Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = poly(ethylene glycol)dimethacrylate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3774 KiB  
Article
A View on the Synthesis and Characterization of Porous Microspheres Containing Pyrrolidone Units
by Małgorzata Maciejewska
Materials 2025, 18(11), 2432; https://doi.org/10.3390/ma18112432 - 22 May 2025
Viewed by 384
Abstract
Porous materials are used in many important applications, such as separation technologies, catalysis, and chromatography. They may be obtained from various monomers via diverse polymerization techniques and a wide range of synthesis parameters. The study is devoted to the synthesis and characterization of [...] Read more.
Porous materials are used in many important applications, such as separation technologies, catalysis, and chromatography. They may be obtained from various monomers via diverse polymerization techniques and a wide range of synthesis parameters. The study is devoted to the synthesis and characterization of crosslinked porous polymeric spheres containing pyrrolidone subunits. To achieve this goal, two methods were applied: direct synthesis from N-vinyl-2-pyrrolidone (NVP) with ethylene glycol dimethacrylate (EGDMA) and via a modification reaction of porous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) with pyrrolidone (P). The polymerization was carried out with the use of different molar ratios of the monomers. In order to obtain highly porous materials, pore-forming diluents (toluene, dodecane, and dodecan-1-ol) were used. The synthesized copolymers were characterized using size distribution analysis, ATR-FTIR spectroscopy, scanning electron microscopy, thermogravimetry, and inverse gas chromatography. Determined by the nitrogen adsorption/desorption method, the specific surface area was in the range of 55–468 m2/g. The good thermal properties of the poly(VP-co-EGDMA) copolymers allowed them to be applied as the stationary phase in gas chromatography. Full article
Show Figures

Figure 1

14 pages, 3067 KiB  
Article
Engineering Hydrogels with Enhanced Adhesive Strength Through Optimization of Poly(Ethylene Glycol) Molecular Weight
by Yin-An Yang, Yu-Feng Ni, Rajan Deepan Chakravarthy, Karl Wu, Mei-Yu Yeh and Hsin-Chieh Lin
Polymers 2025, 17(5), 589; https://doi.org/10.3390/polym17050589 - 23 Feb 2025
Viewed by 1028
Abstract
Hydrogels are extensively utilized in biomedical fields because of their remarkable properties, including biocompatibility, high water content, flexibility, and elasticity. However, despite substantial progress in hydrogel research, creating a hydrogel adhesive that integrates high stretchability, fatigue resistance, and reversible adhesion continues to pose [...] Read more.
Hydrogels are extensively utilized in biomedical fields because of their remarkable properties, including biocompatibility, high water content, flexibility, and elasticity. However, despite substantial progress in hydrogel research, creating a hydrogel adhesive that integrates high stretchability, fatigue resistance, and reversible adhesion continues to pose significant challenges. In this study, we aimed to address these challenges by preparing hydrogels using a combination of acrylic acid, acrylamide, carboxymethylcellulose methacrylate, thiol-functionalized polyhedral oligomeric silsesquioxane, and poly(ethylene glycol) dimethacrylate (PEGDM). By systematically varying the molecular weight of PEG, we were able to precisely adjust the mechanical and adhesive properties of the hydrogels. Our research revealed that a PEG molecular weight of 2000 (resulting in P1 hydrogel) provided a notable adhesive strength of 717.2 kPa on glass surfaces. This performance is particularly impressive given the challenges associated with achieving high adhesive strength while maintaining other desirable hydrogel properties. Beyond its strong adhesive capabilities, the P1 hydrogel also demonstrated exceptional stretchability, support, and fatigue resistance. These characteristics are crucial for applications where the adhesive needs to endure repeated stress and deformation without losing effectiveness. The successful development of P1 hydrogel underscores its potential as a multifunctional adhesive material with a broad range of applications. The ability to tailor the properties of hydrogels through molecular weight adjustments offers a promising approach to creating advanced adhesive solutions that meet the demanding requirements of modern biomedical and industrial applications. Full article
(This article belongs to the Special Issue Functional Gel and Their Multipurpose Applications)
Show Figures

