Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = polyethylene glycol diacrylate (PEGDA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6855 KiB  
Article
Hydrogel Microarray for Bioanalytical Applications: Preliminary Study on Material Properties
by Weronika Kieres, Sonia Kudłacik-Kramarczyk, Joanna Marczyk, Celina Ziejewska, Anna Drabczyk, Robert P. Socha and Marcel Krzan
Materials 2025, 18(13), 3118; https://doi.org/10.3390/ma18133118 - 1 Jul 2025
Viewed by 417
Abstract
The aim of this study was to develop and characterize UV-crosslinked hydrogel matrices based on polyethylene glycol diacrylate (PEGDA), gum arabic, betaine, and sodium alginate for potential bioanalytical applications. Various physicochemical analyses were performed, including pre-polymerization emulsion stability (Multiscan), FT-IR spectroscopy, swelling behavior [...] Read more.
The aim of this study was to develop and characterize UV-crosslinked hydrogel matrices based on polyethylene glycol diacrylate (PEGDA), gum arabic, betaine, and sodium alginate for potential bioanalytical applications. Various physicochemical analyses were performed, including pre-polymerization emulsion stability (Multiscan), FT-IR spectroscopy, swelling behavior in physiological buffers, pH monitoring, contact angle measurements, and morphological assessment via SEM and optical microscopy. The results demonstrated that both alginate content and UV exposure time significantly influence the structural and functional properties of the hydrogels. The highest swelling ratio (2.32 g/g) was observed for the formulation containing 5% sodium alginate polymerized for 5 min (5SA_5), though this sample showed mechanical fragmentation during incubation. In contrast, the most balanced performance was achieved for the 10SA_15 formulation, which maintained structural integrity and exhibited a swelling ratio of 1.92 g/g after 9 days. The contact angle analysis revealed a surface hydrophilicity range from 50° to 100°, with the lowest angle (50°) recorded for 10SA_5, indicating high surface wettability. These findings confirm the suitability of such hydrogels for biomedical applications, particularly as absorbent, stable platforms for drug delivery or wound healing. Full article
Show Figures

Figure 1

16 pages, 3000 KiB  
Article
A Simple Vortex-Based Method for the Generation of High-Throughput Spherical Micro- and Nanohydrogels
by Moussa Boujemaa, Remi Peters, Jiabin Luan, Yieuw Hin Mok, Shauni Keller and Daniela A. Wilson
Int. J. Mol. Sci. 2025, 26(13), 6300; https://doi.org/10.3390/ijms26136300 - 30 Jun 2025
Viewed by 418
Abstract
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol [...] Read more.
Hydrogel particles, renowned for their high water content and biocompatibility in drug delivery and tissue engineering, typically rely on complex, costly microfluidic systems to reach sub 5 µm dimensions. We present a vortex-based inverse-emulsion polymerization strategy in which UV crosslinking of polyethylene glycol diacrylate (PEGDA) dispersed in n-hexadecane and squalene yields tunable micro- and nanogels while delineating the parameters that govern particle size and uniformity. Systematic variation in surfactant concentration, vessel volume, continuous phase viscosity, vortex speed and duration, oil-to-polymer ratio, polymer molecular weight, and pulsed vortexing revealed that increases in surfactant level, vortex intensity/duration, vessel volume, and oil-to-polymer ratio each reduced mean diameter and PDI, whereas higher polymer molecular weight and continuous phase viscosity broadened the size distribution. We further investigated how these same parameters can be tuned to shift particle populations between nano- and microscale regimes. Under optimized conditions, microhydrogels achieved a coefficient of variation of 0.26 and a PDI of 0.07, with excellent reproducibility, and nanogels measured 161 nm (PDI = 0.05). This rapid, cost-effective method enables precise and scalable control over hydrogel dimensions using only standard laboratory equipment, without specialized training. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

