Moisture and Surface Properties of Radically Photo-Grafted Poly-(Ethylene Terephthalate) Woven Fabric
Highlights
- The surface of a polyethylene terephthalate (PET) fabric was modified by using a fast photoinduced grafting process without affecting the aspect of the textile and the yarn size.
- The water wettability of the PET fabric was significantly improved; the water contact angle value diminished from 110° to 0°.
- The PET fabrics after the photografting treatment showed a good improvement in the dynamic moisture management. According to the AATCC Test Method 195-2011, wetting and absorption indices were improved.
- The surface treatment was durable and the modification was maintained after laundering, dry cleaning, and rubbing depending on the type of monomer used and its concentration.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Fabrics and Grafting Reagents
2.1.2. Dyeing Materials for PET
2.2. Methods
2.2.1. Fabric Preparation
2.2.2. UV-Radical Grafting
2.2.3. Dyeing
2.2.4. Fabric Characterization
3. Results
3.1. PET Wettability and Moisture Management by Photografting
3.2. Durability of UV-Grafting Treatment and Compatibility with Dying
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Fabric | L* | a* | b* | C* | h |
---|---|---|---|---|---|
PET | 40.52 | 51.53 | 8.53 | 53.22 | 9.22 |
PEGDA-g-PET 0.2% | 38.46 | 51.97 | 8.27 | 53.66 | 8.79 |
PEGDA-g-PET 1% | 37.64 | 52.21 | 7.77 | 53.79 | 8.46 |
METAC-g-PET 1% | 38.61 | 52.60 | 7.71 | 53.47 | 8.34 |
METAC-g-PET 5% | 37.77 | 52.32 | 6.64 | 54.76 | 7.35 |
Fabric | Hand/Appearance after Laundering | Hand/Appearance after Drycleaning | Color Fastness Dry/Wet Rubbing | Color Fastness Washing/Washing Staining |
---|---|---|---|---|
PET | B5/A5 | B5/A5 | 4/3.5 | 4/4 |
PEGDA-g-PET 0.2% | B5/A5 | B4/A4 | 4/3.5 | 4.5/4.5 |
PEGDA-g-PET 1% | B5/A5 | B5/A5 | 4.5/4 | 4.5/4.5 |
METAC-g-PET 1% | B5/A5 | B5/A5 | 4.5/4 | 4.5/4 |
METAC-g-PET 5% | B5/A5 | B5/A5 | 5/4.5 | 5/4.5 |
References
- The Fiber Year 2024. A World Survey on Textile and Nonwovens Industry. 2024. Available online: https://thefiberyear.com/ (accessed on 20 July 2024).
- Pastore, C.; Kiekens, P. (Eds.) Surface Characteristics of Polyester Fibers. In Surface Characteristics of Fibers and Textiles; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Li, Y.; Zhu, Q. Simultaneous Heat and Moisture Transfer with Moisture Sorption, Condensation, and Capillary Liquid Diffusion in Porous Textiles. Text. Res. J. 2003, 73, 515–524. [Google Scholar] [CrossRef]
- Kamalha, E.; Zeng, Y.; Mwasiagi, J.I.; Kyatuheire, S. The Comfort Dimension; a Review of Perception in Clothing. J. Sens. Stud. 2013, 28, 423–444. [Google Scholar] [CrossRef]
- Ullah, H.M.K.; Lejeune, J.; Cayla, A.; Monceaux, M.; Campagne, C.; Devaux, É. A review of noteworthy/major innovations in wearable clothing for thermal and moisture management from material to fabric structure. Text. Res. J. 2022, 92, 3351–3386. [Google Scholar] [CrossRef]
