Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = polycarbonate-urethane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 512 KB  
Article
A Comparison Between Two Bearing Surfaces for Total Hip Arthroplasty—Ceramic-on-Ceramic and Metal–Polycarbonate–Urethane—A Pseudo-Randomized Study
by Daniel Donaire Hoyas, Eladio Jiménez Mejías, Jesús Moreta, Manuel Sumillera García, Alberto Albert Ullibarri and Jorge Albareda Albareda
J. Funct. Biomater. 2025, 16(10), 371; https://doi.org/10.3390/jfb16100371 - 1 Oct 2025
Viewed by 368
Abstract
Background: Polycarbonate–urethane (PCU) is a recently developed bearing surface used in prosthetic hip surgery. It offers several theoretical advantages, including an elasticity modulus similar to that of natural cartilage, good lubrication properties, low wear, and the possibility of using large heads. However, comparative [...] Read more.
Background: Polycarbonate–urethane (PCU) is a recently developed bearing surface used in prosthetic hip surgery. It offers several theoretical advantages, including an elasticity modulus similar to that of natural cartilage, good lubrication properties, low wear, and the possibility of using large heads. However, comparative clinical experience is limited. The purpose of this study was to analyze the results of the PCU bearing surface and compare them with those of ceramic-on-ceramic (CoC) bearings using the same femoral stem model. (2) Methods: Following a propensity score matching analysis of a prospectively collected database, patients with a primary total hip arthroplasty aged between 18 and 60 years were included. Subjects were divided into two groups (PCU and CoC). Demographic, patient satisfaction, and implant survival data were recorded. Clinical results were evaluated using the Harris Hip Score (HHS) and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). (3) Results: A total of 105 patients were included in each group. All patients exhibited a positive evolution on both the HHS and the WOMAC subscales between pre-op and one year post-op, no statistically significant differences being found between the groups with respect to improvement on the HHS (p = 0.172) or the pain (p = 0.523), stiffness (p = 0.448), and physical function (p = 0.255) subscales of the WOMAC. Head sizes in the PCU group were found to be larger, but this was not seen to have any effect on the patients’ clinical status or the prostheses’ dislocation rate. Although the complication rate was similar across the groups (p = 0.828), the incidence of squeaking was higher in the PCU group (p = 0.010). No differences were observed when comparing the implant survival rate (p = 0.427). nor in mean patient satisfaction (p = 0.138). (4) Conclusions: No differences were found in terms of clinical results, complications, implant survival, or patient satisfaction between the bearing surfaces under analysis, indicating that all of them are valid alternatives in total hip replacement, although the higher proportion of squeaking observed makes it advisable to exercise some caution. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

