Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = pollinating and predatory insects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8627 KB  
Article
Genome-Wide Identification and Expression Analyses of Odorant-Binding Proteins in Hoverfly Eupeodes corollae
by He Yuan, Huiru Jia, Xianyong Zhou, Hui Li, Chao Wu and Kongming Wu
Int. J. Mol. Sci. 2025, 26(18), 8956; https://doi.org/10.3390/ijms26188956 - 14 Sep 2025
Viewed by 313
Abstract
Chemosensory systems are fundamental for insects to regulate behaviors such as prey detection, oviposition, and pollination. Despite their importance, the molecular mechanisms underlying chemosensation remain poorly understood in many insect groups. Hoverflies (Syrphidae), whose larvae are efficient aphid predators and adults act as [...] Read more.
Chemosensory systems are fundamental for insects to regulate behaviors such as prey detection, oviposition, and pollination. Despite their importance, the molecular mechanisms underlying chemosensation remain poorly understood in many insect groups. Hoverflies (Syrphidae), whose larvae are efficient aphid predators and adults act as pollinators, represent a functionally important but understudied lineage. Building on the genome of Eupeodes corollae that we recently published, we selected this dominant and widespread species as a representative model and performed a genome-wide identification and analysis of odorant-binding proteins (OBPs) to provide a molecular foundation for understanding chemosensory recognition mechanisms. Accordingly, a total of 47 OBPs were identified and classified into Classic, Minus-C, and Plus-C subfamilies, with conserved motifs and structural features observed within each group. Next, phylogenetic analysis revealed that several EcorOBPs are homologous to functionally characterized OBPs in other Diptera, suggesting conserved evolutionary roles. Moreover, chromosomal mapping showed that Minus-C EcorOBPs cluster on chromosome 2, and Ka/Ks analysis indicated strong purifying selection, reflecting evolutionary stability. In addition, synteny analysis demonstrated that E. corollae shares more collinear OBP gene pairs with predatory hoverflies (Episyrphus balteatus and Scaeva pyrastri) than with the saprophagous species Eristalis tenax, consistent with ecological divergence. Finally, transcriptomic profiling revealed tissue-specific expression patterns, including antennal-biased EcorOBP1 linked to olfaction and reproductive tissue-biased EcorOBP11 linked to reproduction, highlighting candidate genes for functional studies. Together, these findings provide a comprehensive characterization of OBPs in E. corollae and offer molecular insights into chemosensory mechanisms that support both pest control and pollination services. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 3079 KB  
Review
Biology, Ecology, and Management of Prevalent Thrips Species (Thysanoptera: Thripidae) Impacting Blueberry Production in the Southeastern United States
by Rosan Adhikari, David G. Riley, Rajagopalbabu Srinivasan, Mark Abney, Cera Jones and Ashfaq A. Sial
Insects 2025, 16(7), 653; https://doi.org/10.3390/insects16070653 - 24 Jun 2025
Viewed by 1445
Abstract
Blueberry is a high-value fruit crop in the United States, with Georgia and Florida serving as important early-season production regions. In these areas, several thrips species (Thysanoptera: Thripidae), including Frankliniella tritici (Fitch), Frankliniella bispinosa (Morgan), and Scirtothrips dorsalis (Hood), have emerged as economically [...] Read more.
Blueberry is a high-value fruit crop in the United States, with Georgia and Florida serving as important early-season production regions. In these areas, several thrips species (Thysanoptera: Thripidae), including Frankliniella tritici (Fitch), Frankliniella bispinosa (Morgan), and Scirtothrips dorsalis (Hood), have emerged as economically significant pests. While F. tritici and F. bispinosa primarily damage floral tissues, S. dorsalis targets young foliage. Their rapid reproduction, high mobility, and broad host range contribute to rapid population buildup and complicate the management programs. Species identification is often difficult due to overlapping morphological features and requires the use of molecular diagnostic tools for accurate identification. Although action thresholds, such as 2–6 F. tritici per flower cluster, are used to guide management decisions, robust economic thresholds based on yield loss remain undeveloped. Integrated pest management (IPM) practices include regular monitoring, cultural control (e.g., pruning, reflective mulch), biological control using Orius insidiosus (Say) and predatory mites, and chemical control. Reduced-risk insecticides like spinetoram and spinosad offer effective suppression while minimizing harm to pollinators and beneficial insects. However, the brief flowering period limits the establishment of biological control agents. Developing species-specific economic thresholds and phenology-based IPM strategies is critical for effective and sustainable thrips management in blueberry cropping systems. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