- Aoyama, M.; Tanaka, Y. History of Polyester Resin Development for Synthetic Fibers and Its Forefront. In High-Performance and Specialty Fibers: Concepts, Technology and Modern Applications of Man-Made Fibers for the Future; Springer: Tokyo, Japan, 2016; pp. 67–80. [Google Scholar]
- Sun, L.; Zhu, R.; Hu, H.; Yu, J.; Wang, X.; Huang, L.; Liu, X. Effect of the Sequence Distribution and Internal Structure on the Hydrophilicity of Poly(ethylene terephthalate-co-aliphatic amide) Copolymers. ACS Appl. Polym. Mater. 2022, 4, 6179–6191. [Google Scholar] [CrossRef]
- Yan, Y.; Gooneie, A.; Ye, H.; Deng, L.; Qiu, Z.; Reifler, F.A.; Hufenus, R. Morphology and Crystallization of Biobased Polyamide 56 Blended with Polyethylene Terephthalate. Macromol. Mater. Eng. 2018, 303, 1800214. [Google Scholar] [CrossRef]
- Zeronian, S.H.; Collins, M.J. Surface Modification of Polyester by Alkaline Treatments. Text. Prog. 1989, 20, 1–26. [Google Scholar] [CrossRef]
- Čorak, I.; Tarbuk, A.; Đorđević, D.; Višić, K.; Botteri, L. Sustainable Alkaline Hydrolysis of Polyester Fabric at Low Temperature. Materials 2022, 15, 1530. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Chaudhary, H.; Gupta, C. Topographical changes in polyester after chemical, physical and enzymatic hydrolysis. J. Text. Inst. 2015, 106, 690–698. [Google Scholar] [CrossRef]
- Elsaeed, S.M.; Farag, R.K. Synthesis and characterization of unsaturated polyesters based on the aminolysis of poly(ethylene terephthalate). J. Appl. Polym. Sci. 2009, 112, 3327–3336. [Google Scholar] [CrossRef]
- Fávaro, S.L.; Rubira, A.F.; Muniz, E.C.; Radovanovic, E. Surface modification of HDPE, PP, and PET films with KMnO4/HCl solutions. Polym. Degrad. Stab. 2007, 92, 1219–1226. [Google Scholar] [CrossRef]
- Tegegne, W.; Haile, A. Improving hydrophilicity and comfort characteristics of polyester/cotton blend fabric through lipase enzyme treatment. Clean Technol. Env. Policy 2024, 1–14. [Google Scholar] [CrossRef]
- Karaca, B.; Demir, A.; Özdoğan, E.; İşmal, Ö.E. Environmentally benign alternatives: Plasma and enzymes to improve moisture management properties of knitted PET fabrics. Fibers Polym. 2010, 11, 1003–1009. [Google Scholar] [CrossRef]
- Mowafi, S.; El-Sayed, H. A benign synergism of O2 plasma and protein biopolymer for improving some properties of polyester fabrics. J. Text. Inst. 2024, 1–13. [Google Scholar] [CrossRef]
- Owad, T.T.; Siddig, E.A.; Salih, R.E.; Zhang, Y.; Wang, C.; Xu, Y.; Zhang, J. Durable and recoverable hydrophilicity of polyethylene terephthalate fabric prepared with plasma selective etching. Surf. Interfaces 2022, 32, 102081. [Google Scholar] [CrossRef]
- Gabardo, R.S.; de Carvalho Cotre, D.S.; Lis Arias, M.J.; Moisés, M.P.; Martins Ferreira, B.T.; Samulewski, R.B.; Hinestroza, J.P.; Bezerra, F.M. Surface Modification of Polyester Fabrics by Ozone and Its Effect on Coloration Using Disperse Dyes. Materials 2021, 14, 3492. [Google Scholar] [CrossRef]