18 pages, 2880 KB  
Article
Novel Magnetically Charged Grafts for Vascular Repair: Process Optimization, Mechanical Characterization and In Vitro Validation
by Iriczalli Cruz-Maya, Roberto De Santis, Luciano Lanotte and Vincenzo Guarino
Polymers 2025, 17(13), 1877; https://doi.org/10.3390/polym17131877 - 5 Jul 2025
Viewed by 704
Abstract
In the last decade, magnetic nanoparticles (MNPs) have attracted much attention for the implementation of non-invasive approaches suitable for the diagnosis and treatment of vascular diseases. In this work, the optimization of novel vascular grafts loaded with Nickel-based nanoparticles via electrospinning is proposed. [...] Read more.
In the last decade, magnetic nanoparticles (MNPs) have attracted much attention for the implementation of non-invasive approaches suitable for the diagnosis and treatment of vascular diseases. In this work, the optimization of novel vascular grafts loaded with Nickel-based nanoparticles via electrospinning is proposed. Two different polycarbonate urethanes—i.e., Corethane A80 (COT) and Chronoflex AL80 (CHF)—were used to fabricate 3D electrospun nanocomposite grafts. SEM analysis showed a homogeneous distribution of fibers, with slight differences in terms of average diameters as a function of the polymer used—(1.14 ± 0.18) µm for COT, and (1.33 ± 0.23) µm for CHF—that tend to disappear in the presence of MNPs—(1.26 ± 0.19) µm and (1.26 ± 0.213) µm for COT/NPs and CHF/NPs, respectively. TGA analyses confirmed the higher ability of CHF to entrap MNPs in the fibers—18.25% with respect to 14.63% for COT—while DSC analyses suggested an effect of MNPs on short-range rearrangements of hard/soft micro-domains of CHF. Accordingly, mechanical tests confirmed a decay of mechanical strength in the presence of MNPs with some differences depending on the matrix—from (6.16 ± 0.33) MPa to (4.55 ± 0.2) MPa (COT), and from (3.67 ± 0.18) MPa to (2.97 ± 0.22) MPa (CNF). The in vitro response revealed that the presence of MNPs did not negatively affect cell viability after 7 days in in vitro culture, suggesting a promising use of these materials as smart vascular grafts able to support the actuation function of vessel wall muscles. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 4287 KB  
Article
Influence of the Molecular Weight of the Polycarbonate Polyol on the Intrinsic Self-Healing at 20 °C of Polyurethanes
by Yuliet Paez-Amieva and José Miguel Martín-Martínez
Polymers 2024, 16(19), 2724; https://doi.org/10.3390/polym16192724 - 26 Sep 2024
Cited by 4 | Viewed by 1600
Abstract
Different polyurethanes (PUs) were synthesized with polycarbonate polyols of molecular weights of 500, 1000, and 2000 Da. Their self-healing abilities at 20 °C were tested, and their structural, thermal, and mechanical properties were analyzed. The PUs made with polycarbonates of molecular weights 500 [...] Read more.
Different polyurethanes (PUs) were synthesized with polycarbonate polyols of molecular weights of 500, 1000, and 2000 Da. Their self-healing abilities at 20 °C were tested, and their structural, thermal, and mechanical properties were analyzed. The PUs made with polycarbonates of molecular weights 500 (YC500) and 1000 Da (YC1000) exhibited self-healing at 20 °C, and the self-healing time of YC1000 was the shortest. The absence of crystallinity and the low degree of micro-phase separation favored self-healing at 20 °C in YC500. However, the presence of tack and the existence of allophanate species and urethane–carbonate and urea–carbonate hydrogen bonds disfavored self-healing. Consequently, the self-healing time at 20 °C of YC500 was longer than expected. On the other hand, YC1000 exhibited an “equilibrium” between urethane-carbonate and urea–carbonate hydrogen bonds and carbonate–carbonate interactions among the soft segments, so a particular structural order was produced that was associated with its fastest self-healing at 20 °C. The PU made with the polycarbonate of molecular weight 2000 Da did not exhibit self-healing at 20 °C because of its significant micro-phase separation, the presence of semi-crystalline soft domains, and the lower density of hydrogen bonds. Full article
Show Figures

Figure 1

16 pages, 4293 KB  
Article
Hybrid Materials for Vascular Applications: A Preliminary In Vitro Assessment
by Martina Todesco, Martina Casarin, Deborah Sandrin, Laura Astolfi, Filippo Romanato, Germana Giuggioli, Fabio Conte, Gino Gerosa, Chiara Giulia Fontanella and Andrea Bagno
Bioengineering 2024, 11(5), 436; https://doi.org/10.3390/bioengineering11050436 - 28 Apr 2024
Cited by 1 | Viewed by 1951
Abstract
The production of biomedical devices able to appropriately interact with the biological environment is still a great challenge. Synthetic materials are often employed, but they fail to replicate the biological and functional properties of native tissues, leading to a variety of adverse effects. [...] Read more.
The production of biomedical devices able to appropriately interact with the biological environment is still a great challenge. Synthetic materials are often employed, but they fail to replicate the biological and functional properties of native tissues, leading to a variety of adverse effects. Several commercial products are based on chemically treated xenogeneic tissues: their principal drawback is due to weak mechanical stability and low durability. Recently, decellularization has been proposed to bypass the drawbacks of both synthetic and biological materials. Acellular materials can integrate with host tissues avoiding/mitigating any foreign body response, but they often lack sufficient patency and impermeability. The present paper investigates an innovative approach to the realization of hybrid materials that combine decellularized bovine pericardium with polycarbonate urethanes. These hybrid materials benefit from the superior biocompatibility of the biological tissue and the mechanical properties of the synthetic polymers. They were assessed from physicochemical, structural, mechanical, and biological points of view; their ability to promote cell growth was also investigated. The decellularized pericardium and the polymer appeared to well adhere to each other, and the two sides were distinguishable. The maximum elongation of hybrid materials was mainly affected by the pericardium, which allows for lower elongation than the polymer; this latter, in turn, influenced the maximum strength achieved. The results confirmed the promising features of hybrid materials for the production of vascular grafts able to be repopulated by circulating cells, thus, improving blood compatibility. Full article
Show Figures