19 pages, 2255 KB  
Article
Attraction Behavior and Functional Response of Orius insidiosus to Semiochemicals Mediating Rose–Western Flower Thrips Interactions
by Marco A. Díaz, Ericsson Coy-Barrera and Daniel Rodríguez
Agriculture 2025, 15(4), 431; https://doi.org/10.3390/agriculture15040431 - 19 Feb 2025
Viewed by 1141
Abstract
The Western Flower Thrips (Frankliniella occidentalis) constitutes a significant threat to rose greenhouses in Colombia. An eco-friendly approach to managing this pest involves using the predatory bug Orius insidiosus. The pest and its predator’s food search and selection mechanisms are [...] Read more.
The Western Flower Thrips (Frankliniella occidentalis) constitutes a significant threat to rose greenhouses in Colombia. An eco-friendly approach to managing this pest involves using the predatory bug Orius insidiosus. The pest and its predator’s food search and selection mechanisms are influenced by ecological interactions mediated by volatile organic compounds (VOCs) emitted during plant–pest interactions. To investigate the role of VOCs in the foraging and host-selection behaviors of O. insidiosus, we conducted functional response assays in greenhouses and olfactometry experiments in laboratory settings. These experiments used flowers from two rose cultivars, with and without female adult thrips, over 24, 48, and 72 h. Functional response analysis revealed a shift in O. insidiosus foraging behavior based on the duration of thrips interaction with rose flowers, transitioning from a Type II to a Type III functional response between 24 and 48 h in the ‘Freedom’ cultivar. The maximum consumption rates increased significantly, from 7.98 individuals at 24 h to 16.18 individuals at 48 h, before slightly decreasing to 14.37 individuals at 72 h. This shift coincided with an increase in O. insidiosus preference for thrips-infested ‘Freedom’ flowers over time, with selection proportions rising from 0.37 at 24 h to 0.46 at 72 h, suggesting a learning effect on prey-searching behavior mediated by VOCs. Olfactometry analyses revealed that O. insidiosus did not respond to the same VOCs that attracted F. occidentalis during flower infestation. However, O. insidiosus responded to certain VOCs likely associated with floral resources such as nectar and pollen, which also attract pollinators and zoophytophagous predators. This observation suggests a potential overlap in the chemical cues used by O. insidiosus for distinct ecological purposes. These findings highlight the complex chemical ecology underlying predator–prey interactions in agroecosystems and underscore the importance of considering VOCs in shaping the foraging behavior of natural enemies and their interactions with insect pests. Full article
(This article belongs to the Special Issue Advances in Biological Pest Control in Agroecosystems)
Show Figures

