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Abstract: Ethylhexyl methoxycinnamate (EHMC) is frequently employed as a photoprotective agent
in sunscreen formulations. EHMC has been found to potentially contribute to health complications as
a result of its propensity to produce irritation and permeate the skin. A microgel carrier, consisting of
poly(ethylene glycol dimethacrylate) (pEDGMA), was synthesized using interfacial polymerization
with the aim of reducing the irritation and penetration of EHMC. The thermogravimetric analysis
(TGA) indicated that the EHMC content accounted for 75.72% of the total composition. Additionally,
the scanning electron microscopy (SEM) images depicted the microgel as exhibiting a spherical
morphology. In this study, the loading of EHMC was demonstrated through FTIR and contact angle
tests. The UV resistance, penetration, and skin irritation of the EHMC-pEDGMA microgel were addi-
tionally assessed. The investigation revealed that the novel sunscreen compound, characterized by
limited dermal absorption, had no irritant effects and offered sufficient protection against ultraviolet
radiation.

Keywords: polymerization; microgel; skin irritation; sunscreen; EHMC

1. Introduction

Lipophilic UV agents are more likely to penetrate the skin because of their lipid
structure. A recent study indicated that three common UV filters all showed detection in
plasma or urine. In addition, the increasing skin temperature exposed to the sun increases
the probability of sunscreen agent penetration [1].

The lipophilic chemical known as ethylhexyl methoxycinnamate (EHMC) is commonly
utilized in sunscreen formulations used in daily life to improve the effectiveness in protect-
ing against ultraviolet (UV) radiation. Nevertheless, EHMC has garnered much attention
and debate in relation to its possible implications for health [2–4]. EHMC was detected
in the blood and urine of both rat and human models using high resolution quadrupole
time-of-flight mass spectrometry (Q-TOF-MS). Furthermore, it was determined that there
were five metabolites present in the blood samples [5]. During an in vitro study, it was
revealed that both trans- and cis-EHMC exert genotoxic effects on HL1-hT1, which are
a type of adult human liver stem cells. The findings of the Comet assay indicated that
exposure to high amounts of cis-EHMC led to considerable DNA damage, reaching a
classification of level 4 [6]. Previous studies on EHMC have shown evidence supporting
its ability to enhance the proliferation of inflammatory cytokines, notably tumor necrosis
factor-α (TNF-α) and interleukin-6 (IL-6). In addition, it was revealed that the expression
of IL-6 mRNA exhibited a significant rise of more than 15% [7].
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The number of studies focused on mitigating the permeability or irritation of EHMC
has been on the rise in response to the consistent discoveries of possible hazards to human
health. The technique of microencapsulation has been referenced in pertinent academic re-
search as a means to mitigate the adverse impacts of EHMC on human health. Perugini et al.
described the fabrication of nanoparticles loaded with EHMC, which exhibited enhanced
photostability through the utilization of salt fractionation [8]. Scalia et al. demonstrated
that the lipid microparticles (LMs) loaded with EHMC exhibited reduced permeability
compared to the unencapsulated EHMC in the in vivo skin penetration assay [9]. In their
study, Wu et al. used poly(methyl methacrylate) (PMMA) as the coating material for the
fabrication of EHMC microcapsules. These microcapsules were shown to have a modest
level of transdermal permeability and demonstrated consistent resistance against ultra-
violet (UV) radiation [10]. A subsequent study conducted by the same research team
documented the development of SiO2-encapsulated nanoparticles using the sol–gel emul-
sion technique, resulting in a cumulative release decrease of EHMC exceeding 60% [11].
In recent years, there has been a growing body of evidence supporting the efficacy and
viability of ultrasound-assisted technology in the formation of core–shell microcapsules of
EHMC [12]. The utilization of ecologically benign materials as the outer shell of microcap-
sules is highly advantageous owing to their inherent biocompatibility and biodegradability
properties. Lignin, PMMA, and poly (ethylene glycol) (PLA) are biocompatible polymers
that can be used to transport drugs. In drug loading investigations, lignin encapsulation
of target medicines is sustainable and environmentally friendly. These days, lignin-based
encapsulation is used for enhancing EHMC performance. Li et al. researched into how
lignin models and EHMC performed in terms of UV protection. The outcome showed that
even after three hours of UV irradiation, the sunscreens made of lignin models and EHMC
maintained good photostability. The sunscreens containing 4-coumaric acid and EHMC
showed better UV-shielding effectiveness in 16 lignin models, with a SPF of 19.37. The
improvement was attributed to the interaction between the aromatic rings of the lignin
models and EHMC through PD-stacked π–π stacking [13].