24 pages, 10324 KiB  
Article
A Versatile Platform for Designing and Fabricating Multi-Material Perfusable 3D Microvasculatures
by Nathaniel Harris, Charles Miller and Min Zou
Micromachines 2025, 16(6), 691; https://doi.org/10.3390/mi16060691 - 8 Jun 2025
Viewed by 1350
Abstract
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing [...] Read more.
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing to create multi-material, perfusable 3D microvasculatures. Various 2D and 3D capillary paths were test-printed using both polygonal and lattice support strategies. A double-layered capillary scaffold based on the Hilbert curve was used for comparative materials testing. Methods for printing rigid (OrmoComp), moderately stiff hydrogel (polyethylene glycol diacrylate, PEGDA 700), and soft elastomeric (photocurable polydimethylsiloxane, PDMS) materials were developed and evaluated. Cone support structures enabled high-fidelity printing of the softer materials. A compact heat-shrink tubing interface provided leak-free perfusion without bulky fittings. Physiologically relevant flow velocities and Dextran diffusion through the scaffold were successfully demonstrated. Cytocompatibility assays confirmed that all TPL-printed scaffold materials supported human neural stem cell viability. Among peripheral components, lids fabricated via fused deposition modeling designed to hold microfluidic needle adapters exhibited good biocompatibility, while those made using liquid crystal display-based photopolymerization showed significant cytotoxicity despite indirect exposure. Overall, this platform enables creation of multi-material microvascular systems facilitated by TPL technology for complex, 3D neurovascular modeling, blood–brain barrier studies, and integration into vascularized organ-on-chip applications. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

21 pages, 18533 KiB  
Article
Calcium Phosphate Honeycomb Scaffolds with Tailored Microporous Walls Using Phase Separation-Assisted Digital Light Processing
by Gyu-Nam Kim, Jae-Hyung Park, Jae-Uk Song, Young-Hag Koh and Jongee Park
Materials 2025, 18(11), 2587; https://doi.org/10.3390/ma18112587 - 1 Jun 2025
Viewed by 601
Abstract
The present study reports on the manufacturing of biphasic calcium phosphate (BCP) honeycomb scaffolds with tailored microporous walls using phase separation-assisted digital light processing (PS-DLP). To create micropores in BCP walls, camphene was used as the pore-forming agent for preparing BCP suspensions, since [...] Read more.
The present study reports on the manufacturing of biphasic calcium phosphate (BCP) honeycomb scaffolds with tailored microporous walls using phase separation-assisted digital light processing (PS-DLP). To create micropores in BCP walls, camphene was used as the pore-forming agent for preparing BCP suspensions, since it could be completely dissolved in photopolymerizable monomers composed of triethylene glycol dimethacrylate (TEGDMA) and polyethylene glycol diacrylate (PEGDA) and then undergo phase separation when placed at 5 °C. Therefore, solid camphene crystals could be formed in phase-separated BCP layers and then readily removed via sublimation after the photopolymerization of monomer networks embedding BCP particles by DLP. This approach allowed for tight control over the microporosity of BCP walls by adjusting the camphene content. As the camphene content increased from 40 to 60 vol%, the microporosity increased from ~38 to ~59 vol%. Consequently, the overall porosity of dual-scale porosity scaffolds increased from ~51 to ~67 vol%, while their compressive strength decreased from ~70.4 to ~13.7 MPa. The mass transport ability increased remarkably with an increase in microporosity. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

17 pages, 12385 KiB  
Article
Application of Polysaccharides in Hydrogel Biomaterials
by Piotr Szatkowski, Zuzanna Flis, Anna Ptak and Edyta Molik
Int. J. Mol. Sci. 2025, 26(7), 3387; https://doi.org/10.3390/ijms26073387 - 4 Apr 2025
Viewed by 622
Abstract
Natural compounds incorporated into hydrogel materials have been widely used to support wound healing due to their numerous properties. The aim of this research was to produce hydrogel biomaterials with the addition of adjuvants, such as sodium alginate and polyethylene glycol diacrylate (PEGDA) [...] Read more.
Natural compounds incorporated into hydrogel materials have been widely used to support wound healing due to their numerous properties. The aim of this research was to produce hydrogel biomaterials with the addition of adjuvants, such as sodium alginate and polyethylene glycol diacrylate (PEGDA) with the addition of ethylene ginger extract (EEI). A thermogravimetric (TG) study, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), water absorption testing and microscopic analysis were carried out to determine the properties of the developed dressing. The conducted research showed that the 4%Alg/12%PEGDA hydrogel was characterized by the best water absorption values and the slowest weight loss as a function of temperature. Additionally, the 4%Alg/12%PEGDA hydrogel had the best ability to dissipate stress in its structure. It was found that the addition of the ginger modifier had a negative effect on the water absorption values. Hydrogel containing 4%Alg 12%PEGDA 12%EEI showed the best hydrophilic properties and the highest ionic conductivity. The studies conducted showed that both the addition of PEGDA and EEI to hydrogels affects the increase in acidity of dressings. This is important because maintaining an acidic wound microenvironment is a potential therapeutic strategy for wound management. Therefore, although further research is needed, it is possible that 4%Alg 12%PEGDA 12%EEI hydrogel could be used as a high-performance wound dressing. Full article
(This article belongs to the Special Issue New Trends and Challenges in Polysaccharide Biomaterials)
Show Figures