Graphical abstract

13 pages, 1978 KiB  
Article
Influence of Composition on the Patterns of Electrokinetic Potential of Thermosensitive N-(Isopropyl)Acrylamide Derivatives with Poly(Ethylene Glycol) Dimethacrylate and N-(2-Hydroxyethyl)Acrylamide
by Monika Gasztych, Aleksandra Malamis-Stanowska, Mateusz Trafalski and Witold Musiał
Int. J. Mol. Sci. 2024, 25(24), 13554; https://doi.org/10.3390/ijms252413554 - 18 Dec 2024
Viewed by 721
Abstract
The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (DH), [...] Read more.
The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (DH), which varied from 87.7 nm to 1618.1 nm. Initiators, such as potassium persulfate and 2,2′-azobis(2-methylpropionamidine) dihydrochloride, conferred anionic and cationic functionalities, respectively, impacting the electrokinetic potential (EP) of the particles. Notably, certain particles with cationic initiators exhibited negative EP values at 18 °C, attributed to residual initiator components that affected the surface charge distribution. The presence of hydrophilic N-(2-hydroxyethyl)acrylamide (HEAA) segments also influenced solubility and phase transition behaviors, with critical dependencies on the HEAA/NIPA (N-isopropyl acrylamide) molar ratios. EP measurements taken at 18 °C and 42 °C revealed substantial differences, primarily governed by the initiator type and polymer composition. Observed variations in particle stability and size were associated with the choice of crosslinking agents and comonomer content, which affected both DH and EP in distinct ways. This study provides insights into key factors influencing colloidal stability and electrostatic interactions within thermosensitive polymer systems, underscoring their potential applications in biomedical and industrial fields. Full article
Show Figures

Figure 1

13 pages, 1137 KiB  
Article
Optimization of the Oxygen Permeability of Non-Silicone Hydrogel Contact Lenses Through Crosslinking Modifications
by Clara Lim, María García-Montero, Andrew Courtis, Paul Hainey, David Madrid-Costa and Almudena Crooke
Gels 2024, 10(11), 726; https://doi.org/10.3390/gels10110726 - 9 Nov 2024
Viewed by 2164
Abstract
The main weakness of non-silicone hydrogel contact lenses is their low oxygen permeability (Dk). Hence, we have tried to optimize their Dk using various concentrations and lengths of the poly (ethylene glycol) dimethacrylate crosslinker in a mixture of N,N-Dimethylacrylamide and Cyclohexyl methacrylate monomers. [...] Read more.
The main weakness of non-silicone hydrogel contact lenses is their low oxygen permeability (Dk). Hence, we have tried to optimize their Dk using various concentrations and lengths of the poly (ethylene glycol) dimethacrylate crosslinker in a mixture of N,N-Dimethylacrylamide and Cyclohexyl methacrylate monomers. After synthesizing the different contact lenses, we evaluated their chemical, optical, and mechanical properties. The resultant non-silicone hydrogel contact lenses presented similar high water contents (75.69–80.60%) and adequate optical (e.g., a transmittance ranging from 85.91% to 99.91% and a refractive index between 1.3630 and 1.3740) and elongation at break (178.95–356.05%) characteristics for clinical applications. Conversely, they presented high contact angles (81.00–100.00°) and a low Young’s modulus (0.066–0.167 MPa). Regarding the impact of the crosslinking modifications, the water content, contact angle, refractive index, transmittance, and Young’s modulus of the synthesized lenses were slightly affected by crosslinker conditions. In contrast, the elongation at break (178.95–356.05%) and, more importantly, the oxygen permeability, which reached values of up to 73.90 Fatt units, were considerably impacted by the crosslinker conditions. To our knowledge, this study demonstrates for the first time that, in addition to water, other usual hydrogel components, like crosslinkers, can modulate the Dk of non-silicone contact lenses. It also provides a simple and scalable method to fabricate more permeable non-silicone lenses. Full article
(This article belongs to the Special Issue Recent Advances in Multi-Functional Hydrogels)
Show Figures