The pertinent research provided useful insights; nevertheless, the majority of these
new findings were primarily centered on minimizing the infiltration of EHMC, rather than
addressing both dangers, namely skin irritation and skin permeation. The fundamental
criteria for selecting components include favorable biocompatibility and effective cross-
linking performance. The preparation of hydrogels based on pEDGMA was achieved by
combining the ultrasound-assisted technique with polymerization [14]. The utilization
of pEDGMA as a loading ingredient was deemed appropriate owing to its favorable
biocompatibility [15]. Consequently, it has been extensively employed in various studies
involving drug carriers [16–19] and degradable tissue [20]. This application is based on the
polymerization [21,22] of ethylene glycol dimethacrylate (EDGMA) through covalent cross-
linking, specifically radical polymerization [23–25]. In a recent study conducted by Suhail
et al., interpenetrating polymer network (SIPN) hydrogels were synthesized using the cross-
linker EDGMA via the free radical polymerization technique. This approach effectively
regulated the release of ibuprofen [14]. In an effort to enhance the transfection effectiveness
of pullulan, Caroline et al. [26], employed the aza-Michael addition process [27] to adorn
pullulan with EGDMA. In order to enhance the extraction efficiency of caffeic acid from
wine, Elhachem et al. employed N-phenylacrylamide, ethylene glycol dimethacrylate, and
azobisisobutyronitrile as the monomer, cross-linker, and initiator, respectively, to synthesize
a functional molecule using radical polymerization [28].

In this study, an approach was undertaken to mitigate the irritation caused by EHMC
by encapsulating it with pEDGMA generated using radical self-polymerization. Notably,
this particular combination has not been previously documented in the available research.
Both homopolymerization [29] and the microemulsion technique, which are ecologically friendly
experimental procedures, were used in the synthesis of the EHMC-pEGDMA microgel.
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2. Results and Discussion
2.1. The Characterization of EHMC-pEDGMA Microgel
2.1.1. The SEM of EHMC-pEDGMA Microgel

The SEM analysis in Figure 1 revealed that the EHMC-pEDGMA microgel exhibited
an irregularly spherical shape. Furthermore, the surface of the microgel seemed smooth,
indicating that there would be no severe friction between the material and the skin. The
majority of materials produced through polymerization following emulsion had a spherical
shape and possessed a smooth surface. This distinctive trait was likely attributed to the
emulsion process, as indicated by previous studies [30–32]. Prior to the initiation of EDGMA
polymerization using the APS solution, the oil-in-water emulsion exhibited a uniformly
spherical morphology. Subsequently, the formation of pEDGMA occurred at the interface
between oil and water, resulting in the ultimate configuration of a globular molecule.
Furthermore, the absence of fissures and hollows on the material surface depicted in the
image suggests that the coating created by pEDGMA had remained intact. The presence of
an undamaged coating had a direct impact on stability as it guaranteed the absence of any
leakage of internal components from the materials. The short black bar indicates 0.5 µm.
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Figure 1. The SEM image of EHMC-pEDGMA microgel.

2.1.2. The PSD Measurement of EHMC-pEDGMA Microgel

The particle size of the EHMC-pEDGMA microgel is a significant indicator of material
properties (Figure 2). The findings indicated that the average particle size measured
517.3 nm, aligning closely with the SEM test result of approximately 500 nm. The UV
absorbance span of anti-UV agents was found to be directly controlled by the particle
size of the material in previous research studies [33–35]. The reduced particle size confers
advantages in terms of enhanced UVB absorbance. Conversely, the strong resistance to
ultraviolet A (UVA) radiation is associated with a larger particle size. While sunscreen with
exceptional UVA resistance might offer a high sun protection factor (SPF), the presence of
large particle sizes often results in an undesirable, visibly white appearance. In practice,
it is advisable to maintain a particle size that closely aligns with that of typical sunscreen
emulsions, as this approach allows for a harmonious blend of natural aesthetics and a
high sun protection factor (SPF). The reported nanoemulsions exhibited a particle size
distribution ranging from 100 to 1000 nm. This similar characteristic indicated the natural
dispersion of the EHMC-pEDGMA microgel in aqueous solutions, resulting in a suspension
with a color resembling that of sunscreen emulsions.
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Figure 2. The PSD graph of EHMC-pEDGMA microgel.

