Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = poly-dimethyl siloxane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1249 KiB  
Article
Interface Properties and Droplet Spectra as a Function of Adjuvants and Spray Nozzles
by Caroline Lemes da Silva, João Paulo Arantes Rodrigues da Cunha, Cleyton Batista de Alvarenga and Renan Zampiroli
AgriEngineering 2025, 7(4), 116; https://doi.org/10.3390/agriengineering7040116 - 10 Apr 2025
Viewed by 591
Abstract
The process of droplet formation during spraying is influenced by several factors, including the nozzle type and the use of adjuvants. This study aimed to investigate the effect of adding adjuvants to spray solutions using different nozzles, with a focus on droplet spectra, [...] Read more.
The process of droplet formation during spraying is influenced by several factors, including the nozzle type and the use of adjuvants. This study aimed to investigate the effect of adding adjuvants to spray solutions using different nozzles, with a focus on droplet spectra, and to examine the impact of the contact angle and the surface tension on this process. The surface tension and contact angle were evaluated using a droplet shape analyzer. The experiment was conducted in a completely randomized design (CRD) using four treatment solutions: water alone and water mixed with three different types of adjuvants, including fatty acid esters (vegetable oil-based), polyether–polymethyl, and polydimethyl-siloxane. The droplet spectra (volume median diameter, relative amplitude, and droplets smaller than 100 µm) were assessed using a particle size analyzer. A CRD with a 4 × 2 factorial scheme was used to assess the effects of the four treatment solutions and two flat-fan nozzles (ULD 120-02 with air induction and LD 110-02 without air induction technology). The polyether–polymethyl considerably reduced the contact angle and surface tension (226% and 180%, respectively, in relation to water). However, it did not homogenize the droplet spectra or reduce the drift risk. The vegetable oil-based adjuvant increased the droplet size when the standard flat-fan nozzle was used. No significant correlation was found between the surface tension and contact angle regarding the droplet spectra parameters. The effect of adjuvants on the droplet spectra was found to be dependent on the nozzle type, which prevents generalizations about the implications of their use. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

18 pages, 6054 KiB  
Article
Revealing Long-Range Order in Brush-like Graft Copolymers Through In Situ Measurements of X-Ray Scattering During Deformation
by Akmal Z. Umarov, Evgeniia A. Nikitina, Alexey A. Piryazev, Ioannis Moutsios, Martin Rosenthal, Andrey O. Kurbatov, Yulia D. Gordievskaya, Elena Yu. Kramarenko, Erfan Dashtimoghadam, Mitchell R. Maw, Sergei S. Sheiko and Dimitri A. Ivanov
Polymers 2024, 16(23), 3309; https://doi.org/10.3390/polym16233309 - 27 Nov 2024
Viewed by 1062
Abstract
Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this [...] Read more.
Brush-like graft copolymers (A-g-B), in which linear A-blocks are randomly grafted onto the backbone of a brush-like B-block, exhibit intense strain-stiffening and high mechanical strength on par with load-bearing biological tissues such as skin and blood vessels. To elucidate molecular mechanisms underlying this tissue-mimetic behavior, in situ synchrotron X-ray scattering was measured during uniaxial stretching of bottlebrush- and comb-like graft copolymers with varying densities of poly(dimethyl siloxane) and poly(isobutylene) side chains. In an undeformed state, these copolymers revealed a single interference peak corresponding to the average spacing between the domains of linear A-blocks arranged in a disordered, liquid-like configuration. Under uniaxial stretching, the emergence of a distinct four-spot pattern in the small-angle region indicated the development of long-range order within the material. According to the affine deformation of a cubic lattice, the four-spot pattern’s interference maxima correspond to 110 reflections upon stretching along the [111] axis of the body-centered unit cell. The experimental findings were corroborated by computer simulations of dissipative particle dynamics that confirmed the formation of a bcc domain structure. Full article
(This article belongs to the Collection Progress in Polymer Applications)
Show Figures