Figure 1

18 pages, 3890 KiB  
Article
Polyethylene Glycol Diacrylate Adapted Photopolymerization Material for Contact Lens with Improved Elastic Modulus Properties
by Yamin Chen, Dianyang Li, Yougen Chen and Hui Fang
Materials 2025, 18(4), 827; https://doi.org/10.3390/ma18040827 - 13 Feb 2025
Cited by 1 | Viewed by 1536
Abstract
Four kinds of silicone hydrogel transparent contact lenses (CLs) with different formulations were prepared by the free radical photocuring polymerization. By mixing polyethylene glycol diacrylate (PEGDA) of 1000 Da with ethylene glycol dimethacrylate (EGDMA) and adding other silicone monomers and hydrophilic monomers, the [...] Read more.
Four kinds of silicone hydrogel transparent contact lenses (CLs) with different formulations were prepared by the free radical photocuring polymerization. By mixing polyethylene glycol diacrylate (PEGDA) of 1000 Da with ethylene glycol dimethacrylate (EGDMA) and adding other silicone monomers and hydrophilic monomers, the transparency and flexibility of the material were successfully achieved. By optimizing the weight percentage of each component, the best balance of optical performance can be achieved. The photocuring properties of the materials were characterized by electronic universal test, double-beam UV-visible spectrophotometer, Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The results showed that the addition of higher PEGDA content reduces the elastic modulus, improves curing efficiency, improves equilibrium water content (EWC), and enhances light transmission. Hydrogels containing only high PEGDA but no EGDMA showed similar curing rates, water content, and elastic modulus, but had the worst optical transparency, far inferior to the materials mixed with PEGDA and EGDMA. Additionally, imaging performance of the CLs was further evaluated through simulation analysis using Ansys Zemax OpticStudio2024 software. This research provides a new choice of material consideration to improve the performance and wearing comfort of CLs. Full article
Show Figures

Graphical abstract

14 pages, 2763 KiB  
Article
Dual-Function Hydrogel Coating on Silicone Urinary Catheters with Durable Antibacterial Property and Lubricity
by Shuai Gao, Wei Zeng, Zheng Liu, Fanjun Zhang, Yunfeng Zhang, Xi Liu, Dimeng Wu and Yunbing Wang
Gels 2025, 11(2), 128; https://doi.org/10.3390/gels11020128 - 10 Feb 2025
Viewed by 1560
Abstract
Silicone urinary catheters are broadly employed in medical practice. However, they are susceptible to inducing catheter-associated urinary tract infections (CAUTIs) due to bacterial adherence to the catheter’s surface, and they exhibit a high friction coefficient, which can greatly affect their effectiveness and functionality. [...] Read more.
Silicone urinary catheters are broadly employed in medical practice. However, they are susceptible to inducing catheter-associated urinary tract infections (CAUTIs) due to bacterial adherence to the catheter’s surface, and they exhibit a high friction coefficient, which can greatly affect their effectiveness and functionality. Thus, the development of a silicone urinary catheter with antibacterial properties and lubricity is in strong demand. We hereby developed a poly(vinyl acetate) carrier coating to load chlorhexidine acetate and applied a hydrogel coating primarily composed of polyvinylpyrrolidone (PVP) and poly(ethylene glycol) diacrylate (PEGDA), which was then coated onto the silicone urinary catheters and cured through a thermal curing process and could provide lubricity. Subsequently, we analyzed its surface characteristics and assessed the antibacterial property, lubricity, cytotoxicity, and potential for vaginal irritation. The findings from the Fourier transform infrared spectrometer (FTIR), scanning electron microscope (SEM), water contact angle (WCA), inhibition zone measurements, and friction coefficient analysis confirmed the successful modification of the silicone urinary catheter. Additionally, the outcomes from the cytotoxicity and vaginal irritation assessments demonstrated that the dual-function hydrogel coating-coated silicone urinary catheters exhibit outstanding biocompatibility. This study illustrates that the prepared silicone urinary catheters possess durable antibacterial properties and lubricity, which thus gives them broad clinical application prospects. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering (2nd Edition))
Show Figures