Graphical abstract

28 pages, 6971 KiB  
Article
Influence of Poly(Ethylene Glycol) Dimethacrylates’ Chain Length on Electrical Conductivity and Other Selected Physicochemical Properties of Thermally Sensitive N-isopropylacrylamide Derivatives
by Agnieszka Gola, Borys Podżus, Kinga Gruszka and Witold Musiał
Polymers 2024, 16(19), 2786; https://doi.org/10.3390/polym16192786 - 30 Sep 2024
Cited by 1 | Viewed by 1602
Abstract
Thermosensitive polymers P1–P6 of N-isopropylacrylamide (PNIPA) and poly(ethylene glycol) dimethacrylates (PEGDMAs), av. Mn 550–20,000, were synthesized via surfactant-free precipitation polymerization (SFPP) using ammonium persulfate (APS) at 70 °C. The polymerization course was monitored by the conductivity. The hydrodynamic diameters (HDs) and the polydispersity [...] Read more.
Thermosensitive polymers P1–P6 of N-isopropylacrylamide (PNIPA) and poly(ethylene glycol) dimethacrylates (PEGDMAs), av. Mn 550–20,000, were synthesized via surfactant-free precipitation polymerization (SFPP) using ammonium persulfate (APS) at 70 °C. The polymerization course was monitored by the conductivity. The hydrodynamic diameters (HDs) and the polydispersity indexes (PDIs) of the aqueous dispersion of P1–P6 in the 18–45 °C range, assessed via dynamic light scattering (DLS), were at 18° as follows (nm): 73.95 ± 19.51 (PDI 0.57 ± 0.08), 74.62 ± 0.76 (PDI 0.56 ± 0,01), 69.45 ± 1.47 (PDI 0.57 ± 0.03), 196.2 ± 2.50 (PDI 0.53 ± 0.04), 194.30 ± 3.36 (PDI 0.56 ± 0.04), 81.99 ± 0.53 (PDI 0.56 ± 0.01), 76.87 ± 0.30 (PDI 0.54 ± 0.01), respectively. The electrophoretic mobilities estimated the zeta potential (ZP) in the 18–45 °C range, and at 18 °C they were as follows (mV): −2.57 ± 0.10, −4.32 ± 0.67, −5.34 ± 0.95, −-3.02 ± 0.76, −4.71 ± 2.69, −2.30 ± 0.36, −2.86 ± 0.42 for polymer dispersion P1–P6. The polymers were characterized by attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TG/DTA), Differential Scanning Calorimetry (DSC), and powder X-ray diffraction analysis (PXRD). The length of the cross-linker chain influences the physicochemical properties of the obtained polymers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 8730 KiB  
Article
Self-Assembly of Hydrophobic Hyperbranched PLMA Homopolymer with –COOH End Groups as Effective Nanocarriers for Bioimaging Applications
by Angelica Maria Gerardos, Aleksander Foryś, Barbara Trzebicka and Stergios Pispas
Polymers 2024, 16(15), 2166; https://doi.org/10.3390/polym16152166 - 30 Jul 2024
Cited by 3 | Viewed by 1634
Abstract
Nanomedicine is a discipline of medicine that applies all aspects of nanotechnology strategies and concepts for treatment and screening possibilities. Synthetic polymer nanostructures are among the many nanomedicine formulations frequently studied for their potential as vectors. Bioimaging is a valuable diagnostic tool, thus, [...] Read more.
Nanomedicine is a discipline of medicine that applies all aspects of nanotechnology strategies and concepts for treatment and screening possibilities. Synthetic polymer nanostructures are among the many nanomedicine formulations frequently studied for their potential as vectors. Bioimaging is a valuable diagnostic tool, thus, there is always a demand for new excipients/nanocarriers. In this study, hydrophobic hyperbranched poly(lauryl methacrylate) (PLMA) homopolymers comprised of highly hydrophobic LMA moieties with –COOH polar end groups were synthesized by employing reversible addition-fragmentation chain transfer (RAFT) polymerization. Ethylene glycol dimethacrylate (EGDMA) was utilized as the branching agent. End groups are incorporated through the RAFT agent utilized. The resulting amphiphilic hyperbranched polymer was molecularly characterized by size exclusion chromatography (SEC), Fourier transformation infrared spectroscopy (FT–IR), and 1H–NMR spectroscopy. Pyrene, curcumin, and IR-1048 dye were hydrophobic payload molecules successfully encapsulated to show how adaptable these homopolymer nanoparticles (prepared by nanoprecipitation in water) are as dye nanocarriers. This study demonstrates a simple way of producing excipients by generating polymeric nanoparticles from an amphiphilic, hyperbranched, hydrophobic homopolymer, with a low fraction of polar end groups, for bioimaging purposes. Full article
Show Figures