Graphical abstract

15 pages, 5085 KiB  
Article
Pentadecanoic Acid-Releasing PDMS: Towards a New Material to Prevent S. epidermidis Biofilm Formation
by Caterina D'Angelo, Serena Faggiano, Paola Imbimbo, Elisabetta Viale, Angela Casillo, Stefano Bettati, Diana Olimpo, Maria Luisa Tutino, Daria Maria Monti, Maria Michela Corsaro, Luca Ronda and Ermenegilda Parrilli
Int. J. Mol. Sci. 2024, 25(19), 10727; https://doi.org/10.3390/ijms251910727 - 5 Oct 2024
Viewed by 1289
Abstract
Microbial biofilm formation on medical devices paves the way for device-associated infections. Staphylococcus epidermidis is one of the most common strains involved in such infections as it is able to colonize numerous devices, such as intravenous catheters, prosthetic joints, and heart valves. We [...] Read more.
Microbial biofilm formation on medical devices paves the way for device-associated infections. Staphylococcus epidermidis is one of the most common strains involved in such infections as it is able to colonize numerous devices, such as intravenous catheters, prosthetic joints, and heart valves. We previously reported the antibiofilm activity against S. epidermidis of pentadecanoic acid (PDA) deposited by drop-casting on the silicon-based polymer poly(dimethyl)siloxane (PDMS). This material exerted an antibiofilm activity by releasing PDA; however, a toxic effect on bacterial cells was observed, which could potentially favor the emergence of resistant strains. To develop a PDA-functionalized material for medical use and overcome the problem of toxicity, we produced PDA-doped PDMS by either spray-coating or PDA incorporation during PDMS polymerization. Furthermore, we created a strategy to assess the kinetics of PDA release using ADIFAB, a very sensitive free fatty acids fluorescent probe. Spray-coating resulted in the most promising strategy as the concentration of released PDA was in the range 0.8–1.5 μM over 21 days, ensuring long-term effectiveness of the antibiofilm molecule. Moreover, the new coated material resulted biocompatible when tested on immortalized human keratinocytes. Our results indicate that PDA spray-coated PDMS is a promising material for the production of medical devices endowed with antibiofilm activity. Full article
Show Figures

Figure 1

31 pages, 4116 KiB  
Article
Proposal for a New Method for Evaluating Polymer-Modified Bitumen Fatigue and Self-Restoration Performances Considering the Whole Damage Characteristic Curve
by Songtao Lv, Dongdong Ge, Shihao Cao, Dingyuan Liu, Wenhui Zhang, Cheng-Hui Li and Milkos Borges Cabrera
Polymers 2024, 16(19), 2782; https://doi.org/10.3390/polym16192782 - 30 Sep 2024
Viewed by 1155
Abstract
Fatigue performance and self-repairing activity of asphalt binders are two properties that highly influence the fatigue cracking response of asphalt pavement. There are still numerous gaps in knowledge to fill linked with these two characteristics. For instance, current parameters fail to accommodate these [...] Read more.
Fatigue performance and self-repairing activity of asphalt binders are two properties that highly influence the fatigue cracking response of asphalt pavement. There are still numerous gaps in knowledge to fill linked with these two characteristics. For instance, current parameters fail to accommodate these two bitumen phenomena fully. This study aims to propose a new procedure to address this issue utilizing the linear amplitude sweep (LAS) test, LAS with rest period (RP) (LASH) test, and simplified viscoelastic continuum damage (S-VECD) model. This research work used four different types of asphalt binders: neat asphalt (NA), self-healing thermoplastic polyurethane (STPU)-modified bitumen (STPB), self-healing poly (dimethyl siloxane) crosslinked with urea bond (IPA1w)-modified bitumen (IPAB), and styrene–butadiene–styrene (SBS)-modified bitumen (SBSB). Before the testing process, all the materials were subjected to short-term and long-term aging. The new procedure showed a superior capacity to analyze and accommodate all bitumen fatigue performances and self-repairing activities compared to the current method. Another finding proved that asphalt binders with a higher self-restoration behavior failed to show a better fatigue performance. Moreover, the higher fatigue performance increments produced by STPU and IPA1w in NA concerning the control bitumen were 123.7% and 143.7%, respectively. Those values were obtained with 1.0% STPU and 0.5% IPA1w in NA. A breakthrough finding demonstrated that asphalt binder fatigue response is augmented when the RP was applied at a higher damage intensity (S) value. STPB and IPAB reached their highest increments of fatigue response, containing 1.0% of STPU and 0.5% of IPA1w, respectively. Those augmentations were 207.54% and 232.64%, respectively. Full article
(This article belongs to the Special Issue Application of Polymer Materials in Pavement Design: 2nd Edition)
Show Figures

