Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = polylactic acid (PLA)-based scaffolds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 924 KiB  
Review
Three-Dimensional Disassemblable Scaffolds for Breast Reconstruction
by Viktoriia Kiseleva, Aida Bagdasarian, Polina Vishnyakova, Andrey Elchaninov, Victoria Karyagina, Valeriy Rodionov, Timur Fatkhudinov and Gennady Sukhikh
Polymers 2025, 17(15), 2036; https://doi.org/10.3390/polym17152036 - 25 Jul 2025
Viewed by 505
Abstract
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous [...] Read more.
In recent years, significant progress has been made in breast reconstructive surgery, particularly with the use of three-dimensional (3D) disassemblable scaffolds. Reconstructive plastic surgery aimed at restoring the shape and size of the mammary gland offers medical, psychological, and social benefits. Using autologous tissues allows surgeons to recreate the appearance of the mammary gland and achieve tactile sensations similar to those of a healthy organ while minimizing the risks associated with implants; 3D disassemblable scaffolds are a promising solution that overcomes the limitations of traditional methods. These constructs offer the potential for patient-specific anatomical adaptation and can provide both temporary and long-term structural support for regenerating tissues. One of the most promising approaches in post-mastectomy breast reconstruction involves the use of autologous cellular and tissue components integrated into either synthetic scaffolds—such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-glycolic acid) (PLGA), and polycaprolactone (PCL)—or naturally derived biopolymer-based matrices, including alginate, chitosan, hyaluronic acid derivatives, collagen, fibrin, gelatin, and silk fibroin. In this context, two complementary research directions are gaining increasing significance: (1) the development of novel hybrid biomaterials that combine the favorable characteristics of both synthetic and natural polymers while maintaining biocompatibility and biodegradability; and (2) the advancement of three-dimensional bioprinting technologies for the fabrication of patient-specific scaffolds capable of incorporating cellular therapies. Such therapies typically involve mesenchymal stromal cells (MSCs) and bioactive signaling molecules, such as growth factors, aimed at promoting angiogenesis, cellular proliferation, and lineage-specific differentiation. In our review, we analyze existing developments in this area and discuss the advantages and disadvantages of 3D disassemblable scaffolds for mammary gland reconstruction, as well as prospects for their further research and clinical use. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

40 pages, 28853 KiB  
Article
Pioneering Soundscapes: Investigating Commercial Fused Deposition Modelling Filament’s Potential for Ultrasound Technology in Bone Tissue Scaffolds
by Hatice Kübra Bilgili and Masahiro Todoh
Bioengineering 2025, 12(5), 529; https://doi.org/10.3390/bioengineering12050529 - 15 May 2025
Viewed by 605
Abstract
Daily exposure to various forces creates defects in the musculoskeletal system, leading to health issues, especially for bones. Bone tissue scaffolds and ultrasound technology are both utilized in research and in clinics to enhance bone tissue regeneration. This study aimed to investigate the [...] Read more.
Daily exposure to various forces creates defects in the musculoskeletal system, leading to health issues, especially for bones. Bone tissue scaffolds and ultrasound technology are both utilized in research and in clinics to enhance bone tissue regeneration. This study aimed to investigate the potential of commercially available fused deposition modeling (FDM) filaments for ultrasound technology using X-ray diffraction (XRD), Raman spectroscopy, nanoindentation, three-point bending, and scanning electron microscopy (SEM) characterization methods. Customized FDM filaments were produced by combining polylactic acid (PLA) FDM filaments with medical-grade polycaprolactone (PCL). Using these, we observed the successful production of complex tissue scaffolds via PLAPCL4060 and PLAPCL5050 FDM filaments. Additionally, the presence of the contrast difference observed via SEM for PLAPCL4060 suggests phase segregation and a material that has both damping and activating characteristics under ultrasound propagation. Mechanical characterization provided hardness and elastic modulus values, while the three-point bending results proved the flexible nature of PLAPCL4060 and PLAPCL5050, which is important for their dynamicity and responsiveness under ultrasound propagation. Accelerated degradation experiments provided crucial information regarding the effect of the porosity and gradients of scaffolds under ultrasound stimulation. Future studies based on this approach will contribute to understanding the true potential of these filaments for bone tissue. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Graphical abstract