Graphical abstract

13 pages, 4442 KB  
Article
Bio-Inspired Fiber Reinforcement for Aortic Valves: Scaffold Production Process and Characterization
by Christian A. Boehm, Christine Donay, Andreas Lubig, Stephan Ruetten, Mahmoud Sesa, Alicia Fernández-Colino, Stefanie Reese and Stefan Jockenhoevel
Bioengineering 2023, 10(9), 1064; https://doi.org/10.3390/bioengineering10091064 - 9 Sep 2023
Cited by 6 | Viewed by 2168
Abstract
The application of tissue-engineered heart valves in the high-pressure circulatory system is still challenging. One possible solution is the development of biohybrid scaffolds with textile reinforcement to achieve improved mechanical properties. In this article, we present a manufacturing process of bio-inspired fiber reinforcement [...] Read more.
The application of tissue-engineered heart valves in the high-pressure circulatory system is still challenging. One possible solution is the development of biohybrid scaffolds with textile reinforcement to achieve improved mechanical properties. In this article, we present a manufacturing process of bio-inspired fiber reinforcement for an aortic valve scaffold. The reinforcement structure consists of polyvinylidene difluoride monofilament fibers that are biomimetically arranged by a novel winding process. The fibers were embedded and fixated into electrospun polycarbonate urethane on a cylindrical collector. The scaffold was characterized by biaxial tensile strength, bending stiffness, burst pressure and hemodynamically in a mock circulation system. The produced fiber-reinforced scaffold showed adequate acute mechanical and hemodynamic properties. The transvalvular pressure gradient was 3.02 ± 0.26 mmHg with an effective orifice area of 2.12 ± 0.22 cm2. The valves sustained aortic conditions, fulfilling the ISO-5840 standards. The fiber-reinforced scaffold failed in a circumferential direction at a stress of 461.64 ± 58.87 N/m and a strain of 49.43 ± 7.53%. These values were above the levels of tested native heart valve tissue. Overall, we demonstrated a novel manufacturing approach to develop a fiber-reinforced biomimetic scaffold for aortic heart valve tissue engineering. The characterization showed that this approach is promising for an in situ valve replacement. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