2.1.3. FTIR Spectroscope

The FTIR analysis conducted using the tableting method revealed that the EHMC-
pEDGMA microgel powder, which was synthesized by the freeze-drying procedure, ex-
hibited susceptibility to breakage when subjected to severe pressure (Figure 3). In this
instance, the characteristic absorption of EHMC was effectively detected; it was seen at
2940 cm−1, which corresponds to the stretching vibration of the C-H bond. Additionally, a
stretching vibration of the ester group C=O bond was observed at 1708 cm−1. The stretch-
ing vibration peak of the C=C bond in the aromatic compound was observed at 1614 cm−1,
whereas the bending vibrational peak of the C-H bond in the aromatic compound was
observed at 828 cm−1. These spectral findings suggest that the benzene ring in EHMC is
para-substituted. The absorption peaks seen in the FTIR spectrum of the pEGDMA poly-
mer corresponded to specific vibrational modes. Specifically, the peak at 2940 cm−1 was
attributed to the stretching vibration of C-H bonds, the peak at 1739 cm−1 was associated
with the stretching vibration of the ester group C=O bond, and the peak at 1165 cm−1 was
indicative of the stretching vibration of the C-O bond within the pEGDMA polymer. The
spectra of the EHMC-pEDGMA microgel exhibited distinct peaks corresponding to various
vibrational modes. Specifically, the stretching vibration peak of C-H at 2945 cm−1 and the
ester C=O peak at 1720 cm−1 were observed. Additionally, the stretching vibration peak of
C=C in aromatic compounds at 1614 cm−1, the C-O-C peak in aromatic ethers at 1255 cm−1

and 1165 cm−1, as well as the bending vibrational peaks of C-H at 829 cm−1 in aromatic
compounds were also detected. It may be inferred that the microgel was mainly composed
of two components: EHMC and pEDGMA.
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2.1.4. Contact Angle Test

The contact angle test was conducted to evaluate the stability and wetting prop-
erty of the EHMC-pEDGMA microgel suspension generated using deionized water and
gas condensate, respectively. The contact angle of deionized water was measured to be
44 ± 1◦, whereas the contact angle of the microgel dispersion was found to be less than 90◦

at 45 ± 1◦. These results indicate that the surface of the sunscreen microgel is hydrophilic,
demonstrating good wetting properties. The contact angle of the gas condensate was
measured to be 17 ± 1◦. However, upon the introduction of the EHMC-pEDGMA microgel,
the contact angle increased to 27 ± 2◦. This observation suggested that the stability of the
EHMC-pEDGMA microgel was insufficient when utilized in the context of oils or lipids.
The observed contact angle exhibited an approximate increase of 10◦, which could perhaps
be attributed to the presence of surfactant PVA emanating from the microgel [36].

2.1.5. The Thermogravimetric Analysis of the Sunscreen Microgel

The curves depicted in Figure 4 exhibit weight loss at two distinct temperatures,
indicating the capacity to differentiate between the core ingredient and the shell materials.
This differentiation allows for the evaluation of loading content and the assessment of
thermal stability [37]. Within the temperature range of 100–250 ◦C, it was observed that
the sample exhibited a notable escalation in weight loss, particularly at 130 ◦C, which
closely aligns with the boiling point of EHMC. At a temperature of 212 ◦C, the rate of
weight loss reaches its maximum, with a corresponding loss ratio of around 75.72% in
this particular range. The pEGDMA exhibited significant weight reduction within the
temperature range of 350–500 ◦C, with the highest rate of weight loss observed at 338 ◦C.
The thermogravimetric analysis (TGA) results revealed that EHMC constituted the largest
fraction of the microgel. Furthermore, the sample exhibited negligible weight loss below
100 ◦C, indicating that the microgel had satisfactory thermal stability.

