Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = poly (butylene adipate-co-terephthalate)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7510 KiB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 341
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

24 pages, 8559 KiB  
Article
Development and Characterization of Wheat Flour Byproduct and Poly(butylene adipate-co-terephthalate) Biodegradable Films Enriched with Rosemary Extract via Blown Extrusion
by Bianca Peron-Schlosser, Fabíola Azanha de Carvalho, Luana Cristina Paludo, Rodolfo Mesquita de Oliveira, Luis Alberto Gallo-García, Bruno Matheus Simões, Samuel Camilo da Silva, Bruno Alexandro Bewzenko Cordova, Benjamim de Melo Carvalho, Fabio Yamashita and Michele Rigon Spier
Coatings 2025, 15(7), 743; https://doi.org/10.3390/coatings15070743 - 23 Jun 2025
Viewed by 441
Abstract
Developing sustainable packaging materials has become a global priority in response to environmental concerns associated with conventional plastics. This study used a wheat flour byproduct (glue flour, GF) and poly(butylene adipate-co-terephthalate) (PBAT) to produce films via blown extrusion, incorporating rosemary extract (RE) at [...] Read more.
Developing sustainable packaging materials has become a global priority in response to environmental concerns associated with conventional plastics. This study used a wheat flour byproduct (glue flour, GF) and poly(butylene adipate-co-terephthalate) (PBAT) to produce films via blown extrusion, incorporating rosemary extract (RE) at 2% (FRE2) and 4% (FRE4) (w/w). A control film (FCO) was formulated without RE. The physicochemical, thermal, mechanical, and biodegradation properties of the films were evaluated. FCO, FRE2, and FRE4 exhibited tensile strength (TS) values between 8.16 and 9.29 MPa and elongation at break (ELO) above 889%. Incorporating 4% RE decreased luminosity (91.38 to 80.89) and increased opacity (41.14 to 50.95%). A thermogravimetric analysis revealed a main degradation stage between 200 °C and 450 °C, with FRE2 showing the highest residual mass (~15% at 600 °C). Sorption isotherms indicated enhanced hydrophobicity with RE, thereby reducing the monolayer moisture content from 5.23% to 3.03%. Biodegradation tests revealed mass losses of 64%, 58%, and 66% for FCO, FRE2, and FRE4, respectively, after 180 days. These findings demonstrate that incorporating RE into GF/PBAT blends via blown extrusion is a promising strategy for developing biodegradable films with enhanced thermal behavior, mechanical integrity, and water resistance, contributing to the advancement of sustainable packaging materials. Full article
(This article belongs to the Special Issue Optical Thin Films: Preparation, Application and Development)
Show Figures

Graphical abstract

20 pages, 2030 KiB  
Article
Characterization of Coffee Waste-Based Biopolymer Composite Blends for Packaging Development
by Gonzalo Hernández-López, Laura Leticia Barrera-Necha, Silvia Bautista-Baños, Mónica Hernández-López, Odilia Pérez-Camacho, José Jesús Benítez-Jiménez, José Luis Acosta-Rodríguez and Zormy Nacary Correa-Pacheco
Foods 2025, 14(11), 1991; https://doi.org/10.3390/foods14111991 - 5 Jun 2025
Viewed by 1214
Abstract
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. [...] Read more.
In recent years, coffee waste by-products have been incorporated into polymer blends to reduce environmental pollution. In this study, coffee parchment (CP) was incorporated into biodegradable polylactic acid (PLA) and poly (butylene adipate-co-terephthalate) (PBAT) polymer blends to prepare ribbons through the extrusion process. Extracted green coffee bean oil (CO) was used as a plasticizer, and CP was used as a filler with and without functionalization. A solution of chitosan nanoparticles (ChNp) as a coating was applied to the ribbons. For the raw material, proximal analysis of the CP showed cellulose and lignin contents of 53.09 ± 3.42% and 23.60 ± 1.74%, respectively. The morphology of the blends was observed via scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) showed an increase in the ribbons’ thermal stability with the functionalization. The results of differential scanning calorimetry (DSC) revealed better miscibility for the functionalized samples. The mechanical properties showed that with CP incorporation into the blends and with the ChNp coating, the Young’s modulus and the tensile strength decreased with no significant changes in the elongation at break. This work highlights the potential of reusing different by-products from the coffee industry, such as coffee oil from green beans and coffee parchment as a filler, and incorporating them into PLA PBAT biodegradable polymer blend ribbons with a nanostructured antimicrobial coating based on chitosan for future applications in food packaging. Full article
Show Figures