26 pages, 10944 KB  
Article
Morphology, Micromechanical, and Macromechanical Properties of Novel Waterborne Poly(urethane-urea)/Silica Nanocomposites
by Veronika Gajdošová, Milena Špírková, Yareni Aguilar Costumbre, Sabina Krejčíková, Beata Strachota, Miroslav Šlouf and Adam Strachota
Materials 2023, 16(5), 1767; https://doi.org/10.3390/ma16051767 - 21 Feb 2023
Cited by 4 | Viewed by 2696
Abstract
Morphology, macro-, and micromechanical properties of novel poly(urethane-urea)/silica nanocomposites were analyzed by electron microscopy, dynamic mechanical thermal analysis, and microindentation. The studied nanocomposites were based on a poly(urethane-urea) (PUU) matrix filled by nanosilica, and were prepared from waterborne dispersions of PUU (latex) and [...] Read more.
Morphology, macro-, and micromechanical properties of novel poly(urethane-urea)/silica nanocomposites were analyzed by electron microscopy, dynamic mechanical thermal analysis, and microindentation. The studied nanocomposites were based on a poly(urethane-urea) (PUU) matrix filled by nanosilica, and were prepared from waterborne dispersions of PUU (latex) and SiO2. The loading of nano-SiO2 was varied between 0 (neat matrix) and 40 wt% in the dry nanocomposite. The prepared materials were all formally in the rubbery state at room temperature, but they displayed complex elastoviscoplastic behavior, spanning from stiffer elastomeric type to semi-glassy. Because of the employed rigid and highly uniform spherical nanofiller, the materials are of great interest for model microindentation studies. Additionally, because of the polycarbonate-type elastic chains of the PUU matrix, hydrogen bonding in the studied nanocomposites was expected to be rich and diverse, ranging from very strong to weak. In micro- and macromechanical tests, all the elasticity-related properties correlated very strongly. The relations among the properties that related to energy dissipation were complex, and were highly affected by the existence of hydrogen bonding of broadly varied strength, by the distribution patterns of the fine nanofiller, as well as by the eventual locally endured larger deformations during the tests, and the tendency of the materials to cold flow. Full article
Show Figures

Graphical abstract

10 pages, 1380 KB  
Article
Magnetic Response of Nano/Microparticles into Elastomeric Electrospun Fibers
by Vincenzo Iannotti, Giovanni Ausanio, Anna M. Ferretti, Zaheer Ud Din Babar, Vincenzo Guarino, Luigi Ambrosio and Luciano Lanotte
J. Funct. Biomater. 2023, 14(2), 78; https://doi.org/10.3390/jfb14020078 - 29 Jan 2023
Cited by 5 | Viewed by 2441
Abstract
Combining magnetic nanoparticles (MNPs) with high-voltage processes to produce ultra-thin magnetic nanofibers (MNFs) fosters the development of next-generation technologies. In this study, polycarbonate urethane nanofibers incorporating magnetic particles were produced via the electrospinning technique. Two distinct types of magnetic payload were used: (a) [...] Read more.
Combining magnetic nanoparticles (MNPs) with high-voltage processes to produce ultra-thin magnetic nanofibers (MNFs) fosters the development of next-generation technologies. In this study, polycarbonate urethane nanofibers incorporating magnetic particles were produced via the electrospinning technique. Two distinct types of magnetic payload were used: (a) iron oxide nanoparticles (IONPs) with an average size and polydispersity index of 7.2 nm and 3.3%, respectively; (b) nickel particles (NiPs) exhibiting a bimodal size distribution with average sizes of 129 nanometers and 600 nanometers, respectively, and corresponding polydispersity indexes of 27.8% and 3.9%. Due to varying particle sizes, significant differences were observed in their aggregation and distribution within the nanofibers. Further, the magnetic response of the IONP and/or NiP-loaded fiber mats was consistent with their morphology and polydispersity index. In the case of IONPs, the remanence ratio (Mr/Ms) and the coercive field (Hc) were found to be zero, which agrees with their superparamagnetic behavior when the average size is smaller than 20–30 nm. However, the NiPs show Mr/Ms = 22% with a coercive field of 0.2kOe as expected for particles in a single or pseudo-single domain state interacting with each other via dipolar interaction. We conclude that magnetic properties can be modulated by controlling the average size and polydispersity index of the magnetic particles embedded in fiber mats to design magneto-active systems suitable for different applications (i.e., wound healing and drug delivery). Full article
(This article belongs to the Special Issue State-of-the-Art Functional Biomaterials in Italy)
Show Figures