Gels 2024, 10, x FOR PEER REVIEW 5 of 13 
 

 

2.1.4. Contact Angle Test 
The contact angle test was conducted to evaluate the stability and wetting property 

of the EHMC-pEDGMA microgel suspension generated using deionized water and gas 
condensate, respectively. The contact angle of deionized water was measured to be 44 ± 
1°, whereas the contact angle of the microgel dispersion was found to be less than 90° at 
45 ± 1°. These results indicate that the surface of the sunscreen microgel is hydrophilic, 
demonstrating good wetting properties. The contact angle of the gas condensate was 
measured to be 17 ± 1°. However, upon the introduction of the EHMC-pEDGMA micro-
gel, the contact angle increased to 27 ± 2°. This observation suggested that the stability of 
the EHMC-pEDGMA microgel was insufficient when utilized in the context of oils or li-
pids. The observed contact angle exhibited an approximate increase of 10°, which could 
perhaps be attributed to the presence of surfactant PVA emanating from the microgel [36]. 

2.1.5. The Thermogravimetric Analysis of the Sunscreen Microgel 
The curves depicted in Figure 4 exhibit weight loss at two distinct temperatures, in-

dicating the capacity to differentiate between the core ingredient and the shell materials. 
This differentiation allows for the evaluation of loading content and the assessment of 
thermal stability [37]. Within the temperature range of 100–250 °C, it was observed that 
the sample exhibited a notable escalation in weight loss, particularly at 130 °C, which 
closely aligns with the boiling point of EHMC. At a temperature of 212 °C, the rate of 
weight loss reaches its maximum, with a corresponding loss ratio of around 75.72% in this 
particular range. The pEGDMA exhibited significant weight reduction within the temper-
ature range of 350–500 °C, with the highest rate of weight loss observed at 338 °C. The 
thermogravimetric analysis (TGA) results revealed that EHMC constituted the largest 
fraction of the microgel. Furthermore, the sample exhibited negligible weight loss below 
100 °C, indicating that the microgel had satisfactory thermal stability. 

 
Figure 4. Contact angle determination between different media: (a) deionized water; (b) aqueous 
dispersion of EHMC-pEDGMA microgel; (c) gas condensate; (d) gas condensate with EHMC-
pEDGMA microgel. 

2.2. The Performance of EHMC-pEDGMA Microgel 
2.2.1. Skin Penetration 

In comparison to the original material, EHMC, the findings from the skin permeation 
test of the EHMC-pEDGMA microgel demonstrated its ability to reduce the penetration 
of EHMC in human skin. As depicted in Figure 5, there was a progressive rise in the cu-
mulative penetration of EHMC over the course of time. The error bars in both groups 

Figure 4. Contact angle determination between different media: (a) deionized water; (b) aque-
ous dispersion of EHMC-pEDGMA microgel; (c) gas condensate; (d) gas condensate with EHMC-
pEDGMA microgel.

2.2. The Performance of EHMC-pEDGMA Microgel
2.2.1. Skin Penetration

In comparison to the original material, EHMC, the findings from the skin permeation
test of the EHMC-pEDGMA microgel demonstrated its ability to reduce the penetration
of EHMC in human skin. As depicted in Figure 5, there was a progressive rise in the
cumulative penetration of EHMC over the course of time. The error bars in both groups
displayed normal values, with measurements falling within a range of 0.15 µg/cm2. In the
initial hour, the measured quantities of EHMC in the respective receiving chamber were
insufficiently distinct to ascertain the outcome, likely due to testing deviation resulting
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from operational and equipment factors. Following a duration of 12 h, the control group
exhibited an approximate accumulation of 18.26 µg/cm2 of EHMC, whereas the sunscreen
microgel demonstrated a result of 4.60 µg/cm2. Despite the relatively high error levels
observed in the EHMC-pEDGMA group, there was a considerable divergence between
the EHMC group and the EHMC-pEDGMA group. The decrease in penetration of EHMC-
pEGDMA was attributed to the macromolecular nature of the polymer pEDGMA, which
was characterized by large particle sizes. This characteristic posed challenges for the
infiltration of pEDGMA into the stratum corneum and pores, resulting in a noticeable
reduction in penetration efficiency [38–40].
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2.2.2. Skin Irritation Assays