Figure 1

10 pages, 2496 KiB  
Article
Introducing Optical Nonlinearity in PDMS Using Organic Solvent Swelling
by Sudhakara Reddy Bongu, Maximilian Buchmüller, Daniel Neumaier and Patrick Görrn
Optics 2024, 5(1), 66-75; https://doi.org/10.3390/opt5010005 - 15 Feb 2024
Cited by 2 | Viewed by 1895
Abstract
The feasibility of introducing optical nonlinearity in poly-dimethyl siloxane (PDMS) using organic solvent swelling was investigated. The third-order nonlinear refraction and absorption properties of the individual materials, as well as the PDMS/solvent compounds after swelling were characterized. The well-established Z-scan technique served as [...] Read more.
The feasibility of introducing optical nonlinearity in poly-dimethyl siloxane (PDMS) using organic solvent swelling was investigated. The third-order nonlinear refraction and absorption properties of the individual materials, as well as the PDMS/solvent compounds after swelling were characterized. The well-established Z-scan technique served as characterization method for the nonlinear properties under picosecond pulsed laser excitation at a 532 nm wavelength. These experiments included investigations on the organic solvents nitrobenzene, 2,6-lutidine, and toluene, which showed inherent optical nonlinearity. We showed that nitrobenzene, one of the most well-known nonlinear optical materials, has proven suboptimal in this context due to its limited swelling effect in PDMS and comparatively high (non)linear absorption, resulting in undesirable thermal effects and potential photo-induced damage in the composite material. Toluene and 2,6-lutidine not only exhibited lower absorption compared to nitrobenzene but also show a more pronounced swelling effect in PDMS. The incorporation of toluene caused a weight change of up to 116% of PDMS, resulting in substantial nonlinear optical effects, reflected in the nonlinear refractive index of the PDMS/toluene composite n2=3.1×1015 cm2/W. Full article
(This article belongs to the Section Nonlinear Optics)
Show Figures

Figure 1

29 pages, 9354 KiB  
Article
Development of a Framework for Assessing Bitumen Fatigue Cracking Performance under Different Temperatures and Aging Conditions
by Songtao Lv, Dongdong Ge, Shihao Cao, Dingyuan Liu, Wenhui Zhang, Cheng-Hui Li and Milkos Borges Cabrera
Buildings 2024, 14(2), 311; https://doi.org/10.3390/buildings14020311 - 23 Jan 2024
Cited by 4 | Viewed by 1382
Abstract
A full understanding of bitumen fatigue cracking behavior is extremely important as this phenomenon has a considerable influence on bituminous pavement performance. The current framework for assessing this asphalt binder property is inconsistent in ranking bitumen fatigue performance in terms of the failure [...] Read more.
A full understanding of bitumen fatigue cracking behavior is extremely important as this phenomenon has a considerable influence on bituminous pavement performance. The current framework for assessing this asphalt binder property is inconsistent in ranking bitumen fatigue performance in terms of the failure definition and damage characteristic curve (DCC) analysis. This study used four different types of asphalt binders: neat asphalt (NA), self-healing thermoplastic polyurethane (STP)-modified bitumen, self-healing poly (dimethyl siloxane) crosslinked with urea bond (IPA1w)-modified bitumen, and styrene–butadiene–styrene (SBS)-modified bitumen (SBSB). All the bitumens were subjected to short-term and long-term aging, and they were also tested by utilizing the linear amplitude sweep (LAS) test and the simplified viscoelastic continuum damage (S-VECD) model. LAS and S-VECD procedures were used to apply the newly proposed and current frameworks in order to analyze bitumen performance. The current framework showed that the bitumens that used a higher number of loading cycles (N) to reach their failure points (Nf) failed to exhibit greater fatigue performances in terms of DCC analysis. The developed framework (mainly based on the damage intensity [S] instead of N) was used to solve the inconsistency between the failure definition and DCC assessment in ranking bitumen performance. Additionally, the current framework (failure criterion) presented two R2 values below 0.1, but the developed framework (failure criterion) showed that all R2 values were greater than 0.9. The developed framework represents a turning point because, for the first time, this type of procedure is mainly being based on S instead of N. Although further tests are needed to confirm its efficiency, it eliminates the inconsistency between the failure definition and DCC assessment. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