- Miyata, T.; Takeno, A.; Mishima, Y.; Takahashi, S. Surface Modification of Polyester Fiber Using Ozone Microbubbles. Kobunshi Ronbunshu 2016, 73, 341–346. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, F.; Zuo, J.; Xu, Y.; Li, Y.; Zhang, K. Toward a Sustainable Approach for Durably Hydrophilic and UV Protective PET Fabric through Surface Activation and Immobilization Integrating Epigallocatechin Gallate and Citric Acid. ACS Appl. Mater. Interfaces 2024, 16, 38576–38585. [Google Scholar] [CrossRef]
- Sadeghi, S.; Montazer, M.; Dadashian, F. Insights into the hexamine-assisted ZnO based-MOFs formation on PET fabric for improved self-cleaning, flame retardant, and hydrophilic properties. Prog. Org. Coat. 2024, 192, 108458. [Google Scholar] [CrossRef]
- Agarwal, R.; Jassal, M.; Agrawal, A.K. Nano surface modification of poly(ethylene terephthalate) fabrics for enhanced comfort properties for activewear. J. Ind. Eng. Chem. 2021, 98, 217–230. [Google Scholar] [CrossRef]
- Le, Y.; Yang, L.; Zhu, Y.; Yang, D.Q. Robust and repairable PET superwicking surfaces: A simple two-step fabrication approach for enhanced liquid transport. Surf. Interfaces 2024, 52, 104862. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, Y.; Wang, W.; Yu, D. Moisture absorption, perspiration and thermal conductive polyester fabric prepared by thiol–ene click chemistry with reduced graphene oxide finishing agent. J. Mater. Sci. 2018, 53, 14262–14273. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, F.; Wang, Y.; Ren, X.; Huang, T.S. Antibacterial and Hydrophilic Modification of PET Fabrics by Electron Beam Irradiation Process. Fibers Polym. 2020, 21, 1023–1031. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Vacche, S.D.; Vitale, A. Photoinduced Processes as a Way to Sustainable Polymers and Innovation in Polymeric Materials. Polymers 2021, 13, 2293. [Google Scholar] [CrossRef]
- Rånby, B. Photochemical modification of polymers—Photocrosslinking, surface photografting, and lamination. Polym. Eng. Sci. 1998, 38, 1229–1243. [Google Scholar] [CrossRef]
- Deng, J.; Wang, L.; Liu, L.; Yang, W. Developments and new applications of UV-induced surface graft polymerizations. Prog. Polym. Sci. 2009, 34, 156–193. [Google Scholar] [CrossRef]
- Ghamarpoor, R.; Jamshidi, M.; Sayyadian, M.; Razavizadeh, M. Chemical/photochemical functionalization of polyethylene terephthalate fabric: Effects on mechanical properties and bonding to nitrile rubber. Sci. Rep. 2023, 13, 14533. [Google Scholar] [CrossRef]
- Golshaei, P.; Güven, O. Chemical modification of PET surface and subsequent graft copolymerization with poly(N-isopropylacrylamide). React. Funct. Polym. 2017, 118, 26–34. [Google Scholar] [CrossRef]
