol–gel-based studies are explicitly highlighted and contrasted with non-sol–gel routes to show how synthesis controls defect chemistry, morphology, and sensing metrics. This review provides a comprehensive understanding of the structure–function relationships in doped ZnO and ZnO–polymer hybrids and offers guidelines for the rational design of next-generation, low-power, and selective gas sensors for environmental and industrial applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

Back to TopTop