Figure 1

13 pages, 4609 KiB  
Article
Crosslinking and Swelling Properties of pH-Responsive Poly(Ethylene Glycol)/Poly(Acrylic Acid) Interpenetrating Polymer Network Hydrogels
by Uijung Hwang, HoYeon Moon, Junyoung Park and Hyun Wook Jung
Polymers 2024, 16(15), 2149; https://doi.org/10.3390/polym16152149 - 29 Jul 2024
Cited by 12 | Viewed by 3454
Abstract
This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming [...] Read more.
This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming PEG-SN hydrogels using poly(ethylene glycol) diacrylate (PEGDA) through UV-induced free radical polymerization and crosslinking reactions, then immersing them in PAA solutions with two different molar ratios of acrylic acid (AA) monomer and poly(ethylene glycol) dimethacrylate (PEGDMA) crosslinker. A subsequent UV curing step created PAA networks within the pre-fabricated PEG hydrogels. The incorporation of AA with ionizable functional groups imparted pH sensitivity to the hydrogels, allowing the swelling ratio to respond to environmental pH changes. Rheological analysis showed that PEG/PAA IPN hydrogels had a higher storage modulus (G′) than PEG-SN hydrogels, with PEG/PAA-IPN5 exhibiting the highest modulus. Thermal analysis via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated increased thermal stability for PEG/PAA-IPN5 compared to PEG/PAA-IPN1, due to higher crosslinking density from increased PEGDMA content. Consistent with the storage modulus trend, PEG/PAA-IPN hydrogels demonstrated superior mechanical properties compared to PEG-SN hydrogels. The tighter network structure led to reduced water uptake and a higher gel modulus in swollen IPN hydrogels, attributed to the increased density of active network strands. Below the pKa (4.3) of acrylic acid, hydrogen bonds between PEG and PAA chains caused the IPN hydrogels to contract. Above the pKa, ionization of PAA chains induced electrostatic repulsion and osmotic forces, increasing water absorption. Adjusting the crosslinking density of the PAA network enabled fine-tuning of the IPN hydrogels’ properties, allowing comprehensive comparison of single network and IPN characteristics. Full article
(This article belongs to the Special Issue Hydrogels for Biomedical and Structural Applications)
Show Figures

