Shortening the Saturation Time of PBAT Sheet Foaming via the Pre-Introducing of Microporous Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. CO2 Solubility and Diffusion Coefficient
3.2. Thermal Behavior of PBAT Under CO2
3.3. Foaming Behavior of PBAT Sheets
3.4. Pretreatment of PBAT Sheets and Sorption Behavior of CO2
3.5. Foaming Behavior of PBAT Pretreated Sheets
3.6. Mechanical Properties of PBAT Foams
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Wang, Z.; Yu, J.; Zhao, Y.; Pan, H.; Bian, J.; Han, L.; Wang, Z.; Zhang, H. Preparation of shrink-resistant environmentally friendly foam. J. CO2 Util. 2024, 82, 102769. [Google Scholar] [CrossRef]
- Chen, Y.; Zhong, W.; Jia, X.; Hu, D.; Sun, J.; Peng, Y.; Yu, J.; Jiang, X.; Wang, H.; Zhao, L. Microcellular Thermoplastic Polyurethane (TPU) with Multimodal Cell Structure Fabricated Based on Pressure Swing Strategy and Its Compressive Mechanical Properties. Ind. Eng. Chem. Res. 2024, 63, 8833–8845. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, T. Numerical simulation on bubble wall shape evolution and uniformity in poly(ethylene terephthalate) foaming process. Chem. Eng. Sci. 2021, 230, 116213. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Li, B.; Li, H.; Cao, Z.; Jin, G.; Zhao, L.; Xin, Z. Foaming and dimensional stability of LDPE foams with N2, CO2, i-C4H10 and CO2—N2 mixtures as blowing agents. J. Supercrit. Fluids 2020, 164, 104930. [Google Scholar] [CrossRef]
- Xu, J.; Xing, J.; Luo, M.; Li, T.; Liu, B.; Zeng, X.; Jiang, T.; Wu, X.; He, L. Preparation of lightweight PBS foams with high ductility and impact toughness by foam injection molding. e-Polymers 2024, 24, 20240034. [Google Scholar] [CrossRef]
- Liu, F.; Shen, C.; You, F.; Zhao, W.; Deng, C.; Jiang, X. Enhancing the Sound and Thermal Insulation Properties of Polypropylene Foam by Preparing High Melt Strength Polypropylene. Macromol. Rapid Commun. 2023, 44, e2300344. [Google Scholar] [CrossRef]
- Hang, T.; Ding, L.; Lv, G.; Shen, J.; Zheng, J.; Li, X.; Jiang, S.; Chen, Y. Thin-slice structure enhanced hyperelastic composite foams for superb sound absorption and thermal insulation. Constr. Build. Mater. 2024, 453, 139041. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Z.; Yu, J.; Zhao, Y.; Pan, H.; Bian, J.; Yang, H.; Wang, Z.; Zhang, H. Preparation of high elastic bimodal cells biodegradable foam. Polymer 2025, 318, 127987. [Google Scholar] [CrossRef]
- Kong, W.-l.; Bao, J.-B.; Wang, J.; Hu, G.-H.; Xu, Y.; Zhao, L. Preparation of open-cell polymer foams by CO2 assisted foaming of polymer blends. Polymer 2016, 90, 331–341. [Google Scholar] [CrossRef]
- Cui, W.-H.; Zhou, X.; Mi, H.-Y.; Dong, B.; Liu, C.; Shen, C. Molecular Dynamics Simulations and Mechanistic Insights into Wrinkle Formation in TPU under Supercritical CO2 Flow Field. Macromolecules 2024, 57, 6954–6967. [Google Scholar] [CrossRef]
- Guo, P.; Xu, Y.; Lyu, M.; Zhang, S. Fabrication of Expanded Ethylene–Propylene–Butene-1 Copolymer Bead. Ind. Eng. Chem. Res. 2022, 61, 2392–2402. [Google Scholar] [CrossRef]
- Yang, B.; Zuo, Y.; Chang, Z. Evaluation of Energy Absorption Capabilities of Polyethylene Foam under Impact Deformation. Materials 2021, 14, 3613. [Google Scholar] [CrossRef] [PubMed]