19 pages, 7395 KiB  
Article
Simple UV-Grafting of PolyAcrylic and PolyMethacrylic Acid on Silicone Breast Implant Surfaces: Chemical and Mechanical Characterizations
by Anna Wozniak, Vincent Humblot, Romain Vayron, Rémi Delille and Céline Falentin-Daudré
Coatings 2023, 13(11), 1888; https://doi.org/10.3390/coatings13111888 - 2 Nov 2023
Cited by 3 | Viewed by 2133
Abstract
Poly(dimethyl siloxane) (PDMS) is one of the most widely used materials in the biomedical field. Despite its numerous advantages, its hydrophobic character promotes bacterial adhesion and biofilm formation. For breast implants, biocompatibility is challenged due to the biofilm formed around the implant that [...] Read more.
Poly(dimethyl siloxane) (PDMS) is one of the most widely used materials in the biomedical field. Despite its numerous advantages, its hydrophobic character promotes bacterial adhesion and biofilm formation. For breast implants, biocompatibility is challenged due to the biofilm formed around the implant that can degenerate to severe capsular contracture over time. Thus, the laboratory has set up strategies to prevent bacterial contamination by grafting covalently hydrophilic bioactive polymers on the surface of implants. In this study, poly(methacrylic acid) (PMAc) and poly(acrylic acid) (PAAc) were chosen as non-toxic and biocompatible bioactive polymers known for reducing bacteria adhesion. These polymers are also good candidates to lend reactivity on the surface for further functionalization. X-ray photoelectron Spectroscopy (XPS) and Fourier-Transform Infrared spectroscopy (FTIR) analysis have highlighted the covalent grafting of these polymers. Apparent water contact angle measurements have shown the change in hydrophilicity on the surface, and a colorimetric assay allowed us to assess the grafting rate of PMAc and PAAc. Tensile strength assays were performed to ensure that the functionalization process does not significantly alter the material’s mechanical properties. Analyses of the surface aspect and roughness by Scanning Electron Microscope (SEM) and optical profilometer allow us to formulate hypotheses to approach the understanding of the behavior of the polymer once grafted. Full article
(This article belongs to the Special Issue Surface Properties of Implants and Biomedical Devices)
Show Figures

Graphical abstract

15 pages, 3656 KiB  
Article
Tuning of Morphology and Surface Properties of Porous Silicones by Chemical Modification
by Carmen Racles and Ana-Lavinia Vasiliu
Appl. Sci. 2023, 13(19), 10899; https://doi.org/10.3390/app131910899 - 30 Sep 2023
Viewed by 1572
Abstract
The behavior of materials against water is a key element in many practical applications. Silicones are hydrophobic by nature and can be chemically modified to become hydrophilic or highly hydrophobic, while combining intrinsic surface properties with morphological details may lead to superhydrophobic materials. [...] Read more.
The behavior of materials against water is a key element in many practical applications. Silicones are hydrophobic by nature and can be chemically modified to become hydrophilic or highly hydrophobic, while combining intrinsic surface properties with morphological details may lead to superhydrophobic materials. Chemically modified porous silicones and their surface properties have rarely been investigated. Our aim in this study was to tune the surface properties of porous silicone materials by a combination of chemical modification and emulsion templating The porous silicones were obtained by two cross-linking reactions in toluene–water emulsion, in mild conditions: dehydrocoupling of poly(methylhydrogen)siloxane (PMHS) and dimethyl-methylhydrogensiloxane copolymers and UV-initiated thiol-ene addition on a poly(dimethyl-methylvinyl)siloxane, respectively. Apart from the pores generated by water droplets, in the first process, additional large pores appeared due to hydrogen evolution. Their size and number diminished along with the cross-linking degree; thus, the porosity was tuned by adjusting the composition of the reaction mixture. Chemical modifications were performed in situ to introduce more hydrophobic groups (hexane and trimethylsilane) or hydrophilic groups (thioethanol), modifications that were followed by FT-IR spectroscopy. The inner morphology and powder wetting behavior of the crushed samples were investigated by SEM, tensiometry analyses, and contact angle measurements. The materials showed morphological particularities and surface properties that spanned from hydrophilic to superhydrophobic with lotus or petal effects. Full article
(This article belongs to the Special Issue Feature Papers in Surface Sciences and Technology Section)
Show Figures