Graphical abstract

14 pages, 4011 KiB  
Article
Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels
by Eva Melnik, Steffen Kurzhals, Giorgio C. Mutinati, Valerio Beni and Rainer Hainberger
Sensors 2024, 24(11), 3678; https://doi.org/10.3390/s24113678 - 6 Jun 2024
Cited by 1 | Viewed by 1667
Abstract
Hydrogels are of great importance for functionalizing sensors and microfluidics, and poly(ethylene glycol) dimethacrylate (PEG-DMA) is often used as a viscosifier for printable hydrogel precursor inks. In this study, 1–10 kDa PEG-DMA based hydrogels were characterized by gravimetric and electrochemical methods to investigate [...] Read more.
Hydrogels are of great importance for functionalizing sensors and microfluidics, and poly(ethylene glycol) dimethacrylate (PEG-DMA) is often used as a viscosifier for printable hydrogel precursor inks. In this study, 1–10 kDa PEG-DMA based hydrogels were characterized by gravimetric and electrochemical methods to investigate the diffusivity of small molecules and proteins. Swelling ratios (SRs) of 14.43–9.24, as well as mesh sizes ξ of 3.58–6.91 nm were calculated, and it was found that the SR correlates with the molar concentration of PEG-DMA in the ink (MCI) (SR = 0.1127 × MCI + 8.3256, R2 = 0.9692) and ξ correlates with the molecular weight (Mw) (ξ = 0.3382 × Mw + 3.638, R2 = 0.9451). To investigate the sensing properties, methylene blue (MB) and MB-conjugated proteins were measured on electrochemical sensors with and without hydrogel coating. It was found that on sensors with 10 kDa PEG-DMA hydrogel modification, the DPV peak currents were reduced to 92 % for MB, 73 % for MB-BSA, and 23 % for MB-IgG. To investigate the diffusion properties of MB(-conjugates) in hydrogels with 1–10 kDa PEG-DMA, diffusivity was calculated from the current equation. It was found that diffusivity increases with increasing ξ. Finally, the release of MB-BSA was detected after drying the MB-BSA-containing hydrogel, which is a promising result for the development of hydrogel-based reagent reservoirs for biosensing. Full article
(This article belongs to the Special Issue Eurosensors 2023 Selected Papers)
Show Figures

Graphical abstract

3 pages, 1211 KiB  
Abstract
Electrochemical Diffusion Study in Hydrogels
by Eva Melnik, Steffen Kurzhals, Valerio Beni, Giorgio C. Mutinati and Rainer Hainberger
Proceedings 2024, 97(1), 118; https://doi.org/10.3390/proceedings2024097118 - 28 Mar 2024
Viewed by 974
Abstract
In this study, poly(ethylene glycol) dimethacrylate (PEG-DMA)-based hydrogels were investigated with respect to the diffusion properties of methylene blue (MB) and MB conjugated proteins (MB-BSA and MB-IgG). Electrochemical sensors were used to monitor the diffusion process via the redox-active MB-label. All tested molecules [...] Read more.
In this study, poly(ethylene glycol) dimethacrylate (PEG-DMA)-based hydrogels were investigated with respect to the diffusion properties of methylene blue (MB) and MB conjugated proteins (MB-BSA and MB-IgG). Electrochemical sensors were used to monitor the diffusion process via the redox-active MB-label. All tested molecules showed good mobility in the hydrogel. Also, the release of MB-BSA could be demonstrated after drying the hydrogel containing MB-BSA, which is a promising result for the development of hydrogel-based reagent reservoirs for biosensing. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

17 pages, 6415 KiB  
Article
The Effects of Incorporating Nanoclay in NVCL-NIPAm Hydrogels on Swelling Behaviours and Mechanical Properties
by Billy Shu Hieng Tie, Eyman Manaf, Elaine Halligan, Shuo Zhuo, Gavin Keane, Joseph Geever and Luke Geever
Nanomaterials 2024, 14(7), 597; https://doi.org/10.3390/nano14070597 - 28 Mar 2024
Cited by 3 | Viewed by 1425
Abstract
Following the formulation development from a previous study utilising N-vinylcaprolactam (NVCL) and N-isopropylacrylamide (NIPAm) as monomers, poly(ethylene glycol) dimethacrylate (PEGDMA) as a chemical crosslinker, and Irgacure 2959 as photoinitiator, nanoclay (NC) is now incorporated into the selected formulation for enhanced mechanical performance and [...] Read more.
Following the formulation development from a previous study utilising N-vinylcaprolactam (NVCL) and N-isopropylacrylamide (NIPAm) as monomers, poly(ethylene glycol) dimethacrylate (PEGDMA) as a chemical crosslinker, and Irgacure 2959 as photoinitiator, nanoclay (NC) is now incorporated into the selected formulation for enhanced mechanical performance and swelling ability. In this research, two types of NC, hydrophilic bentonite nanoclay (NCB) and surface-modified nanoclay (NCSM) of several percentages, were included in the formulation. The prepared mixtures were photopolymerised, and the fabricated gels were characterised through Fourier transform infrared spectroscopy (FTIR), cloud-point measurements, ultraviolet (UV) spectroscopy, pulsatile swelling, rheological analysis, and scanning electron microscopy (SEM). Furthermore, the effect of swelling temperature, NC types, and NC concentration on the hydrogels’ swelling ratio was studied through a full-factorial design of experiment (DOE). The successful photopolymerised NC-incorporated NVCL-NIPAm hydrogels retained the same lower critical solution temperature (LCST) as previously. Rheological analysis and SEM described the improved mechanical strength and polymer orientation of gels with any NCB percentage and low NCSM percentage. Finally, the temperature displayed the most significant effect on the hydrogels’ swelling ability, followed by the NC types and NC concentration. Introducing NC to hydrogels could potentially make them suitable for applications that require good mechanical performance. Full article
Show Figures