24 pages, 692 KiB  
Review
Polymer-Based Scaffolds as an Implantable Material in Regenerative Dentistry: A Review
by Lubos Lesko, Petra Jungova, Martina Culenova, Andrej Thurzo and Lubos Danisovic
J. Funct. Biomater. 2025, 16(3), 80; https://doi.org/10.3390/jfb16030080 - 24 Feb 2025
Cited by 4 | Viewed by 1804
Abstract
Polymer-based scaffolds have emerged as transformative materials in regenerative dentistry, enabling the restoration and replacement of dental tissues through tissue engineering approaches. These scaffolds, derived from natural and synthetic polymers, mimic the extracellular matrix to promote cellular attachment, proliferation, and differentiation. Natural polymers [...] Read more.
Polymer-based scaffolds have emerged as transformative materials in regenerative dentistry, enabling the restoration and replacement of dental tissues through tissue engineering approaches. These scaffolds, derived from natural and synthetic polymers, mimic the extracellular matrix to promote cellular attachment, proliferation, and differentiation. Natural polymers such as collagen, chitosan, and alginate offer biocompatibility and bioactivity, while synthetic alternatives like polylactic acid (PLA) and polycaprolactone (PCL) provide tunable mechanical properties and degradation rates. Recent advancements highlight the integration of bioactive molecules and nanotechnology to enhance the regenerative potential of these materials. Furthermore, developing hybrid scaffolds combining natural and synthetic polymers addresses biocompatibility and mechanical strength challenges, paving the way for patient-specific treatments. Innovations in 3D bioprinting and stimuli-responsive biomaterials are expected to refine scaffold design further, improving therapeutic precision and clinical outcomes. This review underscores the critical role of polymer-based scaffolds in advancing regenerative dentistry, focusing on their applications, advantages, and limitations. Full article
(This article belongs to the Special Issue Role of Dental Biomaterials in Promoting Oral Health)
Show Figures

Figure 1

19 pages, 4192 KiB  
Article
AI-Optimized Lattice Structures for Biomechanics Scaffold Design
by Francis T. Omigbodun and Bankole I. Oladapo
Biomimetics 2025, 10(2), 88; https://doi.org/10.3390/biomimetics10020088 - 1 Feb 2025
Cited by 6 | Viewed by 2275
Abstract
This research paper explores the development of AI-optimized lattice structures for biomechanics scaffold design, aiming to enhance bone implant functionality by utilizing advanced human–AI systems. The primary objective is to create scaffold structures that mimic the mechanical properties of natural bone and improve [...] Read more.
This research paper explores the development of AI-optimized lattice structures for biomechanics scaffold design, aiming to enhance bone implant functionality by utilizing advanced human–AI systems. The primary objective is to create scaffold structures that mimic the mechanical properties of natural bone and improve bioactivity and biocompatibility, adapting to patient-specific needs. We employed polylactic acid (PLA), calcium hydroxyapatite (cHAP), and reduced graphene oxide (rGO) as base materials, leveraging their synergistic properties. The scaffolds were intricately designed using nTopology software (nTop 5.12) and fabricated via 3D printing techniques, optimizing for biomechanical load-bearing and cellular integration. The study’s findings highlight a notable enhancement in the mechanical properties of the scaffolds, with the Gyroid lattice design demonstrating a 20% higher energy-absorption capacity than traditional designs. Thermal and chemical analysis revealed a 15% increase in the thermal stability of the composites, enhancing their resilience under physiological conditions. However, the research identified minor inconsistencies in filament diameter during 3D printing, which could affect scaffold uniformity. These findings underscore the potential of integrating AI-driven design with advanced material composites in revolutionizing orthopedic implant technologies. Full article
Show Figures