Figure 1

11 pages, 1645 KB  
Article
Comparison of the Optimal Design of Spinal Hybrid Elastic Rod for Dynamic Stabilization: A Finite Element Analysis
by Jui-Yang Hsieh, Chen-Sheng Chen, Shao-Ming Chuang, Jyh-Horng Wang, Po-Quang Chen and Yi-You Huang
Appl. Sci. 2022, 12(22), 11759; https://doi.org/10.3390/app122211759 - 19 Nov 2022
Cited by 2 | Viewed by 2132
Abstract
The spinal hybrid elastic (SHE) rod is a semi-rigid pedicle screw-based rod for spinal dynamic stabilization. This study investigated the biomechanical effects of different ratios of SHE rod using finite element analysis (FEA). A three-dimensional nonlinear FEA of an intact lumbar spine model [...] Read more.
The spinal hybrid elastic (SHE) rod is a semi-rigid pedicle screw-based rod for spinal dynamic stabilization. This study investigated the biomechanical effects of different ratios of SHE rod using finite element analysis (FEA). A three-dimensional nonlinear FEA of an intact lumbar spine model (INT) was constructed. The SHE rod was composed of an inner nitinol stick (NS) and an outer polycarbonate urethane shell (PS). Four groups implanted at L3–L4 had the same outer diameter (5.5 mm) but different NS diameter/PS thickness ratios: Nt45, Nt35, Nt25, and Nt15. The resultant intervertebral range of motion (ROM), disc stress, facet joint contact force, screw stress, NS stress, and PCU stress were analyzed. The results indicated that ROM, disc stress, and facet force decreased moderately in the implanted L3–L4 levels and increased slightly in the adjacent L2–L3 levels. The NS stress and NS diameter trended towards inverse proportionality. Changing the ratio did not markedly influence screw or PS stress. The SHE rod system with elastic NS and insulated PS has a 5.5 mm diameter for universal pedicle screws. The SHE rod system provides sufficient spinal support and increases gentle adjacent segment stress. Considering the durability, the optimal NS diameter/PS thickness ratio of the SHE rod system is 3.5/2.0 mm. Full article
Show Figures

Figure 1

19 pages, 6854 KB  
Article
A Novel Hybrid Membrane for Urinary Conduit Substitutes Based on Small Intestinal Submucosa Coupled with Two Synthetic Polymers
by Martina Casarin, Martina Todesco, Deborah Sandrin, Filippo Romanato, Andrea Bagno, Alessandro Morlacco and Fabrizio Dal Moro
J. Funct. Biomater. 2022, 13(4), 222; https://doi.org/10.3390/jfb13040222 - 5 Nov 2022
Cited by 6 | Viewed by 3198
Abstract
Among the urinary tract’s malignancies, bladder cancer is the most frequent one: it is at the tenth position of most common cancers worldwide. Currently, the gold standard therapy consists of radical cystectomy, which results in the need to create a urinary diversion using [...] Read more.
Among the urinary tract’s malignancies, bladder cancer is the most frequent one: it is at the tenth position of most common cancers worldwide. Currently, the gold standard therapy consists of radical cystectomy, which results in the need to create a urinary diversion using a bowel segment from the patient. Nevertheless, due to several complications associated with bowel resection and anastomosis, which significantly affect patient quality of life, it is becoming extremely important to find an alternative solution. In our recent work, we proposed the decellularized porcine small intestinal submucosa (SIS) as a candidate material for urinary conduit substitution. In the present study, we create SIS-based hybrid membranes that are obtained by coupling decellularized SIS with two commercially available polycarbonate urethanes (Chronoflex AR and Chronoflex AR-LT) to improve SIS mechanical resistance and impermeability. We evaluated the hybrid membranes by means of immunofluorescence, two-photon microscopy, FTIR analysis, and mechanical and cytocompatibility tests. The realization of hybrid membranes did not deteriorate SIS composition, but the presence of polymers ameliorates the mechanical behavior of the hybrid constructs. Moreover, the cytocompatibility tests demonstrated a significant increase in cell growth compared to decellularized SIS alone. In light of the present results, the hybrid membrane-based urinary conduit can be a suitable candidate to realize a urinary diversion in place of an autologous intestinal segment. Further efforts will be performed in order to create a cylindrical-shaped hybrid membrane and to study its hydraulic behavior. Full article
(This article belongs to the Special Issue Biocompatibility of Functional Biomaterials)
Show Figures