Figure 1

13 pages, 2949 KiB  
Article
Anti-UV Microgel Based on Interfacial Polymerization to Decrease Skin Irritation of High Permeability UV Absorber Ethylhexyl Methoxycinnamate
by Wei Wang, Qi-Tong He, Yin-Feng Chen, Bai-Hui Wang, Wen-Ying Xu, Qing-Lei Liu and Hui-Min Liu
Gels 2024, 10(3), 177; https://doi.org/10.3390/gels10030177 - 2 Mar 2024
Viewed by 2040
Abstract
Ethylhexyl methoxycinnamate (EHMC) is frequently employed as a photoprotective agent in sunscreen formulations. EHMC has been found to potentially contribute to health complications as a result of its propensity to produce irritation and permeate the skin. A microgel carrier, consisting of poly(ethylene glycol [...] Read more.
Ethylhexyl methoxycinnamate (EHMC) is frequently employed as a photoprotective agent in sunscreen formulations. EHMC has been found to potentially contribute to health complications as a result of its propensity to produce irritation and permeate the skin. A microgel carrier, consisting of poly(ethylene glycol dimethacrylate) (pEDGMA), was synthesized using interfacial polymerization with the aim of reducing the irritation and penetration of EHMC. The thermogravimetric analysis (TGA) indicated that the EHMC content accounted for 75.72% of the total composition. Additionally, the scanning electron microscopy (SEM) images depicted the microgel as exhibiting a spherical morphology. In this study, the loading of EHMC was demonstrated through FTIR and contact angle tests. The UV resistance, penetration, and skin irritation of the EHMC-pEDGMA microgel were additionally assessed. The investigation revealed that the novel sunscreen compound, characterized by limited dermal absorption, had no irritant effects and offered sufficient protection against ultraviolet radiation. Full article
(This article belongs to the Special Issue Functional Gel Materials and Applications)
Show Figures