Figure 1

10 pages, 3789 KiB  
Communication
Fabry–Perot Interferometer Used to Measure Very Low Static Pressure Measurements
by Sergio Calixto, Roberto Zitzumbo and Zacarías Malacara Hernandez
Sensors 2023, 23(14), 6493; https://doi.org/10.3390/s23146493 - 18 Jul 2023
Cited by 4 | Viewed by 2235
Abstract
This paper describes the use of an optical instrument, the Fabry–Perot interferometer, adapted to measure very low pressures. The interferometer consists of two high-reflectance flat mirrors placed one in front of another. In addition, a metallic chamber contains air or a gas. In [...] Read more.
This paper describes the use of an optical instrument, the Fabry–Perot interferometer, adapted to measure very low pressures. The interferometer consists of two high-reflectance flat mirrors placed one in front of another. In addition, a metallic chamber contains air or a gas. In one of the faces of the chamber, a flexible thin silicone membrane is attached and, over it, one of the mirrors is glued. The other mirror rests in a fixed mechanical mounting. Light crosses both mirrors and, when it leaves them, forms an interference pattern consisting of concentric circular fringes. When the pressure is increased/decreased within the chamber, a displacement of the fringes is observed due to the movement of the glued mirror. By measuring the fringe displacement and knowing the pressure, a calibration plot can be made. Minimum pressure measurements of about tens of Pascals were achieved. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 2417 KiB  
Article
Advanced Technologies in the Fabrication of a Micro-Optical Light Splitter
by Giovanna Stella, Lorena Saitta, Alfredo Edoardo Ongaro, Gianluca Cicala, Maïwenn Kersaudy-Kerhoas and Maide Bucolo
Micro 2023, 3(1), 338-352; https://doi.org/10.3390/micro3010023 - 10 Mar 2023
Cited by 6 | Viewed by 2527
Abstract
In microfluidics, it is important to confine and transport light as close as possible to the sample by guiding it into a small volume of the microfluidic channel, acquiring the emitted/transmitted radiation. A challenge in this context is the miniaturization of the optical [...] Read more.
In microfluidics, it is important to confine and transport light as close as possible to the sample by guiding it into a small volume of the microfluidic channel, acquiring the emitted/transmitted radiation. A challenge in this context is the miniaturization of the optical components and their integration into the microfluidic device. Among all of the optical components, a particular role is played by the beam splitter, an important optical device capable of splitting light into several paths. In this paper, a micro-splitter is designed and realized by exploiting low-cost technologies. The micro-splitter consists of a micro-mirror in-between two micro-waveguides. This component was fabricated in different materials: poly-dimethyl-siloxane (PDMS), poly(methyl methacrylate) (PMMA), and VeroClear RGD810. A 3D printing master–slave fabrication protocol was used with PDMS, a direct 3D printing approach with VeroClear, and a laser cutting procedure with PMMA. The experimental results obtained show the high potential of the proposed fabrication protocols, based on low-cost technologies, for the realization of micro-optical components, which could also be easily integrated with microfluidics systems. Full article
Show Figures

Figure 1

16 pages, 18243 KiB  
Article
True Molecular Composites: Unusual Structure and Properties of PDMS-MQ Resin Blends
by Artem V. Bakirov, Sergey V. Krasheninnikov, Maxim A. Shcherbina, Ivan B. Meshkov, Aleksandra A. Kalinina, Vadim V. Gorodov, Elena A. Tatarinova, Aziz M. Muzafarov and Sergey N. Chvalun
Polymers 2023, 15(1), 48; https://doi.org/10.3390/polym15010048 - 22 Dec 2022
Cited by 13 | Viewed by 3426
Abstract
Poly(dimethyl siloxane)-MQ rubber molecular composites are easy to prepare, as it does not require a heterophase mixing of ingredients. They are characterized by perfect homogeneity, so they are very promising as rubber materials with controllable functional characteristics. The manuscript reveals that MQ resin [...] Read more.
Poly(dimethyl siloxane)-MQ rubber molecular composites are easy to prepare, as it does not require a heterophase mixing of ingredients. They are characterized by perfect homogeneity, so they are very promising as rubber materials with controllable functional characteristics. The manuscript reveals that MQ resin particles can significantly, more than by two orders of magnitude, enhance the mechanical properties of poly(dimethyl siloxane), and, as fillers, they are not inferior to aerosils. In the produced materials, MQ particles play a role of the molecular entanglements, so rubber molecular weight and MQ filler concentration are the parameters determining the structure and properties of such composites. Moreover, a need for a saturation of the reactive groups and minimization of the surface energy of MQ particles also determine the size and distribution of the filler at different filler rates. An unusual correlation of the concentration of MQ component and the interparticle spacing was revealed. Based on the extraordinary mechanical properties and structure features, a model of the structure poly(dimethyl siloxane)-rubber molecular composites and of its evolution in the process of stretching, was proposed. Full article
(This article belongs to the Special Issue Polymers of the Future)
Show Figures