Figure 1

22 pages, 2342 KiB  
Review
Advances and Challenges in Polymer-Based Scaffolds for Bone Tissue Engineering: A Path Towards Personalized Regenerative Medicine
by Samira Farjaminejad, Rosana Farjaminejad, Melika Hasani, Franklin Garcia-Godoy, Majid Abdouss, Anand Marya, Ari Harsoputranto and Abdolreza Jamilian
Polymers 2024, 16(23), 3303; https://doi.org/10.3390/polym16233303 - 26 Nov 2024
Cited by 23 | Viewed by 4704
Abstract
Polymers have become essential in advancing bone tissue engineering, providing adaptable bone healing and regeneration solutions. Their biocompatibility and biodegradability make them ideal candidates for creating scaffolds that mimic the body’s natural extracellular matrix (ECM). However, significant challenges remain, including degradation by-products, insufficient [...] Read more.
Polymers have become essential in advancing bone tissue engineering, providing adaptable bone healing and regeneration solutions. Their biocompatibility and biodegradability make them ideal candidates for creating scaffolds that mimic the body’s natural extracellular matrix (ECM). However, significant challenges remain, including degradation by-products, insufficient mechanical strength, and suboptimal cellular interactions. This article addresses these challenges by evaluating the performance of polymers like poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polylactic acid (PLA) in scaffold development. It also explores recent innovations, such as intelligent polymers, bioprinting, and the integration of bioactive molecules to enhance scaffold efficacy. We propose that overcoming current limitations requires a combination of novel biomaterials, advanced fabrication techniques, and tailored regulatory strategies. The future potential of polymer-based scaffolds in personalised regenerative medicine is discussed, focusing on their clinical applicability. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

24 pages, 5139 KiB  
Article
Evaluation of Additives on the Cell Metabolic Activity of New PHB/PLA-Based Formulations by Means of Material Extrusion 3D Printing for Scaffold Applications
by Ivan Dominguez-Candela, Lluc Sempere-José, Ignacio Sandoval-Perez and Asunción Martínez-García
Polymers 2024, 16(19), 2784; https://doi.org/10.3390/polym16192784 - 30 Sep 2024
Cited by 1 | Viewed by 1706
Abstract
In this study, specific additives were incorporated in polyhydroxyalcanoate (PHB) and polylactic acid (PLA) blend to improve its compatibility, and so enhance the cell metabolic activity of scaffolds for tissue engineering. The formulations were manufactured through material extrusion (MEX) additive manufacturing (AM) technology. [...] Read more.
In this study, specific additives were incorporated in polyhydroxyalcanoate (PHB) and polylactic acid (PLA) blend to improve its compatibility, and so enhance the cell metabolic activity of scaffolds for tissue engineering. The formulations were manufactured through material extrusion (MEX) additive manufacturing (AM) technology. As additives, petroleum-based poly(ethylene) with glicidyl metacrylate (EGM) and methyl acrylate-co-glycidyl methacrylate (EMAG); poly(styrene-co-maleic anhydride) copolymer (Xibond); and bio-based epoxidized linseed oil (ELO) were used. On one hand, standard geometries manufactured were assessed to evaluate the compatibilizing effect. The additives improved the compatibility of PHB/PLA blend, highlighting the effect of EMAG and ELO in ductile properties. The processability was also enhanced for the decrease in melt temperature as well as the improvement of thermal stability. On the other hand, manufactured scaffolds were evaluated for the purpose of bone regeneration. The mean pore size and porosity exhibited values between 675 and 718 μm and 50 and 53%, respectively. According to the results, the compression stress was higher (11–13 MPa) than the required for trabecular bones (5–10 MPa). The best results in cell metabolic activity were obtained by incorporating ELO and Xibond due to the decrease in water contact angle, showing a stable cell attachment after 7 days of culture as observed in SEM. Full article
(This article belongs to the Special Issue 3D-Printed Polymers for Tissue Engineering or Bioelectronics)
Show Figures