Figure 1

18 pages, 3417 KiB  
Article
Design and Preparation of Inherently Photostable Poly(Butylene Adipate-Co-Terephthalate) by Chemically Bonding UV-Stabilizing Moieties in Molecular Chains
by Xinpeng Zhang, Yan Ye, Yaqiao Wang, Hongli Bian, Jing Yuan, Jianping Ding, Wanli Li, Jun Xu and Baohua Guo
Polymers 2025, 17(11), 1567; https://doi.org/10.3390/polym17111567 - 4 Jun 2025
Viewed by 528
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising biodegradable polymer with balanced mechanical properties and excellent degradability, making it an ideal material to reduce plastic pollution. However, its susceptibility to ultraviolet (UV) degradation, due to photosensitive aromatic rings and carbonyl groups in its structure, limits [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising biodegradable polymer with balanced mechanical properties and excellent degradability, making it an ideal material to reduce plastic pollution. However, its susceptibility to ultraviolet (UV) degradation, due to photosensitive aromatic rings and carbonyl groups in its structure, limits its use in outdoor settings like mulch films. Conventional methods of incorporating small-molecule UV stabilizers face challenges such as poor compatibility, uneven dispersion, and migration under environmental conditions, reducing their effectiveness over time. This study developed a novel strategy to enhance PBAT’s UV resistance by chemically bonding UV-stabilizing moieties directly into its molecular chains to address these limitations. A novel UV absorber containing a polymerizable group was synthesized and copolymerized with PBAT’s main chain, creating an intrinsically UV-stable PBAT. The UV-stable PBAT was evaluated for UV resistance, mechanical performance, and durability through accelerated aging and solvent extraction tests. The results demonstrated that UV-stable PBAT exhibited exceptional light stabilization effects, with no detectable UV absorber leaching in ethanol even after 114 h, whereas PBAT blends lost nearly 90% of UV-0 within 24 h. Furthermore, UV-stable PBAT maintained 67.1% tensile strength and 48.8% elongation at break after aging, which exhibited the best mechanical retention performance. Even when subjected to solvent extraction, the 42.6% tensile strength retention outperformed the PBAT blends. This innovative chemical modification overcomes the limitations of additive-based stabilization, offering improved durability, compatibility, and performance in outdoor applications. Our research provides key insights into the fundamental properties of PBAT films for UV resistance, demonstrating their potential for use in demanding fields such as agricultural films. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

34 pages, 2461 KiB  
Review
Formulations, Processing, and Application of Poly(butylene adipate-co-terephthalate)/Thermoplastic Starch Blends: A Review
by Aline N. Küster, Cidalia Paula, Juliana Azevedo, Arménio C. Serra and Jorge F. J. Coelho
Polymers 2025, 17(11), 1457; https://doi.org/10.3390/polym17111457 - 23 May 2025
Viewed by 1161
Abstract
The concern for the environment and sustainability has intensified the search for alternative materials to replace non-degradable plastics. Poly(butylene adipate-co-terephthalate) (PBAT) is a bioplastic that has been extensively studied due to its excellent mechanical properties, which are similar to those of low-density poly(ethylene) [...] Read more.
The concern for the environment and sustainability has intensified the search for alternative materials to replace non-degradable plastics. Poly(butylene adipate-co-terephthalate) (PBAT) is a bioplastic that has been extensively studied due to its excellent mechanical properties, which are similar to those of low-density poly(ethylene) (LDPE). However, the high cost of this polymer still hinders its wider application. Among the different approaches that have been studied, blending PBAT with thermoplastic starch (TPS) could be an interesting solution to reduce the cost of the material and increase the degradability of the blends. This review covers most of the work reported in recent years on PBAT/TPS blends, including the effects of starch plasticizers, starch modifications, processing methods, use of chain extenders, various compatibilizers, and additives used for different applications. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites II)
Show Figures