- Liu, X.D.; Sheng, D.K.; Gao, X.M.; Li, T.B.; Yang, Y.M. UV-assisted surface modification of PET fiber for adhesion improvement. Appl. Surf. Sci. 2013, 264, 61–69. [Google Scholar] [CrossRef]
- Dai, X.; Yu, X.; Zheng, J.; Yang, X.; Pan, J.; Zhang, X.; Min, J. A kelp-inspired polyester fabric surface of UV grafted hydrogel for drag reduction. J. Appl. Polym. Sci. 2022, 139, 51634. [Google Scholar] [CrossRef]
- Xin-Cheng, X.; Xiao-Jing, Y.; Wen, H.; Zuo-Shen, L.; Xin-Long, L. Study on polyester fabric grafted with acrylic acid initiated by ultraviolet light. J. Phys. Conf. Ser. 2021, 2009, 012019. [Google Scholar] [CrossRef]
- Rui, W.; Wenqing, W.; Fanghe, W.; Anying, Z.; Xiuqin, Z.; Deyi, W. Construction of nano-multilayer coatings on copolyester fabrics using UV-grafting mediated layer-by-layer self-assembly for improved anti-droplet and flame retardent performance. Polym. Degrad. Stab. 2021, 183, 109405. [Google Scholar] [CrossRef]
- Khamala, E. Towards Replacement of Cotton Fiber with Polyester. Doctoral Thesis, Politecnico di Torino, Turin, Italy, 2018. [Google Scholar]
- Schanda, J. CIE Colorimetry. In Colorimetry: Understanding the CIE System; John Wiley & Sons: New York, NY, USA, 2007; pp. 25–78. [Google Scholar]
- Marmur, A. Soft contact: Measurement and interpretation of contact angles. Soft Matter. 2006, 2, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.B.; Calvimontes, A.; Synytska, A.; Dutschk, V. Effects of Topographic Structure on Wettability of Differently Woven Fabrics. Text. Res. J. 2008, 78, 996–1003. [Google Scholar] [CrossRef]
- Huhtamäki, T.; Tian, X.; Korhonen, J.T.; Ras, R.H.A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 2018, 13, 1521–1538. [Google Scholar] [CrossRef]
- Lee, M.; Lee, M.S.; Wakida, T.; Tokuyama, T.; Inoue, G.; Ishida, S.; Itazu, T.; Miyaji, Y. Chemical modification of nylon 6 and polyester fabrics by ozone-gas treatment. J. Appl. Polym. Sci. 2006, 100, 1344–1348. [Google Scholar] [CrossRef]
Water Drop Contact Time (s) | UV Irradiation Time (min) and WCA ± Standard Deviation | |||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | |
T0 | 110 ± 5 | 100 ± 3 | 100 ± 9 | 98 ± 4 | 90 ± 8 | 86 ± 6 |
T30 | 100 ± 8 | 97 ± 7 | 95 ± 7 | 89 ± 9 | 82 ± 9 | 84 ± 5 |
T60 | 95 ± 4 | 90 ± 5 | 89 ± 4 | 87 ± 8 | 71 ± 6 | 73 ± 9 |
T90 | 88 ± 5 | 89 ± 6 | 87 ± 7 | 86 ± 8 | 70 ± 8 | 70 ± 7 |
PEGDA Conc. (% v/v) | Add-on (%) | WCA at T0 | |
---|---|---|---|
5 | 2.7 | 0 | |
3 | 2.4 | 0 | |
2 | 1.6 | 0 | |
1 | 0.9 | 0 | |
0.5 | 0.9 | 0 | |
0.2 | 0.3 | 0 | |
0.1 | 0.2 | 0 | |
METAC conc. (% v/v) | Add-on (%) | WCA at T0 | WCA at T30 |
5 | 2.1 | 0 | 0 |
3 | 0.89 | 5 | 0 |
2 | 0.62 | 7 | 0 |
1 | 0.45 | 10 | 0 |
0.5 | 0.15 | 36 | 0 |
0.2 | 0.08 | 34 | 10 |
0.1 | 0.05 | 45 | 15 |
Fabric | TW (s) | BW (s) | TA (%/s) | BA (%/s) | TM (mm) | BM (mm) | TS (mm/s) | BS (mm/s) | AOT |
---|---|---|---|---|---|---|---|---|---|
PET | 3.5 | 120 | 29.2 | 0.0 | 5.0 | 0.0 | 1.4 | 0.0 | −834 |