Figure 1

18 pages, 7655 KiB  
Article
In Vitro Culture of Human Dermal Fibroblasts on Novel Electrospun Polylactic Acid Fiber Scaffolds Loaded with Encapsulated Polyepicatechin Physical Gels
by Eliza Miranda-Buendia, Gertrudis H. González-Gómez, Alfredo Maciel-Cerda and Maykel González-Torres
Gels 2024, 10(9), 601; https://doi.org/10.3390/gels10090601 - 20 Sep 2024
Cited by 1 | Viewed by 1783
Abstract
Polyepicatechin (PEC) in a hydrogel has previously shown promise in enhancing physiological properties and scaffold preparation. However, it remains unclear whether PEC-based fibers can be applied in skin tissue engineering (STE). This study aimed to synthesize and characterize electrospun PEC physical gels and [...] Read more.
Polyepicatechin (PEC) in a hydrogel has previously shown promise in enhancing physiological properties and scaffold preparation. However, it remains unclear whether PEC-based fibers can be applied in skin tissue engineering (STE). This study aimed to synthesize and characterize electrospun PEC physical gels and polylactic acid (PLA) scaffolds (PLAloadedPECsub) for potential use as constructs with human dermal fibroblasts (HDFs). PEC was produced through enzymatic polymerization, as confirmed by Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) demonstrated the feasibility of producing PLAloadedPECsub by electrospinning. The metabolic activity and viability of HDFs cocultured with the scaffolds indicate that PLAloadedPECsub is promising for the use of STE. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Application)
Show Figures

Graphical abstract

21 pages, 6750 KiB  
Article
A Hierarchical Nano to Micro Scale Modelling of 3D Printed Nano-Reinforced Polylactic Acid: Micropolar Modelling and Molecular Dynamics Simulation
by AbdolMajid Rezaei, Razie Izadi and Nicholas Fantuzzi
Nanomaterials 2024, 14(13), 1113; https://doi.org/10.3390/nano14131113 - 28 Jun 2024
Cited by 7 | Viewed by 2058
Abstract
Fused deposition modelling (FDM) is an additive manufacturing technique widely used for rapid prototyping. This method facilitates the creation of parts with intricate geometries, making it suitable for advanced applications in fields such as tissue engineering, aerospace, and electronics. Despite its advantages, FDM [...] Read more.
Fused deposition modelling (FDM) is an additive manufacturing technique widely used for rapid prototyping. This method facilitates the creation of parts with intricate geometries, making it suitable for advanced applications in fields such as tissue engineering, aerospace, and electronics. Despite its advantages, FDM often results in the formation of voids between the deposited filaments, which can compromise mechanical properties. However, in some cases, such as the design of scaffolds for bone regeneration, increased porosity can be advantageous as it allows for better permeability. On the other hand, the introduction of nano-additives into the FDM material enhances design flexibility and can significantly improve the mechanical properties. Therefore, modelling FDM-produced components involves complexities at two different scales: nanoscales and microscales. Material deformation is primarily influenced by atomic-scale phenomena, especially with nanoscopic constituents, whereas the distribution of nano-reinforcements and FDM-induced heterogeneities lies at the microscale. This work presents multiscale modelling that bridges the nano and microscales to predict the mechanical properties of FDM-manufactured components. At the nanoscale, molecular dynamic simulations unravel the atomistic intricacies that dictate the behaviour of the base material containing nanoscopic reinforcements. Simulations are conducted on polylactic acid (PLA) and PLA reinforced with silver nanoparticles, with the properties derived from MD simulations transferred to the microscale model. At the microscale, non-classical micropolar theory is utilised, which can account for materials’ heterogeneity through internal scale parameters while avoiding direct discretization. The developed mechanical model offers a comprehensive framework for designing 3D-printed PLA nanocomposites with tailored mechanical properties. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