Graphical abstract

34 pages, 2745 KiB  
Review
Sustainable Netting Materials for Marine and Agricultural Applications: A Perspective on Polymeric and Composite Developments
by Leonardo Pagnotta
Polymers 2025, 17(11), 1454; https://doi.org/10.3390/polym17111454 - 23 May 2025
Cited by 1 | Viewed by 738
Abstract
This review addresses the growing demand for sustainable alternatives to conventional synthetic nets used in marine and agricultural applications, which are often persistent, poorly degradable, and difficult to manage at end of life. It examines recent developments in biodegradable polymers—particularly polylactic acid (PLA), [...] Read more.
This review addresses the growing demand for sustainable alternatives to conventional synthetic nets used in marine and agricultural applications, which are often persistent, poorly degradable, and difficult to manage at end of life. It examines recent developments in biodegradable polymers—particularly polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and poly(butylene adipate-co-terephthalate) (PBAT)—alongside reinforced blends and nanocomposites designed to improve mechanical performance and degradation behavior under real-world conditions. Strategies based on the regeneration of discarded nets, especially those made from polyamide 6 (PA6), are also considered for their potential to close material loops and reduce environmental leakage. A critical analysis of current testing protocols and regulatory frameworks is provided to assess their suitability for novel materials. In addition, this study highlights the emergence of multifunctional nets capable of providing environmental sensing or biological support, marking a transition toward adaptive and ecosystem-responsive designs. Finally, a survey of ongoing European and international projects illustrates scalable pathways for implementing biodegradable and recyclable netting systems, integrating material innovation with circular economy strategies. These findings emphasize the need for harmonized standards, targeted environmental testing, and cross-sectoral collaboration to enable the large-scale adoption of sustainable net technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

19 pages, 6091 KiB  
Article
Foaming of Bio-Based PLA/PBS/PBAT Ternary Blends with Added Nanohydroxyapatite Using Supercritical CO2: Effect of Operating Strategies on Cell Structure
by Pei-Hua Chen, Chin-Wen Chen, Tzu-Hsien Chan, Hsin-Ying Lin, Ke-Ling Tuan, Chie-Shaan Su, Jung-Chin Tsai and Feng-Huei Lin
Molecules 2025, 30(9), 2056; https://doi.org/10.3390/molecules30092056 - 5 May 2025
Viewed by 673
Abstract
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate [...] Read more.
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate the effects of various foaming strategies on the resulting cell structure, aiming for potential applications in tissue engineering. Eight foaming strategies were examined, starting with a basic saturation process at high temperature and pressure, followed by rapid decompression to ambient conditions, referred to as the (1T-1P) strategy. Intermediate temperature and pressure variations were introduced before the final decompression to evaluate the impact of operating parameters further. These strategies included intermediate-temperature cooling (2T-1P), intermediate-temperature cooling with rapid intermediate decompression (2T-2P), and intermediate-temperature cooling with gradual intermediate decompression (2T-2P, stepwise ΔP). SEM imaging revealed that the (2T-2P, stepwise ΔP) strategy produced a bimodal cell structure featuring small cells ranging from 105 to 164 μm and large cells between 476 and 889 μm. This study demonstrated that cell size was influenced by the regulation of intermediate pressure reduction and the change in intermediate temperature. The results were interpreted based on classical nucleation theory, the gas solubility principle, and the effect of polymer melt strength. Foaming results of average cell size, cell density, expansion ratio, porosity, and opening cell content are reported. The hydrophilicity of various foamed polymer blends was evaluated by measuring the water contact angle. Typical compressive stress–strain curves obtained using DMA showed a consistent trend reflecting the effect of foam stiffness. Full article
Show Figures