Graphical abstract

21 pages, 3292 KiB  
Article
Structure Optimization of Some Single-Ion Conducting Polymer Electrolytes with Increased Conductivity Used in “Beyond Lithium-Ion” Batteries
by Dan Butnicu, Daniela Ionescu and Maria Kovaci
Polymers 2024, 16(3), 368; https://doi.org/10.3390/polym16030368 - 29 Jan 2024
Cited by 1 | Viewed by 2205
Abstract
Simulation techniques implemented with the HFSS program were used for structure optimization from the point of view of increasing the conductivity of the batteries’ electrolytes. Our analysis was focused on reliable “beyond lithium-ion” batteries, using single-ion conducting polymer electrolytes, in a gel variant. [...] Read more.
Simulation techniques implemented with the HFSS program were used for structure optimization from the point of view of increasing the conductivity of the batteries’ electrolytes. Our analysis was focused on reliable “beyond lithium-ion” batteries, using single-ion conducting polymer electrolytes, in a gel variant. Their conductivity can be increased by tuning and correlating the internal parameters of the structure. Materials in the battery system were modeled at the nanoscale with HFSS: electrodes–electrolyte–moving ions. Some new materials reported in the literature were studied, like poly(ethylene glycol) dimethacrylate-x-styrene sulfonate (PEGDMA-SS) or PU-TFMSI for the electrolyte; p-dopable polytriphenyl amine for cathodes in Na-ion batteries or sulfur cathodes in Mg-ion or Al-ion batteries. The coarse-grained molecular dynamics model combined with the atomistic model were both considered for structural simulation at the molecular level. Issues like interaction forces at the nanoscopic scale, charge carrier mobility, conductivity in the cell, and energy density of the electrodes were implied in the analysis. The results were compared to the reported experimental data, to confirm the method and for error analysis. For the real structures of gel polymer electrolytes, this method can indicate that their conductivity increases up to 15%, and even up to 26% in the resonant cases, via parameter correlation. The tuning and control of material properties becomes a problem of structure optimization, solved with non-invasive simulation methods, in agreement with the experiment. Full article
(This article belongs to the Special Issue Advances in Polymer Applied in Batteries and Capacitors)
Show Figures

Figure 1

11 pages, 2303 KiB  
Article
Fenpicoxamid-Imprinted Surface Plasmon Resonance (SPR) Sensor Based on Sulfur-Doped Graphitic Carbon Nitride and Its Application to Rice Samples
by Şule Yıldırım Akıcı, Bahar Bankoğlu Yola, Betül Karslıoğlu, İlknur Polat, Necip Atar and Mehmet Lütfi Yola
Micromachines 2024, 15(1), 6; https://doi.org/10.3390/mi15010006 - 19 Dec 2023
Cited by 18 | Viewed by 1688
Abstract
This research attempt involved the development and utilization of a newly designed surface plasmon resonance (SPR) sensor which incorporated sulfur-doped graphitic carbon nitride (S-g-C3N4) as the molecular imprinting material. The primary objective was to employ this sensor for the [...] Read more.
This research attempt involved the development and utilization of a newly designed surface plasmon resonance (SPR) sensor which incorporated sulfur-doped graphitic carbon nitride (S-g-C3N4) as the molecular imprinting material. The primary objective was to employ this sensor for the quantitative analysis of Fenpicoxamid (FEN) in rice samples. The synthesis of S-g-C3N4 with excellent purity was achieved using the thermal poly-condensation approach, which adheres to the principles of green chemistry. Afterwards, UV polymerization was utilized to fabricate a surface plasmon resonance (SPR) chip imprinted with FEN, employing S-g-C3N4 as the substrate material. This process involved the inclusion of N,N′-azobisisobutyronitrile (AIBN) as the initiator, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, methacryloylamidoglutamic acid (MAGA) as the monomer, and FEN as the analyte. After successful structural analysis investigations on a surface plasmon resonance (SPR) chip utilizing S-g-C3N4, which was imprinted with FEN, a comprehensive investigation was conducted using spectroscopic, microscopic, and electrochemical techniques. Subsequently, the kinetic analysis applications, namely the determination of the limit of quantification (LOQ) and the limit of detection (LOD), were carried out. For analytical results, the linearity of the FEN-imprinted SPR chip based on S-g-C3N4 was determined as 1.0–10.0 ng L−1 FEN, and LOQ and LOD values were obtained as 1.0 ng L−1 and 0.30 ng L−1, respectively. Finally, the prepared SPR sensor’s high selectivity, repeatability, reproducibility, and stability will ensure safe food consumption worldwide. Full article
(This article belongs to the Special Issue Flexible and Hybrid Flexible Organic Chemical and Biosensor Systems)
Show Figures