The results shown in Figure 6 proved that the sunscreen agent EHMC exhibited a
moderate level of irritation, whereas the EHMC-pEGDMA microgel demonstrated a non-
irritating effect. This observation provided evidence supporting the notion that EHMC
possessed favorable biocompatibility and could be considered safe for application on
human skin.
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The results presented in Table 1 and Figure 7 demonstrate that the positive control
exhibited irritant effects, such as bleeding, vascular lysis, and clotting in the group treated
with a 0.1 mol/L NaOH solution (Figure 7b). The observation of capillary bleeding and
vascular lysis in the image suggested that the EHMC diluted with C12-15 alkylbenzoate at a
concentration of 1% had the potential to cause harm to human skin. In order to specifically
attribute this outcome to the EHMC, a solvent control (Figure 7c) was included in the
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subsequent procedure, which demonstrated the absence of any irritating reaction. The
suspension of the EHMC-pEDGMA microgel was subjected to testing in order to assess
the integrity of the chorioallantoic membrane. Specifically, the objective was to determine
whether the membrane exhibited any signs of bleeding, vascular lysis, or clotting when
exposed to varying concentrations of the microgel suspension. The findings that were
examined and analyzed revealed that the primary determinant of the absence of an irritating
reaction was the compatibility of pEDGMA. Another valid reason was that the surface of
the EHMC-pEGDMA microgel exhibited no remaining EHMC.

Table 1. Test results for chicken embryo chorioallantoic membrane.

Sample Concentration IS ES Irritant

EHMC-pEDGMA microgel

1% - 0 no irritant
5% - 0 no irritant
10% - 0 no irritant
50% - 0 no irritant

100% - 0 no irritant
EHMC (diluted with C12-15 alkylbenzoate) 1% 5.42 - moderate irritant

0.1 mol/L NaOH solution positive control 17.21 - corrosive
0.9% NaCl solution negative control 0 - no irritant

C12-15 alkyl benzoate solvent control 0 - no irritant
Deionized water solvent control 0 - no irritant
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(f) 1–100% w/v EHMC-pEGDMA microgel dispersion.

2.2.3. Sun Protection Factor

Figure 8 displays the SPF values obtained for two sunscreen samples, namely the
EHMC group and the EHMC-pEDGMA group. The error bars for both groups show a
range of variation within one, which can be considered an acceptable observation given that
the sun protection factor was not less than five. The UV protection efficacy of the EHMC-
pEDGMA microgel was shown to be significantly superior to that of the original UVB
absorbent EHMC. The determination of the sun protection factor is influenced by various
factors, such as the methodology employed during experimentation, the formulation
used, and the specific apparatus utilized for measurement [41,42]. The primary distinction
observed in both the composition and functionality of the sunscreen recipe was the variation
in the anti-UV ingredient utilized. The EHMC-pEDGMA microgel exhibited the ability
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to disperse effectively in the aqueous phase, hence offering a notable benefit in their
application inside oil-in-water emulsions. One notable observation is that the particle size
of the EHMC-pEDGMA microgel was found to be lower compared to the typical particle
size of emulsions. This characteristic was advantageous in the formation of a sunscreen
film with closely scattered sunscreen agent [43]. The experimental findings additionally
indicated that the inclusion of pEDGMA exhibited a favorable influence on the EHMC
anti-UV capability. The encapsulating approach described herein may have potential
applicability to other frequently employed UV absorbents.
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3. Conclusions

The EHMC-pEDGMA microgel was synthesized using radical polymerization assisted
by microemulsion technology. Although the preparation was not any easier than for the
emulsion formulation and traditional lipid microparticles, the coating based on polymer-
ization was more stable. Additionally, the EHMC-pEDGMA microgel technique proved
efficient and safe for the environment. When compared to a lengthy reaction preparation
process, the preparation might be completed in as little as 4 h, saving electricity. This
microgel met the necessary criteria, which included being non-toxic and non-irritating,
exhibiting appropriate UV absorption, demonstrating minimal penetration, and possessing
outstanding thermal stability. The material’s non-toxic characteristic was essential and
served as a benchmark for choosing the correct part to use as the shell. Therefore, the
majority of findings in the research on EHMC may select for the cytotoxicity test or neglect
the non-toxic testing of the finished product. Some materials, however, had difficulty
dissolving in water, which led to test inaccuracies and prevented the material from being
able to be analyzed. The HET-CAM test was appropriate in this study to demonstrate the
EHMC-pEDGMA microgel’s non-irritating characteristics and safety. Due to the HET-CAM
test’s lack of a dissolution limit and the membrane’s obvious reactions, it was possible
to determine the material’s direct irritating and hazardous state. The scarcity of these
sunscreen microgels posed a constraint on cost-effective production. The necessity of ex-
ploring and optimizing the preparation of microgels for industrial applications was evident.
Furthermore, the EHMC-pEDGMA microgel’s improved performance suggested that the
other anti-UV agents with minor harmful and irritating flaws would have the possibility to
be upgraded.