- Muanchan, P.; Ito, H. Nanocellular foams confined within PS microfibers obtained by CO2 batch foaming process. Microsyst. Technol. 2017, 24, 655–662. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, M.; Li, Y.; Chen, B.; Tian, F.; Zhai, W. Cell structure and hardness evolutions of TPU foamed sheets with high hardness via a temperature rising foaming process. J. Supercrit. Fluids 2022, 188, 105654. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, H.; Chen, Y.; Ge, Y.; Liu, T. Effect of chain relaxation on the shrinkage behavior of TPEE foams fabricated with supercritical CO2. Polymer 2022, 256, 125262. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, P.; Zheng, H.; Xu, L.; Zheng, W.; Zhao, Y. Compatibilizing and foaming of PC/PMMA composites with nano-cellular structures in the presence of transesterification catalyst. Polym. Eng. Sci. 2024, 64, 5239–5252. [Google Scholar] [CrossRef]
- Zhong, W.; Yu, J.; Yang, N.; Hu, D.; Chen, Y.; Fan, C.; Jiang, X.; Zhao, L. PS/PPO foam with excellent comprehensive properties prepared by integrated foaming and sintering strategy with microwave-assisted. Compos. Commun. 2024, 48, 101925. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, W.; Zhao, D.; Zhai, W. Poly(ether imide)/Epoxy Foam Composites with a Microcellular Structure and Ultralow Density: Bead Foam Fabrication, Compression Molding, Mechanical Properties, Thermal Stability, and Flame-Retardant Properties. ACS Omega 2020, 5, 25784–25797. [Google Scholar] [CrossRef]
- Weal, S.; Shah, S.; Parker, K.; Vaidya, A. Incorporation of canola meal as a sustainable natural filler in PLA foams. Bioresour. Bioprocess. 2024, 11, 57. [Google Scholar] [CrossRef]
- Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption. Sep. Purif. Technol. 2021, 257, 117949. [Google Scholar] [CrossRef]
- Richards, E.; Rizvi, R.; Chow, A.; Naguib, H. Biodegradable Composite Foams of PLA and PHBV Using Subcritical CO2. J. Polym. Environ. 2008, 16, 258–266. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Zhang, Y.; Zhang, H.; Gu, J. Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding. Nano-Micro Lett. 2023, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; You, W.; Peng, L.; Zhang, C.; Huang, X.; Yu, W. Role of monomer sequence in the crystallization and rheology of PBAT. Polymer 2023, 283, 126228. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, D.; Wei, S.; Xi, Z.; Zhen, W.; Zhao, L. Effects of chain composition of PBAT on the supercritical CO2 foaming and degradation behavior. J. CO2 Util. 2023, 72, 102500. [Google Scholar] [CrossRef]
- Huang, F.; Wu, L.; Li, B.-G. Sulfonated biodegradable PBAT copolyesters with improved gas barrier properties and excellent water dispersibility: From synthesis to structure-property. Polym. Degrad. Stab. 2020, 182, 109391. [Google Scholar] [CrossRef]
- Moreira, R.; Pereira, V.A.; Rebelo, R.C.; Gomes, J.; Delgado, M.; Barreira, P.; Simões, R.; Coelho, J.F.J.; Serra, A.C. A new and easy-to-implement green packaging option with recycled paperboard and PBAT film. Polymer 2024, 311, 127480. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Souza, A.G.; Rosa, D.S. Essential oil-loaded nanocapsules and their application on PBAT biodegradable films. J. Mol. Liq. 2021, 337, 116488. [Google Scholar] [CrossRef]