Figure 1

12 pages, 4373 KiB  
Article
Tailoring the Morphology of Monodisperse Mesoporous Silica Particles Using Different Alkoxysilanes as Silica Precursors
by Fabio Fait, Stefanie Wagner, Julia C. Steinbach, Andreas Kandelbauer and Hermann A. Mayer
Int. J. Mol. Sci. 2023, 24(14), 11729; https://doi.org/10.3390/ijms241411729 - 21 Jul 2023
Cited by 3 | Viewed by 2625
Abstract
The hard template method for the preparation of monodisperse mesoporous silica microspheres (MPSMs) has been established in recent years. In this process, in situ-generated silica nanoparticles (SNPs) enter the porous organic template and control the size and pore parameters of the final MPSMs. [...] Read more.
The hard template method for the preparation of monodisperse mesoporous silica microspheres (MPSMs) has been established in recent years. In this process, in situ-generated silica nanoparticles (SNPs) enter the porous organic template and control the size and pore parameters of the final MPSMs. Here, the sizes of the deposited SNPs are determined by the hydrolysis and condensation rates of different alkoxysilanes in a base catalyzed sol–gel process. Thus, tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS) and tetrabutyl orthosilicate (TBOS) were sol–gel processed in the presence of amino-functionalized poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) (p(GMA-co-EDMA)) templates. The size of the final MPSMs covers a broad range of 0.5–7.3 µm and a median pore size distribution from 4.0 to 24.9 nm. Moreover, the specific surface area can be adjusted between 271 and 637 m2 g−1. Also, the properties and morphology of the MPSMs differ according to the SNPs. Furthermore, the combination of different alkoxysilanes allows the individual design of the morphology and pore parameters of the silica particles. Selected MPSMs were packed into columns and successfully applied as stationary phases in high-performance liquid chromatography (HPLC) in the separation of various water-soluble vitamins. Full article
Show Figures

Graphical abstract

20 pages, 12953 KiB  
Article
Modified Sulfanilamide Release from Intelligent Poly(N-isopropylacrylamide) Hydrogels
by Ana Dinić, Vesna Nikolić, Ljubiša Nikolić, Snežana Ilić-Stojanović, Stevo Najman, Maja Urošević and Ivana Gajić
Pharmaceutics 2023, 15(6), 1749; https://doi.org/10.3390/pharmaceutics15061749 - 16 Jun 2023
Viewed by 1952
Abstract
The aim of this study was to examine homopolymeric poly(N-isopropylacrylamide), p(NIPAM), hydrogels cross-linked with ethylene glycol dimethacrylate as carriers for sulfanilamide. Using FTIR, XRD and SEM methods, structural characterization of synthesized hydrogels before and after sulfanilamide incorporation was performed. The residual [...] Read more.
The aim of this study was to examine homopolymeric poly(N-isopropylacrylamide), p(NIPAM), hydrogels cross-linked with ethylene glycol dimethacrylate as carriers for sulfanilamide. Using FTIR, XRD and SEM methods, structural characterization of synthesized hydrogels before and after sulfanilamide incorporation was performed. The residual reactants content was analyzed using the HPLC method. The swelling behavior of p(NIPAM) hydrogels of different crosslinking degrees was monitored in relation to the temperature and pH values of the surrounding medium. The effect of temperature, pH, and crosslinker content on the sulfanilamide release from hydrogels was also examined. The results of the FTIR, XRD, and SEM analysis showed that sulfanilamide is incorporated into the p(NIPAM) hydrogels. The swelling of p(NIPAM) hydrogels depended on the temperature and crosslinker content while pH had no significant effect. The sulfanilamide loading efficiency increased with increasing hydrogel crosslinking degree, ranging from 87.36% to 95.29%. The sulfanilamide release from hydrogels was consistent with the swelling results—the increase of crosslinker content reduced the amount of released sulfanilamide. After 24 h, 73.3–93.5% of incorporated sulfanilamide was released from the hydrogels. Considering the thermosensitivity of hydrogels, volume phase transition temperature close to the physiological temperature, and the satisfactory results achieved for sulfanilamide incorporation and release, it can be concluded that p(NIPAM) based hydrogels are promising carriers for sulfanilamide. Full article
Show Figures

Figure 1

Back to TopTop