Graphical abstract

17 pages, 3475 KB  
Article
Non-Isocyanate Aliphatic–Aromatic Poly(carbonate-urethane)s—An Insight into Transurethanization Reactions and Structure–Property Relationships
by Dominik Wołosz
Int. J. Mol. Sci. 2022, 23(19), 10999; https://doi.org/10.3390/ijms231910999 - 20 Sep 2022
Cited by 8 | Viewed by 2959
Abstract
This study reveals insights into the transurethanization reactions leading to the aliphatic–aromatic non-isocyanate poly(carbonate-urethane)s (NIPCUs) and their structure–property relationships. The crucial impact of the alkyl chain length in 4,4′-diphenylmethylene bis(hydroxyalkyl carbamate) (BHAC) on the process of transurethanization reactions was proved. The strong susceptibility [...] Read more.
This study reveals insights into the transurethanization reactions leading to the aliphatic–aromatic non-isocyanate poly(carbonate-urethane)s (NIPCUs) and their structure–property relationships. The crucial impact of the alkyl chain length in 4,4′-diphenylmethylene bis(hydroxyalkyl carbamate) (BHAC) on the process of transurethanization reactions was proved. The strong susceptibility of hydroxyethyl- and hydroxybutyl carbamate moieties to the back-biting side reactions was observed due to the formation of thermodynamically stable cyclic products and urea bonds in the BHACs and NIPCUs. When longer alkyl chains (hydroxypentyl-, hydroxyhexyl-, or hydroxydecyl carbamate) were introduced into the BHAC structure, it was not prone to the back-biting side reaction. Both 1H and 13C NMR, as well as FT-IR spectroscopies, confirmed the presence of carbonate and urethane (and urea for some of the samples) bonds in the NIPCUs, as well as proved the lack of allophanate and ether groups. The increase in the alkyl chain length (from 5 to 10 carbon atoms) between urethane groups in the NIPCU hard segments resulted in the increase in the elongation at break and crystalline phase content, as well as the decrease in the Tg, tensile strength, and hardness. Moreover, the obtained NIPCUs exhibited exceptional mechanical properties (e.g., tensile strength of 40 MPa and elongation at break of 130%). Full article
(This article belongs to the Special Issue Polymers from Renewable Resources 2.0)
Show Figures

Graphical abstract

20 pages, 2979 KB  
Article
Synthesis and Characterization of New Polycarbonate-Based Poly(thiourethane-urethane)s
by Andrzej Puszka and Janusz W. Sikora
Polymers 2022, 14(14), 2933; https://doi.org/10.3390/polym14142933 - 20 Jul 2022
Cited by 14 | Viewed by 4068
Abstract
The new segmented poly(thiourethane-urethane)s (PTURs) based on 1,1′-methanediylbis(4-isocyanatocyclohexane) (HMDI, Desmodur W®), polycarbonate diol (PCD, Desmophen C2200) and (methanediyldibenzene-4,1-diyl)dimethanethiol were synthesized by one-step melt polyaddition method. The obtained PTURs, with a content of 30–60 wt% of the hard segments (HS), were [...] Read more.
The new segmented poly(thiourethane-urethane)s (PTURs) based on 1,1′-methanediylbis(4-isocyanatocyclohexane) (HMDI, Desmodur W®), polycarbonate diol (PCD, Desmophen C2200) and (methanediyldibenzene-4,1-diyl)dimethanethiol were synthesized by one-step melt polyaddition method. The obtained PTURs, with a content of 30–60 wt% of the hard segments (HS), were tested in which the influence of changes in the HS content on their properties was determined. The polymers were characterized by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), thermal analysis (DSC, TGA) and thermomechanical analysis (DMTA). Additionally, tensile strength, optical (refractive index, UV-VIS and color) and surface properties of the obtained polymers (contact angle and surface free energy) and adhesion to copper were examined. FTIR analysis verified the supposed structure of the polymers obtained and showed a complete conversion of the isocyanate groups. TGA analysis confirmed the relatively good thermal stability of the polymers. On the other hand, after performing the DSC analysis, it was possible to state that the obtained materials were partially or completely amorphous, and the microphase separation decreased with increasing HS content in the polymer. Similar observations were made from the DMTA data. In addition, the hardness, tensile strength, modulus of elasticity, storage modulus, adhesion to copper, refractive index and total free surface energy increased with increasing HS content in the polymer. Full article
(This article belongs to the Special Issue Synthesis, Processing, Structure and Properties of Polymer Materials)
Show Figures