Graphical abstract

13 pages, 3980 KiB  
Article
Porous PEG Scaffold Fabricated via Emulsion-Templating Technique Towards Immobilization of Saccharomyces cerevisiae Cells
by Chuanbang Xu, Yuanyuan Sun, Chun Feng and Shengmiao Zhang
Catalysts 2024, 14(11), 809; https://doi.org/10.3390/catal14110809 - 11 Nov 2024
Cited by 2 | Viewed by 1043
Abstract
The cell immobilization technique, which restricts living cells to a certain space, has received widespread attention as an emerging biotechnology. In this study, a yeast (Saccharomyces cerevisiae)-loaded highly open-cell emulsion-templated polyethylene glycol (PEG-polyHIPE) was synthesized to be a reusable enzymatic catalyst. [...] Read more.
The cell immobilization technique, which restricts living cells to a certain space, has received widespread attention as an emerging biotechnology. In this study, a yeast (Saccharomyces cerevisiae)-loaded highly open-cell emulsion-templated polyethylene glycol (PEG-polyHIPE) was synthesized to be a reusable enzymatic catalyst. An emulsion was prepared with polyethylene glycol diacrylate (PEGDA) aqueous solution, cyclohexane, and polyethylene-polypropylene glycol (F127) as the continuous phase, dispersed phase, and surfactant, respectively. Then PEG-polyHIPE was obtained by polymerization of the PEGDA in emulsion. The highly porous materials obtained by the emulsion-templating method are suitable for use as carrier materials for yeast immobilization, due to their favorable structural designability. During the activation process, the yeast S. cerevisiae can readily gain access to the interior of the material via the interconnected pores and immobilize itself inside the voids. The yeast-loaded polyHIPE was then used to ferment glucose for ethanol production. The yeast immobilized inside the polyHIPE has high fermentation efficiency, good recoverability, and storage stability. After seven cycles, the yeast maintained 70% initial fermentation efficiency. The S. cerevisiae kept more than 90% of the initial cellular activity after one week of storage both in the dry state and in yeast extract peptone dextrose medium (YPD) at 4 °C. This study strongly demonstrates the feasibility of using high-throughput porous materials as cell immobilization carriers to efficiently osmotically immobilize cells in polyHIPEs for high-performance fermentation. Full article
(This article belongs to the Special Issue State-of-the-Art Enzyme Engineering and Biocatalysis in China)
Show Figures

Figure 1

24 pages, 7887 KiB  
Article
3D-Printed Plasmonic Nanocomposites: VAT Photopolymerization for Photothermal-Controlled Drug Release
by Ignacia Paz Torres Fredes, Elizabeth Nicole Cortés-Adasme, Bruno Andrés Barrientos, Juan Pablo Real, Cesar Gerardo Gomez, Santiago Daniel Palma, Marcelo Javier Kogan and Daniel Andrés Real
Pharmaceuticals 2024, 17(11), 1453; https://doi.org/10.3390/ph17111453 - 30 Oct 2024
Cited by 1 | Viewed by 1181
Abstract
Background: Gold nanoparticles can generate heat upon exposure to radiation due to their plasmonic properties, which depend on particle size and shape. This enables precise control over the release of active substances from polymeric pharmaceutical formulations, minimizing side effects and premature release. The [...] Read more.
Background: Gold nanoparticles can generate heat upon exposure to radiation due to their plasmonic properties, which depend on particle size and shape. This enables precise control over the release of active substances from polymeric pharmaceutical formulations, minimizing side effects and premature release. The technology of 3D printing, especially vat photopolymerization, is valuable for integrating nanoparticles into complex formulations. Method: This study aimed to incorporate gold nanospheres (AuNSs) and nanorods (AuNRs) into polymeric matrices using vat photopolymerization, allowing for controlled drug release with exposure to 532 nm and 1064 nm wavelengths. Results: The AuNSs (27 nm) responded to 532 nm and the NRs (60 nm length, 10 nm width) responded to 1064 nm. Niclosamide was used as the drug model. Ternary blends of Polyethylene Glycol Diacrylate 250 (PEGDA 250), Polyethylene Glycol 400 (PEG 400), and water were optimized using DesignExpert 11 software for controlled drug release upon specific wavelength exposure. Three matrices, selected based on solubility and printability, underwent rigorous characterization. Two materials achieved controlled drug release with specific wavelengths. Bilayer devices combining AuNSs and AuNRs demonstrated selective drug release based on irradiation wavelength. Conclusions: A pharmaceutical device was developed, capable of controlling drug release upon irradiation, with potential applications in treatments requiring delayed administration. Full article
(This article belongs to the Special Issue Molecular Systems for the Delivery of Drugs and Contrast Agents)
Show Figures