Figure 1

18 pages, 1147 KB  
Article
Weeds Enhance Insect Diversity and Abundance and May Improve Soil Conditions in Mango Cultivation of South Florida
by Blaire Kleiman and Suzanne Koptur
Insects 2023, 14(1), 65; https://doi.org/10.3390/insects14010065 - 10 Jan 2023
Cited by 12 | Viewed by 4288
Abstract
This study examined if weeds could serve as insectary plants to increase beneficial insect abundance and diversity in mango cultivation in southern Florida. Additionally, we examined how weed presence affects mango tree soil health. We found that weeds significantly increased pollinating and parasitoid [...] Read more.
This study examined if weeds could serve as insectary plants to increase beneficial insect abundance and diversity in mango cultivation in southern Florida. Additionally, we examined how weed presence affects mango tree soil health. We found that weeds significantly increased pollinating and parasitoid insect abundance and diversity. Eight insect orders and eighteen families were significantly more abundant on mango trees with weeds growing beneath them than those where weeds were removed. There was no difference in predatory insects between treatments, and slightly more herbivorous insects on weedy mango trees. Pollinating insects visiting mango flowers in the weed treatment were significantly greater, as well as spiders on weedy mango trees. However, there were more lacewings (Neuroptera) observed on the mango trees without weeds, and leaf chlorophyll in the old and new mango leaves was significantly greater, in the weed-free treatment. Soil conditions, however, significantly improved in soil carbon and a greater pH reduction in the presence of weeds, though weeds affected neither soil nitrogen, phosphorous, nor chlorophyll in productive green leaves. These results show that a tolerable level of selective weed species’ presence may benefit insect, plant, and soil biodiversity in farms. This is important in increasing production, sustainability, and biodiversity in agriculture, which otherwise may be deficient in non-crop life. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

11 pages, 1059 KB  
Article
Population Fitness of Eupeodes corollae Fabricius (Diptera: Syrphidae) Feeding on Different Species of Aphids
by Shanshan Jiang, Hui Li, Limei He and Kongming Wu
Insects 2022, 13(6), 494; https://doi.org/10.3390/insects13060494 - 24 May 2022
Cited by 12 | Viewed by 3269
Abstract
Eupeodes corollae Fabricius, as one of the most common beneficial predatory insects in agricultural ecosystems, provides pollination and biological control services that help improve crop yield and maintain biodiversity. However, systematic research is needed on the species of aphids used for propagation. To [...] Read more.
Eupeodes corollae Fabricius, as one of the most common beneficial predatory insects in agricultural ecosystems, provides pollination and biological control services that help improve crop yield and maintain biodiversity. However, systematic research is needed on the species of aphids used for propagation. To develop highly fit populations of the important insect predator and crop pollinator, E. corollae, for research and commercial use, further research is needed to develop the most nutritious diet and efficient propagation methods. Here, the fitness of E. corollae was assessed in the laboratory after larvae were fed an aphid diet of Aphis craccivora Koch, Myzus persicae Sulzer or Megoura japonica Matsumura. The larval survival rate on M. japonica was significantly lower than on A. craccivora and M. persicae. The developmental duration for larvae (7.6 d) and pupae (6.9 d) was longest on A. craccivora. The pupal emergence rate on A. craccivora (98.0%) was significantly higher than on the other two, and lowest (64.7%) on M. japonica. On A. craccivora, M. persicae, and M. japonica, respectively, the generation time was 24.85 d, 23.12 d and 21.05 d; the value for the intrinsic rate of natural increase was 0.19, 0.20, and 0.21; and the value for the finite rate of increase was 1.21, 1.22, and 1.23. For flight variables, E. corollae attained the fastest velocity and longest distance and duration on M. japonica. The M. japonica diet, thus, provided the shortest generation time, the highest intrinsic rate of natural increase and finite rate of increase, the maximum fecundity and the greatest flight ability. Thus, to improve the survival rate of E. corollae larvae, A. craccivora or M. persicae can be used to feed newly hatched larvae, and M. japonica can be used for second- and third-instar larvae. These results provide a theoretical basis for feeding E. corollae and optimizing its ecosystem services. Full article
Show Figures