Figure 1

13 pages, 4503 KB  
Article
Synthesis of Poly(Trimethylene Carbonate) from Amine Group Initiation: Role of Urethane Bonds in the Crystallinity
by Thomas Brossier, Gael Volpi, Vincent Lapinte and Sebastien Blanquer
Polymers 2021, 13(2), 280; https://doi.org/10.3390/polym13020280 - 16 Jan 2021
Cited by 10 | Viewed by 4533
Abstract
Semi-crystalline poly(trimethylene carbonate) (PTMC) can be efficiently prepared by ring-opening polymerization (ROP) initiated by amine using various catalysts. More promising results were reached with the one-step process of stannous octanoate unlike the two-step one-pot reaction using TBD and MSA catalysts. The ROP-amine of [...] Read more.
Semi-crystalline poly(trimethylene carbonate) (PTMC) can be efficiently prepared by ring-opening polymerization (ROP) initiated by amine using various catalysts. More promising results were reached with the one-step process of stannous octanoate unlike the two-step one-pot reaction using TBD and MSA catalysts. The ROP-amine of TMC consists in a simple isocyanate free process to produce polycarbonate-urethanes, compatible with the large availability of amines ranging from mono- to multifunctional until natural amino acids. ROP-amine of TMC leads to urethane bonds monitored by FTIR spectroscopy. The relationship between the nature of amines and the crystallinity of PTMC was discussed through X-ray diffraction and thermal studies by DSC and TGA. The impact of the crystallinity was also demonstrated on the mechanical properties of semi-crystalline PTMC in comparison to amorphous PTMC, synthesized by ROP initiated by alcohol. The semi-crystalline PTMC synthesized by ROP-amine opens many perspectives. Full article
Show Figures

Figure 1

12 pages, 7817 KB  
Article
Preliminary Computational Analysis of Three Configurations for an Innovative Ventricular Chamber
by Valentina Candela, Martina Todesco, Alberto Visentin, Giovanni Meneghetti, Assunta Fabozzo, Gino Gerosa and Andrea Bagno
Processes 2020, 8(11), 1358; https://doi.org/10.3390/pr8111358 - 27 Oct 2020
Cited by 2 | Viewed by 2874
Abstract
(1) Background: shape, dimension, hemodynamics, and hemocompatibility are just a few of the several challenging key points that must be addressed in designing any suitable solution for the ventricular chamber of mechanical circulatory support devices. A preliminary evaluation of different geometries of bellow-like [...] Read more.
(1) Background: shape, dimension, hemodynamics, and hemocompatibility are just a few of the several challenging key points that must be addressed in designing any suitable solution for the ventricular chamber of mechanical circulatory support devices. A preliminary evaluation of different geometries of bellow-like ventricular chambers is herein proposed. The chambers were made with a polycarbonate urethane that is acknowledged to be a hemocompatible polymer. (2) Methods: an explicit dynamic computational analysis was performed. The actuation of the three chambers was simulated without the presence of an internal fluid. Maximum stress and strain values were identified, as well as the most critical regions. Geometric changes were checked during simulated motion to verify that the dimensional constraints were satisfied. (3) Results: one chamber appeared to be the best solution compared to the others, since its dimensional variations were negligible, and effective stresses and strains did not reach critical values. (4) Conclusions: the identification of the best geometric solution will allow proceeding with further experimental studies. Fluid–structure interactions and fatigue analyses were investigated. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Graphical abstract