Figure 1

13 pages, 3616 KiB  
Article
Double-Network Hydrogel 3D BioPrinting Biocompatible with Fibroblast Cells for Tissue Engineering Applications
by Immacolata Greco, Hatim Machrafi and Carlo S. Iorio
Gels 2024, 10(11), 684; https://doi.org/10.3390/gels10110684 - 23 Oct 2024
Cited by 2 | Viewed by 1963
Abstract
The present study examines the formulation of a biocompatible hydrogel bioink for 3D bioprinting, integrating poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA) using a double-network approach. These materials were chosen for their synergistic qualities, with PEGDA contributing to mechanical integrity and SA [...] Read more.
The present study examines the formulation of a biocompatible hydrogel bioink for 3D bioprinting, integrating poly(ethylene glycol) diacrylate (PEGDA) and sodium alginate (SA) using a double-network approach. These materials were chosen for their synergistic qualities, with PEGDA contributing to mechanical integrity and SA ensuring biocompatibility. Fibroblast cells were included in the bioink and printed with a Reg4Life bioprinter employing micro-extrusion technology. The optimisation of printing parameters included needle size and flow velocities. This led to precise structure development and yielded results with a negligible deviation in printed angles and better control of line widths. The rheological characteristics of the bioink were evaluated, demonstrating appropriate viscosity and shear-thinning behaviour for efficient extrusion. The mechanical characterisation revealed an average compressive modulus of 0.38 MPa, suitable for tissue engineering applications. The printability of the bioink was further confirmed through the evaluations of morphology and diffusion rates, confirming structural integrity. Biocompatibility assessments demonstrated a high cell viability rate of 82.65% following 48 h of incubation, supporting the bioink’s suitability for facilitating cell survival. This study introduced a reliable technique for producing tissue-engineered scaffolds that exhibit outstanding mechanical characteristics and cell viability, highlighting the promise of PEGDA–SA hydrogels in bioprinting applications. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

13 pages, 1963 KiB  
Article
Moisture and Surface Properties of Radically Photo-Grafted Poly-(Ethylene Terephthalate) Woven Fabric
by Roberta Bongiovanni, Jinping Guan, Ada Ferri and Alessandra Vitale
Fibers 2024, 12(10), 90; https://doi.org/10.3390/fib12100090 - 15 Oct 2024
Cited by 1 | Viewed by 1302
Abstract
This study aims at the modification of the surface properties of twill-5 polyethylene terephthalate (PET) fabric, in particular to improve its hydrophilicity. It compares the hydrophilic potential and efficacy of two vinyl monomers radically grafted onto the fabric by photoinduced processes. Poly(ethylene glycol) [...] Read more.
This study aims at the modification of the surface properties of twill-5 polyethylene terephthalate (PET) fabric, in particular to improve its hydrophilicity. It compares the hydrophilic potential and efficacy of two vinyl monomers radically grafted onto the fabric by photoinduced processes. Poly(ethylene glycol) diacrylate (PEGDA) and [2-(methacryloyloxy)-ethyl]-trimethylammonium chloride (METAC) affected the wettability of the fabric towards water, significantly reducing the water contact angle (WCA). As a consequence, the treated fabrics showed a good improvement of dynamic moisture management. Adopting specific conditions (e.g., type of monomer and grafting monomer concentration), the grafted PET fabrics remained hydrophilic after washing, laudering, dry cleaning, and rubbing tests; thus, the surface treatment modification resulted to be durable overall. Full article
Show Figures