Graphical abstract

29 pages, 8105 KiB  
Article
UV-C and UV-C/H₂O-Induced Abiotic Degradation of Films of Commercial PBAT/TPS Blends
by K. Gutiérrez-Silva, Antonio J. Capezza, O. Gil-Castell and J. D. Badia-Valiente
Polymers 2025, 17(9), 1173; https://doi.org/10.3390/polym17091173 - 25 Apr 2025
Viewed by 530
Abstract
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) [...] Read more.
The environmental impact of conventional plastics has spurred interest in biopolymers as sustainable alternatives, yet their performance under abiotic degradation conditions still remain unclear. This study investigated the effects of ultraviolet C (UV-C) irradiation and its combination with water immersion (UV-C/H2O) on films of commercial poly(butylene adipate-co-terephthalate)-thermoplastic starch (PBAT/TPS) blends. Changes in structural, chemical, morphological, and thermal properties, as well as molar mass, were analyzed. The results showed distinct degradation mechanisms during exposure to UV-C irradiation either in dry or during water-immersion conditions. UV-C irradiation disrupted PBAT ester linkages, inducing photodegradation and chain scission, leading to a more pronounced molar mass decrease compared to that under water immersion, where a more restrained impact on the molar mass was ascribed to diffuse attenuation coefficient of irradiation. Nevertheless, under UV-C/H2O conditions, erosion and disintegration were enhanced by dissolving and leaching of mainly the TPS fraction, creating a porous structure that facilitated the degradation of the film. Blends with higher TPS content exhibited greater susceptibility, with pronounced reductions in PBAT molar mass. In conclusion, exposure of films of PBAT/TPS blends to ultraviolet/water-assisted environments effectively initiated abiotic degradation, in which fragmentation was accentuated by the contribution of water immersion. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 3593 KiB  
Article
Dosages of Biodegradable Poly(butylene adipate-co-terephthalate) Microplastics Affect Soil Microbial Community, Function, and Metabolome in Plant–Soil System
by Yu Fang, Chenqiang Lin, Jie Zhao, Yuting Gao and Xianbo Jia
Agronomy 2025, 15(4), 990; https://doi.org/10.3390/agronomy15040990 - 21 Apr 2025
Viewed by 791
Abstract
As a substitute for conventional plastic mulch, biodegradable mulch film (BDM) has been popular in agricultural systems in recent years. However, studies focusing on the systematic effect of BDM residues on the soil microbiome and metabolome remain obscure. Thus, a mesocosm experiment was [...] Read more.
As a substitute for conventional plastic mulch, biodegradable mulch film (BDM) has been popular in agricultural systems in recent years. However, studies focusing on the systematic effect of BDM residues on the soil microbiome and metabolome remain obscure. Thus, a mesocosm experiment was established, and it aimed to investigate the effects of concentrations of poly(butylene adipate-co-terephthalate) (PBAT) microplastics (MPs) on soil microbial ecology and plant (Lactuca sativa) fitness. Metagenomics and metabolomics analyses were deployed to explore the response of soil microbial communities, functional shifts, and metabolites under different dosages of PBAT MPs (CK, 0.1%, 1%, and 5% w/w). The results showed that PBAT MPs did not significantly affect the morphological traits (shoot length and leaf dry weight) of the plant. Regarding plant biochemical indicators, the highest concentration of PBAT could increase the proline and soluble protein contents compared to low- and medium-dosage PBAT treatments with high malonaldehyde (MDA) or soluble sugar contents. Soil physicochemical properties like the available phosphorus and potassium, ammonium N and nitrate N contents were decreased in a dose-dependent manner. Metagenomics analysis revealed that only a high concentration of PBAT had more profound effects on the soil microbial community composition, diversity, and function when compared to the control (CK). In particular, a 5% PBAT treatment could result in the development of some microbial biomarkers, such as Paraburkholderia and Rhizobium, which had beneficial functions. Moreover, metabolomics analysis showed that 5% PBAT differentially affected the soil metabolites, with a high abundance of bioactives like peptides, organic acid, and nepetaside. This work underscores that soil could recruit certain microbes and bioactive substances to resist external high-PBAT stress. PBAT might pose little threat to the soil ecosystem, and its application is beneficial for soil health management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 14208 KiB  
Article
Degradation Characteristics of Reed-Based PBAT Mulch and Their Effects on Plant Growth and Soil Properties
by Yipeng Wang, Qiuxia Zhang, Yinghao Huang, Jia Xu and Jixing Xie
Materials 2025, 18(7), 1477; https://doi.org/10.3390/ma18071477 - 26 Mar 2025
Viewed by 496
Abstract
Poly (butylene adipate-co-terephthalate) (PBAT) and PBAT/reed fiber (RF) mulch films were prepared. The molecular structural changes and surface morphological evolution during the degradation process were systematically characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The prepared PBAT/RF mulch film biodegradation [...] Read more.
Poly (butylene adipate-co-terephthalate) (PBAT) and PBAT/reed fiber (RF) mulch films were prepared. The molecular structural changes and surface morphological evolution during the degradation process were systematically characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The prepared PBAT/RF mulch film biodegradation rate reached 90.43% within 91 days under controlled composting conditions, which was 9.52% higher than a pure PBAT mulch film. The effects of adding PBAT and PBAT/RF microplastics on soil properties and soybean physiological indicators were dynamic. The study demonstrated that the incorporation of 5% PBAT/RF mulch film fragments into soil led to a 5.1% reduction in soil pH and a 17.2% increase in soluble organic carbon content. While the effects of 5% PBAT/RF on soil urease and neutral phosphatase activities were non-significant, sucrase activity decreased by 7.4% and catalase activity was reduced to 0.38 U/g. Additionally, the addition of 5% PBAT/RF resulted in a soybean germination rate of 93.74%, which was 4.0% higher than that observed in the group treated with 5% PBAT alone. The experimental data revealed a 7.2% reduction in leaf chlorophyll content, with concomitant growth inhibition in the soybean seedlings. The study demonstrated that the PBAT/RF composite film achieved 89% biodegradation within 180 days under field conditions, effectively mitigating post-application effects on agroecosystems compared to conventional polyethylene mulch. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