4. Materials and Methods
4.1. Materials

Ethylhexyl methoxycinnamate (EHMC), polyvinyl alcohol (PVA), ethylene glycol
dimethacrylate (EDGMA), ammonium peroxydisulfate (APS), sodium metabisulfite (Na2S2O5),
capric triglyceride (GTCC), potassium bromide, monometallic sodium orthophosphate, dis-
odium hydrogen phosphate, sodium chloride, and sodium hydroxide, C12-15-alkylesters
were all AR (99.7% purity) and purchased from China Shanghai Titan Technology Co., Ltd.
(Shanghai China). The fresh pig skin used in the Transdermal absorption test was from
China Shandong Zhifu Rong biological studio (Shandong China).
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4.2. Methods
4.2.1. Preparation of EHMC-pEDGMA Microgel

10 g PVA powder and 90 g water were added to a beaker, heated up to 95 ◦C and
stirred to prepare a 10 wt% PVA solution as an emulsifier. 15 g 10 wt% PVA solution and
1 g deionized water was mixed to form the aqueous phase. The oil phase was prepared
by adding 27 g EHMC and 3 g GTCC, followed by the addition of 4 g the monomer
EDGMA. The aqueous phase was then added to the oil phase while being homogenized.
To achieve better homogeneity and stability, the emulsion was transferred to the ultrasonic
cell disruption system. After ultrasonic disrupting with 450 W for 30 min, an oil-in-water
emulsion was obtained.

The ratio of APS as the initiator and Na2S2O5 as the catalyst was 1:1, accounting
for 0.4% in the entire reactant mixture. The preliminary emulsion was introduced to a
three-neck flask and purged with N2 at 30 ◦C for 30 min, then the initiator was added and
allowed to react for an additional 5 min. In the oil phase, the olefinic bonds of monomer
EDGMA were broken by catalyst in the aqueous phase, and next, the polymerization
reaction was triggered to form pEDGMA [44,45]. After adding the catalyst to the reaction
mixture, the reaction was processed within 3 h. The microgel was finally stored in the
fridge, and the dry microgel was obtained by the freeze-drying process.

4.2.2. Morphological Observation and Particle Size

The morphology of the EHMC-pEDGMA microgel was characterized by a scanning
electron microscope (SEM, S-3400N, Hitachi, Tokyo, Japan) under dry conditions. The
particle size distribution (PSD) of the EHMC-pEDGMA microgel dispersed in the deionized
water was analyzed by the laser particle size analyzer (LS, Nano-ZS, Malvern Limited,
Fareham, UK).

4.2.3. Fourier Infrared Spectroscopy (FTIR) Analysis

The infrared spectra of pEGDMA, EHMC, and EHMC-pEDGMA microgel were mea-
sured to observe their components by the Fourier infrared spectrometer (FTIR, VERTEX 70,
Bruker Limited, Berlin, Germany).

4.2.4. Contact Angle Analysis

The wetting performance of the EHMC-pEDGMA microgel was determined by mea-
suring the contact angle. The static contact angles of the EHMC-pEDGMA microgel disper-
sions, dispersed by deionized water and gas condensate, respectively, were measured in
the experiments performed using a glass sheet as the solid substrate. Gas condensate is a
liquid consisting of straight short-chain alkanes, which is also a frequently used agent to
substitute common oil in contact angle tests.

4.2.5. Thermogravimetric Analysis

The composition of the sunscreen microgel was determined by the thermal gravimetric
analyzer (TGA, Q-5000, TA Limited, New Castle, DE, USA). The behavior of microgel weight
loss was observed at a heating rate of 20 ◦C/min in the temperature range of 20–600 ◦C.