19 pages, 5079 KB  
Article
The Influence of Nanofiller Shape and Nature on the Functional Properties of Waterborne Poly(urethane-urea) Nanocomposite Films
by Milena Špírková, Jiří Hodan, Rafał Konefał, Luďka Machová, Pavel Němeček and Aleksandra Paruzel
Polymers 2020, 12(9), 2001; https://doi.org/10.3390/polym12092001 - 2 Sep 2020
Cited by 5 | Viewed by 3444
Abstract
A series of waterborne polycarbonate-based poly(urethane-urea) nanocomposite films were prepared and characterized. An isocyanate excess of 30 mol% with respect to the hydroxyl groups was used in the procedure, omitting the chain-extension step of the acetone process in the dispersion preparation. The individual [...] Read more.
A series of waterborne polycarbonate-based poly(urethane-urea) nanocomposite films were prepared and characterized. An isocyanate excess of 30 mol% with respect to the hydroxyl groups was used in the procedure, omitting the chain-extension step of the acetone process in the dispersion preparation. The individual steps of the synthesis of the poly(urethane-urea) matrix were followed by nuclear magnetic resonance (NMR) spectroscopy. The nanofillers (1 wt% in the final nanocomposite) differed in nature and shape. Starch, graphene oxide and nanocellulose were used as representatives of organic nanofillers, while halloysite, montmorillonite, nanosilica and hydroxyapatite were used as representatives of inorganic nanofillers. Moreover, the fillers differed in their shape and average particle size. The films were characterized by a set of methods to obtain the tensile, thermal and surface properties of the nanocomposites as well as the internal arrangement of the nanoparticles in the nanocomposite film. The degradation process was evaluated at 37 °C in a H2O2 + CoCl2 solution. Full article
(This article belongs to the Special Issue Polymer Connect: Polymer Science and Composite Materials)
Show Figures

Graphical abstract

16 pages, 3123 KB  
Article
Functional Characteristics and Mechanical Performance of PCU Composites for Knee Meniscus Replacement
by Adijat Omowumi Inyang and Christopher Leonard Vaughan
Materials 2020, 13(8), 1886; https://doi.org/10.3390/ma13081886 - 17 Apr 2020
Cited by 27 | Viewed by 4266
Abstract
The potential use of fiber-reinforced based polycarbonate-urethanes (PCUs) as candidate meniscal substitutes was investigated in this study. Mechanical test pieces were designed and fabricated using a compression molding technique. Ultra-High Molecular Weight Polyethylene (UHMWPE) fibers were impregnated into PCU matrices, and their mechanical [...] Read more.
The potential use of fiber-reinforced based polycarbonate-urethanes (PCUs) as candidate meniscal substitutes was investigated in this study. Mechanical test pieces were designed and fabricated using a compression molding technique. Ultra-High Molecular Weight Polyethylene (UHMWPE) fibers were impregnated into PCU matrices, and their mechanical and microstructural properties evaluated. In particular, the tensile moduli of the PCUs were found unsuitable, since they were comparatively lower than that of the meniscus, and may not be able to replicate the inherent role of the meniscus effectively. However, the inclusion of fibers produced a substantial increment in the tensile modulus, to a value within a close range measured for meniscus tissues. Increments of up to 227% were calculated with a PCU fiber reinforcement composite. The embedded fibers in the PCU composites enhanced the fracture mechanisms by preventing the brittle failure and plastic deformation exhibited in fractured PCUs. The behavior of the composites in compression varied with respect to the PCU matrix materials. The mechanical characteristics demonstrated by the developed PCU composites suggest that fiber reinforcements have a considerable potential to duplicate the distinct and multifaceted biomechanical roles of the meniscus. Full article
Show Figures

Graphical abstract

Back to TopTop