15 pages, 5866 KiB  
Article
Enhanced Antioxidant and Antibacterial Properties of Polybutylene Adipate-Terephthalate/Curcumin Composite Films Using Surface-Modified Cellulose Nanocrystals
by Hashimu Juma, Cunshi Zhao, Qingbo Wang, Yunfeng Guo, Xinyan Fan, Wuming Fan, Linlin Zhao, Jiayi Sun, Dong Wang and Yonggui Wang
Polymers 2025, 17(7), 830; https://doi.org/10.3390/polym17070830 - 21 Mar 2025
Viewed by 753
Abstract
Polybutylene adipate-terephthalate (PBAT) offers a convincing ecological alternative to the traditional fossil-based plastics due to its biodegradability and robust mechanical properties. The objective of this study is to develop PBAT-based bio-composite films through incorporating functionalized cellulose nanocrystals (CNC) and curcumin (CUR). In order [...] Read more.
Polybutylene adipate-terephthalate (PBAT) offers a convincing ecological alternative to the traditional fossil-based plastics due to its biodegradability and robust mechanical properties. The objective of this study is to develop PBAT-based bio-composite films through incorporating functionalized cellulose nanocrystals (CNC) and curcumin (CUR). In order to improve the interfacial compatibility with the PBAT matrix and co-doping with CUR, CNC was modified using dodecyl succinic anhydride (DxCNC). In this ternary bio-composite system, CUR functioned as a bio-based antioxidant and antimicrobial agent. The presence of CUR also provides excellent UV-shielding properties, whereas the DxCNC effectively enhances the controlled release of CUR. The synergistic effect between DxCNC and CUR in boosting antimicrobial properties, with the inhibition values for E. coli and S. aureus reached 1.82 log CFU/cm2 and 2.12 log CFU/cm2, respectively. These findings indicate DxCNC/CUR/PBAT ternary composite films as a promising material for eco-friendly packaging products. Full article
Show Figures