4.2.6. Skin Permeation Behavior

In this study, the researchers employed fresh pig skin sourced from the dorsal region
of a Bama miniature pig as a substitute for human skin in the Franz test. The methodology
employed in this study was derived from relevant research [46] and subsequently adjusted
to align with the actual conditions of the test. A mixture of ethanol and normal saline was
prepared in a 1:1 volume ratio to serve as the receptor medium in the receiving chamber
(20 mL) of the Franz diffusion tank. A dispersion of sunscreen microgel at a concentration
of 1 mg/mL was generated as the donor vehicle. A pig skin sample, shaped like a coin
and with an approximate size of 4.90 cm2, was positioned between the donor and receptor.
The precise measurement of the area that was involved in the experiment was around
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2.54 cm2. The receptor medium was maintained at a temperature of 25 ◦C and agitated at a
speed of 500 revolutions per minute (rpm). The receptor medium was sampled at regular
intervals of time, with a volume of 1 mL being extracted for the purpose of measuring UV
absorbance at a wavelength of 310 nm. To preserve the initial volume, 1 mL of receptor
media was introduced. The standard curve approach was employed to determine the
concentration of EHMC in various samples. The equation of the cumulative penetration
quality was as follows:

Qt =
VtCt + ∑t−1 ViCi

A
. (1)

Ct and Ci represented the concentration obtained at the tth and the (t − 1) sampling
points, respectively. Vt, Vi, and A each represented the volume of the receiving chamber,
the sampling volume, and the effective penetration area, respectively.

4.2.7. Skin Irritation Assays

Skin irritation was investigated by the cosmetics ocular irritant and the corrosive HET-
CAM tests derived from the industry standard [47]. The SPF fertilized embryo (Zhejiang
Lihua Agricultural Science and Technology Co., Ltd., Zhejiang, China) was selected and
their eligible chicken embryos on the ninth day of hatching were ready. In this assay, six
chicken embryos from each sample group, one negative control, one positive control, one
solvent control, and a reference control were set. The reaction time method with irritation
score (IS) is generally used for the transparent liquid test objects. The experimental controls
included a positive control (0.1 mol/L NaOH solution), a negative control (NaCl solution
with a mass concentration of 0.9%), a solvent control (C12-15 alkyl benzoate, deionized
water), and a reference control (1% EHMC diluted with C12-15 alkylbenzoate). Once the
0.3 mL sample was added to the membrane, the moments referring to hemorrhage, vascular
lysis and clotting were recorded in the scheduled 5 min. The result was calculated by the IS
formula equation as follows:

IS =
(301 − sec H)× 5

300
+

(301 − sec L)× 7
300

+
(301 − sec C)× 9

300
. (2)

Sec H, Sec L, and Sec C represent the average time (seconds) at which hemorrhage,
vascular lysis, and clotting occurred, respectively.

The EHMC-pEDGMA microgel dispersion was outside the standard of the IS method.
During the determination of the end point score (ES), a total of 0.3 mL dispersion was
exposed to the entire membrane surface. After 3 min of exposure, the dispersion was
carefully rinsed with the configured 0.9% NaCl solution for 30 s. The result was evaluated
using the irritation score. The score corresponds to no reaction, mild, moderate, and severe
bleeding due to three reactions, including hemorrhage, vascular lysis, and clotting. The
ES was obtained from the average total score. For the IS evaluation, an IS lower than
1 indicates no irritant, an IS between 1 and 5 indicates a light irritant, an IS between 5 and
9 indicates a moderate irritant, and an IS higher than 10 indicates corrosive. In the ES
evaluation, the average total score under 12 is rated as no or light irritant, between 12 and
16 is moderate irritant, and beyond 16 is corrosive.

4.2.8. Sun Protection Factor

Sun protection factor (SPF) is a symbol of sunscreen performance, and in this study,
the SPF of the EHMC group and the EHMC-pEDGMA group were tested by a sunscreen
analyzer (SPF-290AS, Solar Light Limited, Glenside, PA, USA). The sunscreen formula of
the two groups was mostly the same, except for the addition of 5% anti-UV agent EHMC or
EHMC-pEDGMA. The dosage of each sample was about 0.3 g; the two samples were both
applied to the PMMA plates and then placed in a dark place. After 15 min, two samples
were prepared to be analyzed. Each sample was tested in three parallel experiments.
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