Figure 1

37 pages, 5267 KB  
Review
Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review
by Michelle T. Fountain
Insects 2022, 13(3), 304; https://doi.org/10.3390/insects13030304 - 18 Mar 2022
Cited by 44 | Viewed by 9328
Abstract
Integrated pest management (IPM) has been practiced by the fruit industry for at least 30 years. Naturally occurring beneficial insects have been encouraged to thrive alongside introduced predatory insects. However, Conservation Biological Control (CBC) and augmented biocontrol through the release of large numbers [...] Read more.
Integrated pest management (IPM) has been practiced by the fruit industry for at least 30 years. Naturally occurring beneficial insects have been encouraged to thrive alongside introduced predatory insects. However, Conservation Biological Control (CBC) and augmented biocontrol through the release of large numbers of natural enemies is normally only widely adopted when a pest has become resistant to available conventional pesticides and control has begun to break down. In addition, the incorporation of wild pollinator management, essential to fruit production, has, in the past, not been a priority but is now increasingly recognized through integrated pest and pollinator management (IPPM). This review focuses on the impacts on pest regulation and pollination services in fruit crops through the delivery of natural enemies and pollinating insects by provisioning areas of fruiting crops with floral resources. Most of the studies in this review highlighted beneficial or benign impacts of floral resource prevision to fruit crops. However, placement in the landscape and spill-over of beneficial arthropods into the crop can be influential and limiting. This review also highlights the need for longer-term ecological studies to understand the impacts of changing arthropod communities over time and the opportunity to tailor wildflower mixes to specific crops for increased pest control and pollination benefits, ultimately impacting fruit growers bottom-line with less reliance on pesticides. Full article
(This article belongs to the Special Issue Pollinator Diversity in Sustainable Agroecosystems)
Show Figures

Figure 1

23 pages, 4767 KB  
Article
Effects of Different Inter-Row Soil Management and Intra-Row Living Mulch on Spontaneous Flora, Beneficial Insects, and Growth of Young Olive Trees in Southern Italy
by Giuseppina Las Casas, Corrado Ciaccia, Valeria Iovino, Filippo Ferlito, Biagio Torrisi, Enrico Maria Lodolini, Alessio Giuffrida, Roberto Catania, Elisabetta Nicolosi and Salvatore Bella
Plants 2022, 11(4), 545; https://doi.org/10.3390/plants11040545 - 18 Feb 2022
Cited by 25 | Viewed by 3864
Abstract
Conservation agriculture (i.e., minimized soil disturbance and permanent soil covering) and living mulches represent two agroecological practices that can improve soil fertility, spontaneous flora, and beneficial insect communities. This research studied the effect of these practices in a young olive orchard in the [...] Read more.
Conservation agriculture (i.e., minimized soil disturbance and permanent soil covering) and living mulches represent two agroecological practices that can improve soil fertility, spontaneous flora, and beneficial insect communities. This research studied the effect of these practices in a young olive orchard in the Mediterranean area. Two Sicilian olive cultivars (‘Nocellara del Belice’ and ‘Nocellara etnea’) were used for the field experiment; inter-row minimum and zero tillage and four species of aromatic plants as living mulch along the row were tested. Spontaneous flora and beneficial insect communities, as well as tree growth, were monitored. The inter-row management did not influence the spontaneous flora dynamics. The species adopted for living mulch showed a very different degree of development and soil cover; 69 insect species (pollinators and predators) belonging to five orders (Hymenoptera, Lepidoptera, Diptera, Neuroptera, and Coleoptera) and 17 families were recorded. The growth of the olive trees was not affected by the conservative strategies.: In the inter-row, the growth of the spontaneous flora was limited by the high temperatures during the summer. Among the living mulch species, sage and lemongrass guaranteed an almost full soil cover, reducing the need for weed management along the row, as well as increasing the beneficial insects without influencing the young tree growth. Full article
(This article belongs to the Special Issue Sustainable Weed Management)
Show Figures