Figure 1

14 pages, 5040 KiB  
Article
3D-Printed Melatonin Tablets with Braille Motifs for the Visually Impaired
by Chrystalla Protopapa, Angeliki Siamidi, Aikaterini Sakellaropoulou, Siva Kolipaka, Laura Andrade Junqueira, Atabak Ghanizadeh Tabriz, Dennis Douroumis and Marilena Vlachou
Pharmaceuticals 2024, 17(8), 1017; https://doi.org/10.3390/ph17081017 - 1 Aug 2024
Cited by 3 | Viewed by 1917
Abstract
An innovative approach for creating customized dosage forms and supporting patient populations with specific requirements who need additional support to improve drug adherence is 3D printing. This work introduces liquid crystal display (LCD) 3D printing as a means of developing melatonin (MLT) tablets. [...] Read more.
An innovative approach for creating customized dosage forms and supporting patient populations with specific requirements who need additional support to improve drug adherence is 3D printing. This work introduces liquid crystal display (LCD) 3D printing as a means of developing melatonin (MLT) tablets. For patients who are blind or visually challenged, Braille patterns were displayed on the tablet surface in addition to the optimization of printing hydrogel inks. Owing to the great printing accuracy, blind patients could validate the Braille patterns that provided the required information. Upon further examination MLT was found to be present in the photopolymerized resins in an amorphous state. The choice of poly(ethylene glycol)-diacrylate (PEGDA) with varying molecular weights and the inclusion of surfactants or solubilizers interfered with the photopolymerization of the resin, hence controlling the rates of MLT dissolution towards the sought sustained release. Nuclear magnetic resonance (NMR) analysis showed that photopolymerization of the PEGDA resins in the printed dosage forms has taken place. A small batch scale-up investigation showed that LCDs could print a significant number of tablets quickly—about twenty-four minutes. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

13 pages, 4609 KiB  
Article
Crosslinking and Swelling Properties of pH-Responsive Poly(Ethylene Glycol)/Poly(Acrylic Acid) Interpenetrating Polymer Network Hydrogels
by Uijung Hwang, HoYeon Moon, Junyoung Park and Hyun Wook Jung
Polymers 2024, 16(15), 2149; https://doi.org/10.3390/polym16152149 - 29 Jul 2024
Cited by 12 | Viewed by 3489
Abstract
This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming [...] Read more.
This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming PEG-SN hydrogels using poly(ethylene glycol) diacrylate (PEGDA) through UV-induced free radical polymerization and crosslinking reactions, then immersing them in PAA solutions with two different molar ratios of acrylic acid (AA) monomer and poly(ethylene glycol) dimethacrylate (PEGDMA) crosslinker. A subsequent UV curing step created PAA networks within the pre-fabricated PEG hydrogels. The incorporation of AA with ionizable functional groups imparted pH sensitivity to the hydrogels, allowing the swelling ratio to respond to environmental pH changes. Rheological analysis showed that PEG/PAA IPN hydrogels had a higher storage modulus (G′) than PEG-SN hydrogels, with PEG/PAA-IPN5 exhibiting the highest modulus. Thermal analysis via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated increased thermal stability for PEG/PAA-IPN5 compared to PEG/PAA-IPN1, due to higher crosslinking density from increased PEGDMA content. Consistent with the storage modulus trend, PEG/PAA-IPN hydrogels demonstrated superior mechanical properties compared to PEG-SN hydrogels. The tighter network structure led to reduced water uptake and a higher gel modulus in swollen IPN hydrogels, attributed to the increased density of active network strands. Below the pKa (4.3) of acrylic acid, hydrogen bonds between PEG and PAA chains caused the IPN hydrogels to contract. Above the pKa, ionization of PAA chains induced electrostatic repulsion and osmotic forces, increasing water absorption. Adjusting the crosslinking density of the PAA network enabled fine-tuning of the IPN hydrogels’ properties, allowing comprehensive comparison of single network and IPN characteristics. Full article
(This article belongs to the Special Issue Hydrogels for Biomedical and Structural Applications)
Show Figures