19 pages, 16063 KiB  
Article
Comparison of Printable Biomaterials for Use in Neural Tissue Engineering: An In Vitro Characterization and In Vivo Biocompatibility Assessment
by Miguel Etayo-Escanilla, Noelia Campillo, Paula Ávila-Fernández, José Manuel Baena, Jesús Chato-Astrain, Fernando Campos, David Sánchez-Porras, Óscar Darío García-García and Víctor Carriel
Polymers 2024, 16(10), 1426; https://doi.org/10.3390/polym16101426 - 17 May 2024
Cited by 2 | Viewed by 3201
Abstract
Nervous system traumatic injuries are prevalent in our society, with a significant socioeconomic impact. Due to the highly complex structure of the neural tissue, the treatment of these injuries is still a challenge. Recently, 3D printing has emerged as a promising alternative for [...] Read more.
Nervous system traumatic injuries are prevalent in our society, with a significant socioeconomic impact. Due to the highly complex structure of the neural tissue, the treatment of these injuries is still a challenge. Recently, 3D printing has emerged as a promising alternative for producing biomimetic scaffolds, which can lead to the restoration of neural tissue function. The objective of this work was to compare different biomaterials for generating 3D-printed scaffolds for use in neural tissue engineering. For this purpose, four thermoplastic biomaterials, ((polylactic acid) (PLA), polycaprolactone (PCL), Filaflex (FF) (assessed here for the first time for biomedical purposes), and Flexdym (FD)) and gelatin methacrylate (GelMA) hydrogel were subjected to printability and mechanical tests, in vitro cell–biomaterial interaction analyses, and in vivo biocompatibility assessment. The thermoplastics showed superior printing results in terms of resolution and shape fidelity, whereas FD and GelMA revealed great viscoelastic properties. GelMA demonstrated a greater cell viability index after 7 days of in vitro cell culture. Moreover, all groups displayed connective tissue encapsulation, with some inflammatory cells around the scaffolds after 10 days of in vivo implantation. Future studies will determine the usefulness and in vivo therapeutic efficacy of novel neural substitutes based on the use of these 3D-printed scaffolds. Full article
Show Figures

Figure 1

16 pages, 28211 KiB  
Article
A Combined Computational and Experimental Analysis of PLA and PCL Hybrid Nanocomposites 3D Printed Scaffolds for Bone Regeneration
by Spyros V. Kallivokas, Lykourgos C. Kontaxis, Spyridon Psarras, Maria Roumpi, Ourania Ntousi, Iοannis Kakkos, Despina Deligianni, George K. Matsopoulos, Dimitrios I. Fotiadis and Vassilis Kostopoulos
Biomedicines 2024, 12(2), 261; https://doi.org/10.3390/biomedicines12020261 - 24 Jan 2024
Cited by 8 | Viewed by 2753
Abstract
A combined computational and experimental study of 3D-printed scaffolds made from hybrid nanocomposite materials for potential applications in bone tissue engineering is presented. Polycaprolactone (PCL) and polylactic acid (PLA), enhanced with chitosan (CS) and multiwalled carbon nanotubes (MWCNTs), were investigated in respect of [...] Read more.
A combined computational and experimental study of 3D-printed scaffolds made from hybrid nanocomposite materials for potential applications in bone tissue engineering is presented. Polycaprolactone (PCL) and polylactic acid (PLA), enhanced with chitosan (CS) and multiwalled carbon nanotubes (MWCNTs), were investigated in respect of their mechanical characteristics and responses in fluidic environments. A novel scaffold geometry was designed, considering the requirements of cellular proliferation and mechanical properties. Specimens with the same dimensions and porosity of 45% were studied to fully describe and understand the yielding behavior. Mechanical testing indicated higher apparent moduli in the PLA-based scaffolds, while compressive strength decreased with CS/MWCNTs reinforcement due to nanoscale challenges in 3D printing. Mechanical modeling revealed lower stresses in the PLA scaffolds, attributed to the molecular mass of the filler. Despite modeling challenges, adjustments improved simulation accuracy, aligning well with experimental values. Material and reinforcement choices significantly influenced responses to mechanical loads, emphasizing optimal structural robustness. Computational fluid dynamics emphasized the significance of scaffold permeability and wall shear stress in influencing bone tissue growth. For an inlet velocity of 0.1 mm/s, the permeability value was estimated at 4.41 × 10−9 m2, which is in the acceptable range close to human natural bone permeability. The average wall shear stress (WSS) value that indicates the mechanical stimuli produced by cells was calculated to be 2.48 mPa, which is within the range of the reported literature values for promoting a higher proliferation rate and improving osteogenic differentiation. Overall, a holistic approach was utilized to achieve a delicate balance between structural robustness and optimal fluidic conditions, in order to enhance the overall performance of scaffolds in tissue engineering applications. Full article
Show Figures