Figure 1

14 pages, 10622 KiB  
Article
All-Optical Method of Determining Laser Power from the Photomechanical Effect
by Frank Sun, Rocco T. Shasho, Michael Crescimanno and Nathan J. Dawson
Appl. Sci. 2022, 12(21), 10708; https://doi.org/10.3390/app122110708 - 22 Oct 2022
Cited by 1 | Viewed by 1741
Abstract
A method to determine the power of a continuous wave laser from photothermal heating of a poly(dimethyl siloxane) film is reported. The base was doped with oil red O and cured on a surface relief grating. The grating period was shown to increase [...] Read more.
A method to determine the power of a continuous wave laser from photothermal heating of a poly(dimethyl siloxane) film is reported. The base was doped with oil red O and cured on a surface relief grating. The grating period was shown to increase proportional to the temperature by monitoring the decrease in diffraction angle of a probe beam. A 10s illumination period of a continuous wave (CW) pump beam absorbed by the film increased the film’s temperature, which resulted in a local strain that could be modeled using the two-dimensional heat kernel. The amplitude of the transient response was found to be linearly correlated with the pump laser power. Full article
(This article belongs to the Special Issue Smart Light-Driven Materials and Applications)
Show Figures

Figure 1

24 pages, 8640 KiB  
Article
Effect of Superhydrophobic Coating and Nanofiller Loading on Facial Elastomer Physical Properties
by Rahmi Khairani Aulia, Mark W. Beatty and Bobby Simetich
Materials 2022, 15(20), 7343; https://doi.org/10.3390/ma15207343 - 20 Oct 2022
Cited by 3 | Viewed by 1887
Abstract
Facial prosthetics are currently constructed of materials that are far from optimal; superior materials with a “skin-like” feel are required. In this study, the property changes brought about by the consecutive additions of hydrophobic- and uncoated nano-SiO2 to polydimethylsiloxane (PDMS) are assessed, [...] Read more.
Facial prosthetics are currently constructed of materials that are far from optimal; superior materials with a “skin-like” feel are required. In this study, the property changes brought about by the consecutive additions of hydrophobic- and uncoated nano-SiO2 to polydimethylsiloxane (PDMS) are assessed, and the alterations are compared with those observed for conventional submicron SiO2-filled materials. In sequence, 0%, 0.5%, 5%, 10%, and 15% by weight of each filler type were successively added to vinyl-terminated PDMS. Tensile, tear, Durometer hardness, translucency, and viscoelastic properties were assessed, and hardness and translucency were further measured after 3000 h of outdoor weathering. The results showed that 15% coated nano- SiO2-filled PDMS materials given the highest tensile strength, elastic modulus, storage modulus, loss modulus, tear strength, and durometer hardness (p < 0.05), whereas 15% submicron coated SiO2-filled materials displayed the highest failure strain and translucency parameter (p < 0.05). Only 10%- and 15%-filled submicron SiO2 PDMS materials were altered by outdoor weathering; nevertheless, the increases were assessed to be too small to be clinically perceptible. As increased filler levels provided protection against solar radiation, heat, and moisture, only unfilled and 0.5%-filled PDMS formulations discolored from weathering. 15%-filled superhydrophobic-coated nano- SiO2-filled PDMS was found to produce the strongest, most tear-resistant, and least translucent materials, but it also produced materials with limited stretchability and high hardness, which were regarded to be downsides for creating a “skin-like” feel. Full article
(This article belongs to the Special Issue Maxillofacial Prosthetic and Reconstructive Materials)
Show Figures