Graphical abstract

23 pages, 5048 KiB  
Article
Coffee By-Products and Chitosan for Preventing Contamination for Botrytis sp. and Rhizopus sp. in Blueberry Commercialization
by Gonzalo Hernández-López and Laura Leticia Barrera-Necha
Resources 2025, 14(3), 48; https://doi.org/10.3390/resources14030048 - 17 Mar 2025
Viewed by 1219
Abstract
In blueberry storage, non-biodegradable synthetic plastic packaging is used for commercializing this product. The fungi Botrytis sp. and Rhizopus sp. can cause significant losses in postharvest blueberry commercialization. Consequently, the formulations of degradable polymeric based on polylactic acid (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) 60/40 (PP) [...] Read more.
In blueberry storage, non-biodegradable synthetic plastic packaging is used for commercializing this product. The fungi Botrytis sp. and Rhizopus sp. can cause significant losses in postharvest blueberry commercialization. Consequently, the formulations of degradable polymeric based on polylactic acid (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) 60/40 (PP) with coffee parchment (CP), green coffee bean oil (GCBO), chitosan solution (Ch), chitosan nanoparticles (ChNp), and nanostructured coating (NC) were used to develop biodegradable polymer matrix (PM). Caffeine and hexadecanoic acid were identified as principal compounds in GCBO, and the principal compounds in CP were flavonoids, terpenes, and lignans. The 100% mycelial growth inhibition to Botrytis sp. and Rhizopus sp. was observed using GCBO, Ch, ChNp, and NC in high concentrations. GCBO inhibited 100% of spore production in both fungi at all evaluated doses. In the in vivo tests, when compared to the control, the better treatments were: CP for Botrytis sp., with an incidence of 46.6% and a severity of 16%; and Ch for Rhizopus sp., with an incidence of 13.3% and a severity of 0.86%. The PM in the culture medium presented a fungistatic effect. The principal inhibition of mycelial growth (63%) on Botrytis sp. was with PLA/PBAT+NC (PP+NC), and (100%) was observed with PLA/PBAT+CP+NC (PPCP+NC), PP, and PP+NC on Rhizopus sp. Coffee by-products and PM have potential for the control of postharvest fungi in fruits and vegetables. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

16 pages, 7097 KiB  
Article
Unraveling the Crystallization, Mechanical, and Heat Resistance Properties of Poly(butylene adipate-co-terephthalate) Through the Introduction of Stereocomplex Crystallites
by Min Qiao, Tao Zhang, Jing Jiang, Caiyi Jia, Yangyang Li, Xiaofeng Wang and Qian Li
Crystals 2025, 15(3), 247; https://doi.org/10.3390/cryst15030247 - 6 Mar 2025
Viewed by 873
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising degradable polymer for replacing non-degradable traditional plastics to mitigate pollution. However, its low softening temperature and poor hardness impede its application. Herein, PBAT and stereocomplex polylactide (sc-PLA) blends were fabricated through a melt-blending process to balance the [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising degradable polymer for replacing non-degradable traditional plastics to mitigate pollution. However, its low softening temperature and poor hardness impede its application. Herein, PBAT and stereocomplex polylactide (sc-PLA) blends were fabricated through a melt-blending process to balance the heat resistance and mechanical strength of PBAT in this research. The effects of the PLA content and hot embossing temperature on the blend properties were comprehensively investigated. The results demonstrate that the sc-crystal content in the PBAT/sc-PLA blend increased by 493% as the PLA content rose from 10% to 30%. The blend with 15% PLLA and 15% PDLA, hot embossed at 190 °C, exhibited the highest sc-PLA crystallinity of 23.3% and the largest fraction of sc-crystallites at 66%, leading to the optimal comprehensive performance. Its Vicat softening temperature (VST) reached 92.2 °C, and a nonlinear increase trend in accordance with the power-law model between VST and the mass ratio of sc-crystal was obtained. Compared with the mechanical properties of neat PBAT, a maximum tensile yield stress of 9.7 MPa and a Young’s modulus of 82.5 MPa were achieved and improved approximately by 107% and 361%, respectively. This research offers an effective strategy for synergistically enhancing the heat resistance and mechanical strength of PBAT. Full article
Show Figures