Figure 1

23 pages, 6087 KiB  
Article
Evaluation of Physicochemical Properties of a Hydroxyapatite Polymer Nanocomposite for Use in Fused Filament Fabrication
by Ngoc Mai Nguyen, Akesh Babu Kakarla, Satya Guha Nukala, Cin Kong, Avinash Baji and Ing Kong
Polymers 2023, 15(19), 3980; https://doi.org/10.3390/polym15193980 - 3 Oct 2023
Cited by 11 | Viewed by 3127
Abstract
Over the last decade, there has been an increasing interest in the use of bioceramics for biomedical purposes. Bioceramics, specifically those made of calcium phosphate, are commonly used in dental and orthopaedic applications. In this context, hydroxyapatite (HA) is considered a viable option [...] Read more.
Over the last decade, there has been an increasing interest in the use of bioceramics for biomedical purposes. Bioceramics, specifically those made of calcium phosphate, are commonly used in dental and orthopaedic applications. In this context, hydroxyapatite (HA) is considered a viable option for hard tissue engineering applications given its compositional similarity to bioapatite. However, owing to their poor mechanobiology and biodegradability, traditional HA-based composites have limited utilisation possibilities in bone, cartilage and dental applications. Therefore, the efficiency of nano HA (nHA) has been explored to address these limitations. nHA has shown excellent remineralising effects on initial enamel lesions and is widely used as an additive for improving existing dental materials. Furthermore, three-dimensional printing (3DP) or fused deposition modelling that can be used for creating dental and hard tissue scaffolds tailored to each patient’s specific anatomy has attracted considerable interest. However, the materials used for producing hard tissue with 3DP are still limited. Therefore, the current study aimed to develop a hybrid polymer nanocomposite composed of nHA, nanoclay (NC) and polylactic acid (PLA) that was suitable for 3DP. The nHA polymer nanocomposites were extruded into filaments and their physiochemical properties were evaluated. The results showed that the addition of nHA and NC to the PLA matrix significantly increased the water absorption and contact angle. In addition, the hardness increased from 1.04 to 1.25 times with the incorporation of nHA. In sum, the nHA-NC-reinforced PLA could be used as 3DP filaments to generate bone and dental scaffolds, and further studies are needed on the biocompatibility of this material. Full article
(This article belongs to the Special Issue Nanopolymers and Nanocomposites)
Show Figures