- Laorenza, Y.; Harnkarnsujarit, N. Surface adhesion and physical properties of modified TPS and PBAT multilayer film. Food Packag. Shelf Life 2024, 44, 101312. [Google Scholar] [CrossRef]
- Song, Y.; Sun, S.; Hao, Q.; Gao, S.; Wang, W.; Hou, H. Effect of polydimethylsiloxane on the structure and barrier properties of starch/PBAT composite films. Carbohydr. Polym. 2024, 336, 122119. [Google Scholar] [CrossRef]
- Xue, Y.; Tang, K.; Liao, X. Preparation of modified cellulose/PBAT films and its application in food preservation. React. Funct. Polym. 2024, 205, 106097. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Wang, G.; Xu, Z.; Zhang, A.; Dong, G.; Zhao, G. Lightweight, low-shrinkage and high elastic poly(butylene adipate-co-terephthalate) foams achieved by microcellular foaming using N2 & CO2 as co-blowing agents. J. CO2 Util. 2022, 64, 102149. [Google Scholar] [CrossRef]
- Tian, F.; Huang, H.; Li, Y.; Zhai, W. Fabrication of Soft Biodegradable Foam with Improved Shrinkage Resistance and Thermal Stability. Materials 2024, 17, 3712. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Liu, P.; Bai, S.; Li, S. A one-step method to manufacture biodegradable poly (butylene adipate-co-terephthalate) bead foam parts. Polym. Adv. Technol. 2021, 32, 2007–2019. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, J.; Yang, Y.; Wang, M.; Ye, X.; Xu, D. Fabrication of biodegradable Poly(butylene adipate-co-butylene terephthalate) bead foams through solid utilization of chitin and controllable incorporation of porous structure. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 134105. [Google Scholar] [CrossRef]
- Yang, Q.; Ding, Y.; Liu, H.; Li, S.; Wang, X. Preparation of PBAT/PLA Blend Microporous Foam With Excellent Resilience and Cushioning Properties by scCO2 Technology Through Improving Compatibility. J. Appl. Polym. Sci. 2024, 142, e56542. [Google Scholar] [CrossRef]
- Bai, Y.; Hou, J.; Yu, K.; Liang, J.; Zhang, X.; Chen, J. Three-layered PBAT/CNTs composite foams prepared by supercritical CO2 foaming for electromagnetic interference shielding. Mater. Today Sustain. 2024, 26, 100763. [Google Scholar] [CrossRef]
- Qiao, Y.; Hou, J.; Tian, D.; He, Y.; Chen, J. Poly(butylene adipate-co-terephthalate)/carbon fiber foam bonded with continuous carbon fiber reinforced polypropylene prepregs for electromagnetic interference shielding. Compos. Commun. 2025, 53, 102217. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Xu, Z.; Yang, C.; Zhao, G. Structure-tunable poly(butylene adipate-co-terephthalate) foams with enhanced mechanical performance derived by microcellular foaming with carbon dioxide as blowing agents. J. CO2 Util. 2023, 72, 102495. [Google Scholar] [CrossRef]
- Lee, J.K.; Yao, S.X.; Li, G.; Jun, M.B.G.; Lee, P.C. Measurement Methods for Solubility and Diffusivity of Gases and Supercritical Fluids in Polymers and Its Applications. Polym. Rev. 2017, 57, 695–747. [Google Scholar] [CrossRef]
- Tomasko, D.L.; Li, H.; Liu, D.; Han, X.; Wingert, M.J.; Lee, L.J.; Koelling, K.W. A review of CO2 applications in the processing of polymers. Ind. Eng. Chem. Res. 2003, 42, 6431–6456. [Google Scholar] [CrossRef]
- Sun, H.; Mark, J.E. Preparation, characterization, and mechanical properties of some microcellular polysulfone foams. J. Appl. Polym. Sci. 2002, 86, 1692–1701. [Google Scholar] [CrossRef]