Graphical abstract

21 pages, 4003 KiB  
Article
Fabrication and Characterization of Porous PEGDA Hydrogels for Articular Cartilage Regeneration
by Silvia Gonella, Margarida F. Domingues, Filipe Miguel, Carla S. Moura, Carlos A. V. Rodrigues, Frederico Castelo Ferreira and João C. Silva
Gels 2024, 10(7), 422; https://doi.org/10.3390/gels10070422 - 26 Jun 2024
Cited by 9 | Viewed by 4386
Abstract
Functional articular cartilage regeneration remains an unmet medical challenge, increasing the interest for innovative biomaterial-based tissue engineering (TE) strategies. Hydrogels, 3D macromolecular networks with hydrophilic groups, present articular cartilage-like features such as high water content and load-bearing capacity. In this study, 3D porous [...] Read more.
Functional articular cartilage regeneration remains an unmet medical challenge, increasing the interest for innovative biomaterial-based tissue engineering (TE) strategies. Hydrogels, 3D macromolecular networks with hydrophilic groups, present articular cartilage-like features such as high water content and load-bearing capacity. In this study, 3D porous polyethylene glycol diacrylate (PEGDA) hydrogels were fabricated combining the gas foaming technique and a UV-based crosslinking strategy. The 3D porous PEGDA hydrogels were characterized in terms of their physical, structural and mechanical properties. Our results showed that the size of the hydrogel pores can be modulated by varying the initiator concentration. In vitro cytotoxicity tests showed that 3D porous PEGDA hydrogels presented high biocompatibility both with human chondrocytes and osteoblast-like cells. Importantly, the 3D porous PEGDA hydrogels supported the viability and chondrogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cell (hBM-MSC)-based spheroids as demonstrated by the positive staining of typical cartilage extracellular matrix (ECM) (glycosaminoglycans (GAGs)) and upregulation of chondrogenesis marker genes. Overall, the produced 3D porous PEGDA hydrogels presented cartilage-like mechanical properties and supported MSC spheroid chondrogenesis, highlighting their potential as suitable scaffolds for cartilage TE or disease modelling strategies. Full article
(This article belongs to the Special Issue Functional Gels Applied in Tissue Engineering)
Show Figures

Figure 1

13 pages, 4854 KiB  
Article
A Novel EWOD Platform for Freely Transporting Droplets in Double and Single-Plate Structures
by Yii-Nuoh Chang, Ting-Rui Huang and Da-Jeng Yao
Micromachines 2024, 15(6), 797; https://doi.org/10.3390/mi15060797 - 17 Jun 2024
Viewed by 4459
Abstract
This study developed a novel dielectric wetting microfluidic operation platform combining parallel-plate and coplanar-plate regions with a curved surface structure as the connection structure. With the new electrowetting on dielectric (EWOD) platform, “droplet pull-out” has been successfully achieved and viewed as an essential [...] Read more.
This study developed a novel dielectric wetting microfluidic operation platform combining parallel-plate and coplanar-plate regions with a curved surface structure as the connection structure. With the new electrowetting on dielectric (EWOD) platform, “droplet pull-out” has been successfully achieved and viewed as an essential new operation for microfluidics with the dielectric wetting technique. The EWOD system is divided into a PDMS substrate top plate and an indium tin oxide (ITO) glass substrate as a bottom layer on this chip. In the parallel-plate region, the droplets can be generated and transported through the square parallel electrodes; in the single-plate area, the droplets can be pulled out from the parallel structure, transported and mixed through the common grounded coplanar electrodes. In dielectric wetting performance testing, coplanar electrodes can apply a maximum driving force of 31.22 µN to DI water and 13.38 µN to propylene carbonate (PC). This driving force is sufficient to detach the sample from the top cover and pull the sub-droplet from the parallel plate structure for DI water, PC and polyethylene glycol diacrylate (PEGDA) buffer. The novel EWOD system also possesses the advantage of precise volume control for liquid samples; the volume error of the generated droplet can be controlled within 0.1% to 2%. Full article
Show Figures

Figure 1

Back to TopTop