PET irradiated 5 min | 2.5 | 120 | 40.9 | 0.0 | 5.0 | 0.0 | 1.8 | 0.0 | −893 |
PET irradiated 10 min | 2.9 | 120 | 41.3 | 0.0 | 5.0 | 0.0 | 1.6 | 0.0 | −828 |
PEGDA-g-PET 0.2% | 3.0 | 5.8 | 39.5 | 25.0 | 13.8 | 22.5 | 3.0 | 3.6 | −43.9 |
PEGDA-g-PET 1% | 2.6 | 2.3 | 46.5 | 37.3 | 17.5 | 27.5 | 4.5 | 6.5 | 214 |
METAC-g-PET 1% | 3.5 | 5.6 | 32.2 | 19.7 | 10.0 | 15.0 | 1.9 | 2.0 | −242 |
METAC-g-PET 5% | 3.0 | 4.5 | 36.7 | 23.8 | 15.0 | 17.0 | 2.3 | 2.1 | −136 |
PEGDA Conc. (% v/v) | After Washing | After Soxhlet Extraction | ||||
---|---|---|---|---|---|---|
WCA T0 | WCA T30 | WCA T0 | WCA T30 | WCA T60 | ||
5 | 0 | 0 | 31 | 0 | 0 | |
3 | 0 | 0 | 12 | 0 | 0 | |
2 | 0 | 0 | 19 | 0 | 0 | |
1 | 0 | 0 | 32 | 0 | 0 | |
0.5 | 5 | 0 | 28 | 0 | 0 | |
0.2 | 33 | 5 | 25 | 5 | 0 | |
0.1 | 43 | 0 | 64 | 21 | 0 | |
METAC conc. (% v/v) | after washing | after Soxhlet extraction | ||||
WCA T0 | WCA T30 | WCA T60 | WCA T0 | WCA T30 | WCA T60 | |
5 | 103 | 42 | 0 | 27 | 15 | 0 |
3 | 103 | 61 | 0 | 18 | 0 | 0 |
2 | 100 | 55 | 0 | 22 | 5 | 0 |
1 | 83 | 30 | 0 | 55 | 37 | 0 |
0.5 | 101 | 20 | 0 | 85 | 35 | 30 |
0.2 | 98 | 51 | 22 | 89 | 56 | 27 |
0.1 | 88 | 50 | 28 | 80 | 30 | 25 |
PEGDA Conc. (% v/v) | After Dry Rubbing | After Wet Rubbing | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WCA T0 | WCA T30 | WCA T0 | WCA T30 | |||||||
5 | 0 | 0 | 0 | 0 | ||||||
3 | 0 | 0 | 0 | 0 | ||||||
2 | 0 | 0 | 5 | 0 | ||||||
1 | 7 | 0 | 0 | 0 | ||||||
0.5 | 0 | 0 | 0 | 0 | ||||||
0.2 | 10 | 0 | 15 | 5 | ||||||
0.1 | 0 | 0 | 10 | 0 | ||||||
METAC conc. (% v/v) | after dry rubbing | after wet rubbing | ||||||||
WCA T0 | WCA T30 | WCA T60 | WCA T0 | WCA T30 | WCA T60 | |||||
5 | 0 | 0 | 0 | 5 | 0 | 0 | ||||
3 | 5 | 5 | 0 | 5 | 0 | 0 | ||||
2 | 7 | 0 | 0 | 11 | 0 | 0 | ||||
1 | 16 | 0 | 0 | 13 | 0 | 0 | ||||
0.5 | 41 | 20 | 0 | 31 | 5 | 0 | ||||
0.2 | 26 | 11 | 0 | 39 | 15 | 0 | ||||
0.1 | 30 | 15 | 0 | 45 | 25 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongiovanni, R.; Guan, J.; Ferri, A.; Vitale, A. Moisture and Surface Properties of Radically Photo-Grafted Poly-(Ethylene Terephthalate) Woven Fabric. Fibers 2024, 12, 90. https://doi.org/10.3390/fib12100090
Bongiovanni R, Guan J, Ferri A, Vitale A. Moisture and Surface Properties of Radically Photo-Grafted Poly-(Ethylene Terephthalate) Woven Fabric. Fibers. 2024; 12(10):90. https://doi.org/10.3390/fib12100090
Chicago/Turabian StyleBongiovanni, Roberta, Jinping Guan, Ada Ferri, and Alessandra Vitale. 2024. "Moisture and Surface Properties of Radically Photo-Grafted Poly-(Ethylene Terephthalate) Woven Fabric" Fibers 12, no. 10: 90. https://doi.org/10.3390/fib12100090
APA StyleBongiovanni, R., Guan, J., Ferri, A., & Vitale, A. (2024). Moisture and Surface Properties of Radically Photo-Grafted Poly-(Ethylene Terephthalate) Woven Fabric. Fibers, 12(10), 90. https://doi.org/10.3390/fib12100090