- Huang, R.; Chari, P.; Tseng, J.K.; Zhang, G.; Cox, M.; Maia, J.M. Microconfinement effect on gas barrier and mechanical properties of multilayer rigid/soft thermoplastic polyurethane films. J. Appl. Polym. Sci. 2015, 132, 41849. [Google Scholar] [CrossRef]
- Isfahani, A.P.; Ghalei, B.; Bagheri, R.; Kinoshita, Y.; Kitagawa, H.; Sivaniah, E.; Sadeghi, M. Polyurethane gas separation membranes with ethereal bonds in the hard segments. J. Membr. Sci. 2016, 513, 58–66. [Google Scholar] [CrossRef]
- Choudalakis, G.; Gotsis, A.D. Permeability of polymer/clay nanocomposites: A review. Eur. Polym. J. 2009, 45, 967–984. [Google Scholar] [CrossRef]
- von Schnitzler, J.; Eggers, R. Mass transfer in polymers in a supercritical CO2-atmosphere. J. Supercrit. Fluids 1999, 16, 81–92. [Google Scholar] [CrossRef]
- Sun, H.; Pei, X.; Ruan, H.; Song, F.; Wang, T.; Wang, Q.; Wang, C. “Partition Method”-Inspired Fabrication of Hierarchically Porous Polyetherimide via Supercritical CO2 Foaming: Achieving Efficient Adsorption of Carbon Dioxide. Ind. Eng. Chem. Res. 2023, 62, 3844–3852. [Google Scholar] [CrossRef]
- Gunasekaran, H.B.; Ponnan, S.; Thirunavukkarasu, N.; Laroui, A.; Wu, L.; Wang, J. Rapid Carbon Dioxide Foaming of 3D Printed Thermoplastic Polyurethane Elastomers. ACS Appl. Polym. Mater. 2022, 4, 1497–1511. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, C.; Liu, T.; Hu, D.; Xu, Z.; Zhao, L. Application of a CO2 Pressure Swing Saturation Strategy in PP Semi-Solid-State Batch Foaming: Evaluation of Foamability by Experiments and Numerical Simulations. Ind. Eng. Chem. Res. 2020, 59, 4924–4935. [Google Scholar] [CrossRef]
- Li, D.; Liu, T.; Zhao, L.; Yuan, W. Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AIChE J. 2011, 58, 2512–2523. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Muth, O.; Hirth, T.; Vogel, H. Investigation of sorption and diffusion of supercritical carbon dioxide into poly (vinyl chloride). J. Supercrit. Fluids 2001, 19, 299–306. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, L.; Yu, L.; Yu, Z.; Li, L.; Zhang, Z. Exploring the Polybutylene Adipate Terephthalate/Thermoplastic Polyether Ester Elastomer Blend-Modified Foam: The Frontier of High-Elasticity Sustainable Foam. ACS Appl. Polym. Mater. 2023, 5, 8822–8832. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, J.; Huang, H.; Wang, Z.; Wang, L.; Chen, B.; Zhai, W. Comparative Study of the Foaming Behavior of Ethylene-Vinyl Acetate Copolymer Foams Fabricated Using Chemical and Physical Foaming Processes. Materials 2024, 17, 3719. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zheng, H.; Liu, H.; Zhai, W. Tunable cell structure and mechanism in porous thermoplastic polyurethane micro-film fabricated by a diffusion-restricted physical foaming process. J. Supercrit. Fluids 2021, 171, 105205. [Google Scholar] [CrossRef]
- Nam, P.H.; Maiti, P.; Okamoto, M.; Kotaka, T.; Nakayama, T.; Takada, M.; Ohshima, M.; Usuki, A.; Hasegawa, N.; Okamoto, H. Foam processing and cellular structure of polypropylene/clay nanocomposites. Polym. Eng. Sci. 2004, 42, 1907–1918. [Google Scholar] [CrossRef]
- Durrill, P.L.; Griskey, R.G. Diffusion and solution of gases into thermally softened or molten polymers: Part II. Relation of diffusivities and solubilities with temperature pressure and structural characteristics. AIChE J. 1969, 15, 106–110. [Google Scholar] [CrossRef]