Figure 1

14 pages, 4146 KiB  
Article
Upcycling Alum Sludge as a Reinforcement in PBAT Composites: A Sustainable Approach to Waste Valorisation
by Dongyang Sun, Thomas Henthorn, Carmen-Mihaela Popescu and Reza Salehiyan
Appl. Sci. 2025, 15(5), 2591; https://doi.org/10.3390/app15052591 - 27 Feb 2025
Viewed by 779
Abstract
This study explores the valorisation of alum sludge, a byproduct of water treatment processes, as a sustainable reinforcement material in Poly(butylene adipate-co-terephthalate) (PBAT) composites. The research aims to address industrial waste challenges by developing eco-friendly composite materials while promoting circular economy principles. Alum [...] Read more.
This study explores the valorisation of alum sludge, a byproduct of water treatment processes, as a sustainable reinforcement material in Poly(butylene adipate-co-terephthalate) (PBAT) composites. The research aims to address industrial waste challenges by developing eco-friendly composite materials while promoting circular economy principles. Alum sludge particles, classified into two size distributions (<63 µm and <250 µm), were incorporated into PBAT matrices at varying concentrations. The composites were characterised for their mechanical, thermal, crystallographic, and moisture adsorption properties; and their biodegradation behaviour was evaluated through soil burial tests over 60 days. The results revealed that the 63 µm particle size fraction exhibited superior performance compared to the 250 µm fraction, demonstrating improved mechanical properties, reduced degradation rates, and enhanced interfacial bonding. Composites with 5 wt.% alum sludge achieved a balance between reinforcement and processability, outperforming the other filler concentrations examined. This innovative approach highlights the potential of upcycling alum sludge into functional materials, advancing sustainable waste management and composite manufacturing. Furthermore, the observed variation in degradation rates suggests that these composites can be tailored for applications requiring controlled compostability. Full article
Show Figures

Figure 1

20 pages, 8319 KiB  
Article
Shortening the Saturation Time of PBAT Sheet Foaming via the Pre-Introducing of Microporous Structures
by Fangwei Tian, Junjie Jiang, Yaozong Li, Hanyi Huang, Yushu Wang, Ziwei Qin and Wentao Zhai
Materials 2025, 18(5), 1044; https://doi.org/10.3390/ma18051044 - 26 Feb 2025
Cited by 1 | Viewed by 856
Abstract
Poly (butylene adipate-co-terephthalate) (PBAT) foam sheets prepared by foaming supercritical fluids are characterized by high resilience, homogeneous cellular structure, and well-defined biodegradability. However, the inert chemical structure and the rigid hard segments restrict the diffusion of CO2 within the PBAT matrix, resulting [...] Read more.
Poly (butylene adipate-co-terephthalate) (PBAT) foam sheets prepared by foaming supercritical fluids are characterized by high resilience, homogeneous cellular structure, and well-defined biodegradability. However, the inert chemical structure and the rigid hard segments restrict the diffusion of CO2 within the PBAT matrix, resulting in extremely long gas saturation times as long as 9 h at a thickness of 12 mm. In this study, microporous structures were pre-introduced into the PBAT matrix to provide a fast gas diffusion pathway during the saturation process. After 2 h of saturation, PBAT foam sheets with expansion ratio of 10 to 13.8 times were prepared. The interaction of CO2 with PBAT was systematically investigated, and the CO2 sorption process was evaluated kinetically and thermodynamically using the Fickian diffusion theory. The solubility and diffusion rate of CO2 in pretreated PBAT sheets with different microporous sizes and densities were investigated, and the effects of pretreatment strategies on the foaming behavior and cell structure of PBAT foam sheets were discussed. The introduction of a microporous structure not only reduces saturation time but also enhances solubility, enabling the successful preparation of soft foams with high expansion ratios and resilience. After undergoing foaming treatment, the PBAT pretreated sheets with a 10 μm microporous structure and a density of 0.45 g/cm3 demonstrated improved mechanical properties: their hardness decreased to 35 C while resilience increased to 58%, reflecting enhanced elastic recovery capabilities. The pretreatment method, which increases the diffusion rate of CO2 in PBAT sheets, offers a straightforward approach that provides valuable insights into achieving rapid and efficient foaming of thick PBAT sheets in industrial applications. Full article
Show Figures

Figure 1

Back to TopTop