Figure 1

19 pages, 1349 KB  
Article
Pollen Feeding Reduces Predation of Northern Corn Rootworm Eggs (Coleoptera: Chrysomelidae, Diabrotica barberi) by a Soil-Dwelling Mite (Acari: Laelapidae: Stratiolaelaps scimitus)
by Deirdre A. Prischmann-Voldseth, Stephanie J. Swenson and Robert Brenner
Insects 2021, 12(11), 979; https://doi.org/10.3390/insects12110979 - 29 Oct 2021
Cited by 1 | Viewed by 2616
Abstract
Landscape diversification with flowering plants can benefit pollinators and natural enemies, although insect pests can also use floral resources for nutrition and chemoprotection. Corn rootworms (Coleoptera: Chrysomelidae, Diabrotica spp.) are major pests of corn (Zea mays L.), and while subterranean larvae primarily [...] Read more.
Landscape diversification with flowering plants can benefit pollinators and natural enemies, although insect pests can also use floral resources for nutrition and chemoprotection. Corn rootworms (Coleoptera: Chrysomelidae, Diabrotica spp.) are major pests of corn (Zea mays L.), and while subterranean larvae primarily feed on corn roots, adult rootworms commonly consume floral resources from other plant species. We quantified the species, density, and sex of adult corn Diabroticite rootworm beetles on wild and cultivated sunflower, corn, and squash, quantified pollen within the bodies of adult northern corn rootworms [NCR, D. barberi (Smith & Lawrence)], and investigated how consumption of sunflower and corn pollen by NCR adults impacted predation of their eggs by two soil-dwelling mites with different feeding specialization. NCR were the most common Diabroticite species on sunflower inflorescences and western corn rootworm (WCR, D. v. virgifera LeConte) were more abundant in corn and squash blossoms. Pollen feeding by NCR adults did not impact egg predation by omnivorous Tyrophagus putrescentiae (Schrank) (Acari: Sarcoptiformes, Acaridae), but predatory Stratiolaelaps scimitus (Womersley) (Acari: Mesostigmata, Laelapidae) ate eggs less frequently and took longer to feed on eggs from NCR females that had fed on sunflower pollen. This research suggests pollen feeding by adult NCR can impact predation of their eggs. While increasing plant diversity can benefit natural enemies and pest control within agroecosystems, it is important to consider how floral resources alter dietary preferences of biocontrol agents. Full article
(This article belongs to the Special Issue IPM in the Rhizosphere: Challenges, Discovery and Success)
Show Figures

Figure 1

17 pages, 1369 KB  
Article
Dwarf White Clover Supports Pollinators, Augments Nitrogen in Clover–Turfgrass Lawns, and Suppresses Root-Feeding Grubs in Monoculture but Not in Mixed Swards
by Daniel A. Potter, Carl T. Redmond, Timothy D. McNamara and Gregg C. Munshaw
Sustainability 2021, 13(21), 11801; https://doi.org/10.3390/su132111801 - 26 Oct 2021
Cited by 7 | Viewed by 7532
Abstract
The runoff or leaching of nitrogen fertilizers from monoculture turfgrass lawns contri-butes to water pollution, and such lawns are susceptible to insect pests and provide few resources for pollinators. One approach to creating more sustainable lawns is to incorporate white clover (Trifolium [...] Read more.
The runoff or leaching of nitrogen fertilizers from monoculture turfgrass lawns contri-butes to water pollution, and such lawns are susceptible to insect pests and provide few resources for pollinators. One approach to creating more sustainable lawns is to incorporate white clover (Trifolium repens L.), a nitrogen-fixing legume, into grass seed mixtures or existing turfgrass swards. “Dutch” white clover (DWC), a ubiquitous landrace, forms non-uniform clumps when intermixed with turfgrasses, thus it is often considered to be a lawn weed. Recently, several dwarf varieties of white clover have been selected for their small leaf size and low growth habit, allowing them to tolerate low mowing heights and blend better with grasses. To date, there have been no studies published on the entomological aspects of dwarf clover in pure stands or intermixed with turfgrass. We established field plots with combinations of DWC, two cultivars of dwarf clover, and tall fescue (Schedonorus arundinaceus (Schreb.) Dumort.) in monoculture or mixed swards, and compared the invertebrate communities therein. Predatory arthropods and earthworm numbers were similar in all plot types. The clover monocultures were resistant to white grubs, but the grub densities in the clover–tall fescue dicultures were similar to those found in the pure tall fescue swards. Dwarf clovers and DWC were similarly attractive to bees and supported similar bee assemblages. The tall fescue foliar N content was elevated 17–27% in the dicultures with clovers. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