- Lundberg, J.L.; Mooney, E.J.; Rogers, C.E. Diffusion and solubility of methane in polyisobutylene. J. Polym. Sci. Part A-2 Polym. Phys. 1969, 7, 947–962. [Google Scholar] [CrossRef]
Saturation Condition | Tstar (°C) | Tmr (°C) | ΔHm (W/g) | ΔX (%) | |
---|---|---|---|---|---|
Pressure (MPa) | Temperature (°C) | ||||
10 | 90 | 102.8 ± 1.4 | 38.2 ± 3.1 | 17.4 ± 0.2 | 15.3 ± 0.2 |
100 | 107.5 ± 2.5 | 33.5 ± 2.2 | 16.2 ± 0.3 | 14.2 ± 0.3 | |
110 | 109.6 ± 1.2 | 31.4 ± 2.1 | 15.5 ± 0.2 | 13.6 ± 0.2 | |
14 | 90 | 95.6 ± 1.3 | 45.4 ± 4.2 | 16.4 ± 0.3 | 14.4 ± 0.3 |
100 | 98.3 ± 1.2 | 42.7 ± 3.1 | 15.7 ± 0.1 | 13.8 ± 0.1 | |
110 | 99.2 ± 3.1 | 41.8 ± 3.2 | 15.2 ± 0.5 | 13.3 ± 0.4 | |
18 | 90 | 92 ± 2.2 | 49 ± 2.5 | 14.9 ± 0.1 | 13.1 ± 0.1 |
100 | 99.1 ± 2.6 | 41.9 ± 2.8 | 14.1 ± 0.3 | 12.4 ± 0.3 | |
110 | 101.9 ± 2.7 | 39.1 ± 1.7 | 12.3 ± 0.1 | 10.8 ± 0.1 |
Saturation Condition | Density (g/cm3) | Microporous Size (μm) | Microporous Density (cells/cm3) | |
---|---|---|---|---|
Pressure (MPa) | Temperature (°C) | |||
18 | 70 | 0.65 ± 0.08 | 9.2 ± 0.3 | 2.12 × 109 ± 2.1 × 107 |
75 | 0.45 ± 0.09 | 10.1 ± 0.8 | 1.03 × 109 ± 3.6 × 107 | |
80 | 0.35 ± 0.06 | 11.6 ± 1.2 | 3.34 × 108 ± 2.8 × 107 | |
12 | 75 | 0.65 ± 0.03 | 76.3 ± 4.2 | 5.34 × 106 ± 5.2 × 105 |
80 | 0.45 ± 0.03 | 75.6 ± 6.1 | 6.73 × 106 ± 6.3 × 105 | |
85 | 0.35 ± 0.02 | 72 ± 4.8 | 7.98 × 106 ± 8.6 × 104 | |
8 | 90 | 0.65 ± 0.05 | 144.3 ± 10.3 | 9.01 × 105 ± 1.3 × 104 |
95 | 0.45 ± 0.06 | 140.4 ± 9.6 | 1.21 × 106 ± 8.6 × 104 | |
100 | 0.35 ± 0.07 | 137.8 ± 17.3 | 1.54 × 106 ± 7.3 × 104 |
Microporous Size (μm) | Density (g/cm3) | Cell Wall Thickness (μm) | Diffusion Coefficient Ds (m2/s) |
---|---|---|---|
10 | 0.35 | 1.8 ± 0.2 | 2.011 × 10−8 ± 7.331 × 10−10 |
0.45 | 2.5 ± 0.1 | 1.632 × 10−8 ± 4.121 × 10−10 | |
0.75 | 4.5 ± 0.2 | 1.641 × 10−8 ± 1.731 × 10−9 | |
75 | 0.35 | 13.5 ± 1.6 | 1.101 × 10−8 ± 3.362 × 10−9 |
0.45 | 19 ± 2.1 | 9.942 × 10−9 ± 6.221 × 10−11 | |
0.75 | 33.7 ± 6.2 | 9.854 × 10−9 ± 2.841 × 10−10 | |
140 | 0.35 | 25.3 ± 1.7 | 7.763 × 10−9 ± 7.344 × 10−11 |
0.45 | 35.4 ± 4.1 | 7.433 × 10−9 ± 4.836 × 10−10 | |
0.75 | 62.9 ± 8.6 | 7.162 × 10−9 ± 5.952 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Jiang, J.; Li, Y.; Huang, H.; Wang, Y.; Qin, Z.; Zhai, W. Shortening the Saturation Time of PBAT Sheet Foaming via the Pre-Introducing of Microporous Structures. Materials 2025, 18, 1044. https://doi.org/10.3390/ma18051044
Tian F, Jiang J, Li Y, Huang H, Wang Y, Qin Z, Zhai W. Shortening the Saturation Time of PBAT Sheet Foaming via the Pre-Introducing of Microporous Structures. Materials. 2025; 18(5):1044. https://doi.org/10.3390/ma18051044
Chicago/Turabian StyleTian, Fangwei, Junjie Jiang, Yaozong Li, Hanyi Huang, Yushu Wang, Ziwei Qin, and Wentao Zhai. 2025. "Shortening the Saturation Time of PBAT Sheet Foaming via the Pre-Introducing of Microporous Structures" Materials 18, no. 5: 1044. https://doi.org/10.3390/ma18051044
APA StyleTian, F., Jiang, J., Li, Y., Huang, H., Wang, Y., Qin, Z., & Zhai, W. (2025). Shortening the Saturation Time of PBAT Sheet Foaming via the Pre-Introducing of Microporous Structures. Materials, 18(5), 1044. https://doi.org/10.3390/ma18051044