Figure 1

12 pages, 5203 KiB  
Article
Microporous Polylactic Acid Scaffolds Enable Fluorescence-Based Perfusion Imaging of Intrinsic In Vivo Vascularization
by Christoph Koepple, Lukas Pollmann, Nicola Sariye Pollmann, Matthias Schulte, Ulrich Kneser, Norbert Gretz and Volker J. Schmidt
Int. J. Mol. Sci. 2023, 24(19), 14813; https://doi.org/10.3390/ijms241914813 - 1 Oct 2023
Cited by 4 | Viewed by 1767
Abstract
In vivo tissue engineering (TE) techniques like the AV loop model provide an isolated and well-defined microenvironment to study angiogenesis-related cell interactions. Functional visualization of the microvascular network within these artificial tissue constructs is crucial for the fundamental understanding of vessel network formation [...] Read more.
In vivo tissue engineering (TE) techniques like the AV loop model provide an isolated and well-defined microenvironment to study angiogenesis-related cell interactions. Functional visualization of the microvascular network within these artificial tissue constructs is crucial for the fundamental understanding of vessel network formation and to identify the underlying key regulatory mechanisms. To facilitate microvascular tracking advanced fluorescence imaging techniques are required. We studied the suitability of microporous polylactic acid (PLA) scaffolds with known low autofluorescence to form axial vascularized tissue constructs in the AV loop model and to validate these scaffolds for fluorescence-based perfusion imaging. Compared to commonly used collagen elastin (CE) scaffolds, the total number of vessels and cells in PLA scaffolds was lower. In detail, CE-based constructs exhibited significantly higher vessel numbers on day 14 and 28 (d14: 316 ± 53; d28: 610 ± 74) compared to the respective time points in PLA-based constructs (d14: 144 ± 18; d28: 327 ± 34; each p < 0.05). Analogously, cell counts in CE scaffolds were higher compared to corresponding PLA constructs (d14: 7661.25 ± 505.93 and 5804.04 ± 716.59; d28: 11211.75 + 1278.97 and 6045.71 ± 572.72, p < 0.05). CE scaffolds showed significantly higher vessel densities in proximity to the main vessel axis compared to PLA scaffolds (200–400 µm and 600–800 µm on day 14; 400–1000 µm and 1400–1600 µm on day 28). CE scaffolds had significantly higher cell counts on day 14 at distances from 800 to 2000 µm and at distances from 400 to 1600 µm on day 28. While the total number of vessels and cells in PLA scaffolds were lower, both scaffold types were ideally suited for axial vascularization techniques. The intravascular perfusion of PLA-based constructs with fluorescence dye MHI148-PEI demonstrated dye specificity against vascular walls of low- and high-order branches as well as capillaries and facilitated the fluorescence-based visualization of microcirculatory networks. Fluorophore tracking may contribute to the development of automated quantification methods after 3D reconstruction and image segmentation. These technologies may facilitate the characterization of key regulators within specific subdomains and add to the current understanding of vessel formation in axially vascularized tissue constructs. Full article
Show Figures

Figure 1

17 pages, 5901 KiB  
Article
Enhancing Structural and Thermal Properties of Poly(lactic acid) Using Graphene Oxide Filler and Anionic Surfactant Treatment
by Selsabil Rokia Laraba, Najeeb Ullah, Amirouche Bouamer, Asmat Ullah, Tariq Aziz, Wei Luo, Wahiba Djerir, Qurat ul Ain Zahra, Amine Rezzoug, Jie Wei and Yulin Li
Molecules 2023, 28(18), 6442; https://doi.org/10.3390/molecules28186442 - 5 Sep 2023
Cited by 12 | Viewed by 2247
Abstract
Graphene has attracted extensive attention in various fields due to its intriguing properties. In this work, nanocomposite films based on poly(lactic acid) (PLA and PLLA) polymers filled with graphene oxide (GO) were developed. The impact of treating GO with the anionic surfactant dioctyl [...] Read more.
Graphene has attracted extensive attention in various fields due to its intriguing properties. In this work, nanocomposite films based on poly(lactic acid) (PLA and PLLA) polymers filled with graphene oxide (GO) were developed. The impact of treating GO with the anionic surfactant dioctyl sulfosuccinate sodium salt (AOT) on the properties of the resulting nanocomposites was investigated. To determine the morphological, optical, and structural properties of the obtained materials, physicochemical analyses were performed, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) analysis. Additionally, the thermal properties and wettability of neat polymers and nanocomposites were thoroughly investigated using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and contact angle analysis. It was observed that GO was well dispersed throughout the PLA and PLLA matrix, leading to stronger interface bonding. The results demonstrate that the untreated and treated GO improved the crystallinity and thermal stability properties of the PLA and PLLA. However, the AOT-treated GO has significantly higher performance compared to the untreated GO in terms of crystallinity, melting temperature (increased by ~15 °C), and wettability (the contact angle decreased by ~30°). These findings reveal the high performance of the developed novel composite, which could be applied in tissue engineering as a scaffold. Full article
Show Figures