Figure 1

11 pages, 3024 KiB  
Article
Combined Triboelectric and Piezoelectric Effect in ZnO/PVDF Hybrid-Based Fiber-Structured Nanogenerator with PDMS:Carbon Black Electrodes
by Vikas Narayan Thakur and Jeong In Han
Polymers 2022, 14(20), 4414; https://doi.org/10.3390/polym14204414 - 19 Oct 2022
Cited by 15 | Viewed by 3449
Abstract
We report a fiber-structured hybrid nanogenerator wearable device fabricated on a single polyethylene terephthalate (PET) textile cylindrical substrate. The device can be described as a capacitor with inner and outer carbon-black-dispersed poly dimethyl siloxane (PDMS:Carbon black) electrodes, and zinc oxide and polyvinylidene fluoride [...] Read more.
We report a fiber-structured hybrid nanogenerator wearable device fabricated on a single polyethylene terephthalate (PET) textile cylindrical substrate. The device can be described as a capacitor with inner and outer carbon-black-dispersed poly dimethyl siloxane (PDMS:Carbon black) electrodes, and zinc oxide and polyvinylidene fluoride (PVDF) as the dielectric medium between the electrodes. The compositional analysis in terms of X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy of the synthesized ZnO/PVDF has been measured and analyzed. The combined effect of triboelectricity between PDMS:Carbon black and PVDF, and piezoelectricity in a ZnO/PVDF hybrid, was investigated. Current–voltage characteristics were observed with varying load from 0–20 g, and resistance was observed to be decreased with load. Compared to earlier reports, there was a significant enhancement in voltage (≈5.1 V) and current (≈92.5 nA) at 10 g. Due to the introduction of interfacial polarization between PVDF and ZnO, the piezoelectric properties and pressure sensitivity of the hybrid ZnO/PVDF is enhanced. The hysterical behavior in the device’s response while measuring voltage and current with varying time shows the signature of the triboelectric effect between PVDF and ZnO, as well as PDMS:Carbon black and ZnO/PVDF layers. Reduction of triboelectric behavior was confirmed with increasing relaxation time. Because of the enhancement in piezoelectricity, fiber-structured nanogenerator (FNG) ZnO/PVDF proved to a potential candidate to be used for wearable computing devices, such as smart watches and sports bracelets. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 3231 KiB  
Article
Advances in the Measurement of Polymeric Colorimetric Sensors Using Portable Instrumentation: Testing the Light Influence
by Adria Martínez-Aviño, Maria de Diego-Llorente-Luque, Carmen Molins-Legua and Pilar Campíns-Falcó
Polymers 2022, 14(20), 4285; https://doi.org/10.3390/polym14204285 - 12 Oct 2022
Cited by 10 | Viewed by 2347
Abstract
Sustainable and green sensors based on polydimethyl siloxane (PDMS) or cellulose polymers, as a case of study of the use of portable instrumentation joined to a smartphone, have been tested. A smartphone camera was used to obtain images and was also coupled to [...] Read more.
Sustainable and green sensors based on polydimethyl siloxane (PDMS) or cellulose polymers, as a case of study of the use of portable instrumentation joined to a smartphone, have been tested. A smartphone camera was used to obtain images and was also coupled to a minispectrometer, without and with an optical fiber probe to register spectra. To study light influence on the analytical signal, light-emitting diode (LED), halogen light and daylight have been assayed. A corrective palette of 24 colors and a set with 45 colors from different color ranges were used as the validation set. The results indicated that halogen light was the best option to obtain the spectra. However, for digital image analysis, it was the LED light that gave a greater approximation of the RGB values of the real colors. Based on these results, the spectra and the RGB components of PDMS solid sensors doped with 1,2-naphtoquinone-4-sulfonate (NQS) for the determination of ammonium in water or urea in urine, PDMS doped with Griess reagent for developing the assay of nitrite in waters and cellulose sensors for the determination of hydrogen sulfide in the atmospheres have been obtained. The results achieved were good in terms of sensitivity and linearity and were comparable to those obtained using a laboratory benchtop instrument. Several rules for selecting the most suitable light source to obtain the spectra and/or images have been established and an image correction method has been introduced. Full article
Show Figures

Figure 1

Back to TopTop