Graphical abstract

18 pages, 7131 KiB  
Article
Biocompatibility Assessment of Polycaprolactone/Polylactic Acid/Zinc Oxide Nanoparticle Composites under In Vivo Conditions for Biomedical Applications
by Jorge Iván Castro, Daniela G. Araujo-Rodríguez, Carlos Humberto Valencia-Llano, Diego López Tenorio, Marcela Saavedra, Paula A. Zapata and Carlos David Grande-Tovar
Pharmaceutics 2023, 15(9), 2196; https://doi.org/10.3390/pharmaceutics15092196 - 25 Aug 2023
Cited by 8 | Viewed by 2821
Abstract
The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide [...] Read more.
The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm−1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration. Full article
(This article belongs to the Special Issue Advances in Natural Products for Antimicrobial and Antiviral Therapy)
Show Figures

Figure 1

29 pages, 13940 KiB  
Article
Computational and Experimental Investigation of the Combined Effect of Various 3D Scaffolds and Bioreactor Stimulation on Human Cells’ Feedback
by Foteini K. Kozaniti, Aikaterini E. Manara, Vassilis Kostopoulos, Panagiotis Mallis, Efstathios Michalopoulos, Demosthenes Polyzos, Despina D. Deligianni and Diana V. Portan
Appl. Biosci. 2023, 2(2), 249-277; https://doi.org/10.3390/applbiosci2020018 - 1 Jun 2023
Cited by 9 | Viewed by 2354
Abstract
Computational methods were combined with an experimental setup in order to investigate the response of human umbilical cord stem cells to 3D electrospun and printed scaffolds, when dynamically stimulated in a bioreactor. Key parameters associated to bioreactor working conditions were computationally investigated using [...] Read more.
Computational methods were combined with an experimental setup in order to investigate the response of human umbilical cord stem cells to 3D electrospun and printed scaffolds, when dynamically stimulated in a bioreactor. Key parameters associated to bioreactor working conditions were computationally investigated using Comsol software to use the output for the planned experimental setup. Based on the theoretical observations, the influence of the inlet velocity, cell number, and exposure time in the bioreactor were analyzed and the in vitro parameters were adjusted accordingly. MSCs were seeded in different numbers in the 3D porous scaffolds and stimulated in the bioreactor (0.5 and 2 h duration, 3 and 6 mm/s inlet velocity). Polycaprolactone 3D electrospun, and polyurethane and polylactic acid 3D-printed scaffolds were fabricated and fibronectin-coated. The computational study predicted initial events in the process of cells deposition and attachment. Total protein, osteopontin, and osteocalcin levels in cells deposited in scaffolds were investigated; SEM and confocal imaging confirmed the biomarker analysis. MSCs proliferated well in PCL. Polyurethane enabled extremely rapid proliferation followed by differentiation, while PLA induced a moderate proliferation and parallel mineralization. The scaffolds stiffness has been found as the key enabling parameter decisive for cells feedback. Full article
(This article belongs to the Special Issue Anatomy and Regenerative Medicine: From Methods to Applications)
Show Figures

Figure 1

Back to TopTop