22 pages, 1580 KB  
Review
Indirect Effect of Pesticides on Insects and Other Arthropods
by Francisco Sánchez-Bayo
Toxics 2021, 9(8), 177; https://doi.org/10.3390/toxics9080177 - 30 Jul 2021
Cited by 196 | Viewed by 19822
Abstract
Pesticides released to the environment can indirectly affect target and non-target species in ways that are often contrary to their intended use. Such indirect effects are mediated through direct impacts on other species or the physical environment and depend on ecological mechanisms and [...] Read more.
Pesticides released to the environment can indirectly affect target and non-target species in ways that are often contrary to their intended use. Such indirect effects are mediated through direct impacts on other species or the physical environment and depend on ecological mechanisms and species interactions. Typical mechanisms are the release of herbivores from predation and release from competition among species with similar niches. Application of insecticides to agriculture often results in subsequent pest outbreaks due to the elimination of natural enemies. The loss of floristic diversity and food resources that result from herbicide applications can reduce populations of pollinators and natural enemies of crop pests. In aquatic ecosystems, insecticides and fungicides often induce algae blooms as the chemicals reduce grazing by zooplankton and benthic herbivores. Increases in periphyton biomass typically result in the replacement of arthropods with more tolerant species such as snails, worms and tadpoles. Fungicides and systemic insecticides also reduce nutrient recycling by impairing the ability of detritivorous arthropods. Residues of herbicides can reduce the biomass of macrophytes in ponds and wetlands, indirectly affecting the protection and breeding of predatory insects in that environment. The direct impacts of pesticides in the environment are therefore either amplified or compensated by their indirect effects. Full article
(This article belongs to the Special Issue Direct and Indirect Effects of Agricultural Pesticides on Insects)
Show Figures

Figure 1

11 pages, 2124 KB  
Article
Beneficial Insect Attraction to Milkweeds (Asclepias speciosa, Asclepias fascicularis) in Washington State, USA
by David G. James, Lorraine Seymour, Gerry Lauby and Katie Buckley
Insects 2016, 7(3), 30; https://doi.org/10.3390/insects7030030 - 29 Jun 2016
Cited by 8 | Viewed by 13422
Abstract
Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the [...] Read more.
Native plant and beneficial insect associations are relatively unstudied yet are important in native habitat restoration programs for improving and sustaining conservation biological control of arthropod pests in agricultural crops. Milkweeds (Asclepias spp.) are currently the focus of restoration programs in the USA aimed at reversing a decline in populations of the milkweed-dependent monarch butterfly (Danaus plexippus); however, little is known of the benefits of these plants to other beneficial insects. Beneficial insects (predators, parasitoids, pollinators) attracted to two milkweed species (Asclepias speciosa, Asclepias fascicularis) in central Washington State, WA, USA were identified and counted on transparent sticky traps attached to blooms over five seasons. Combining all categories of beneficial insects, means of 128 and 126 insects per trap were recorded for A. speciosa and A. fascicularis, respectively. Predatory and parasitic flies dominated trap catches for A. speciosa while parasitic wasps were the most commonly trapped beneficial insects on A. fascicularis. Bees were trapped commonly on both species, especially A. speciosa with native bees trapped in significantly greater numbers than honey bees. Beneficial insect attraction to A. speciosa and A. fascicularis was substantial. Therefore, these plants are ideal candidates for habitat restoration, intended to enhance conservation biological control, and for pollinator conservation. In central Washington, milkweed restoration programs for enhancement of D. plexippus populations should also provide benefits for pest suppression and pollinator conservation. Full article
(This article belongs to the Special Issue Biological Control of Invertebrate Pests)
Show Figures

Figure 1

26 pages, 1169 KB  
Article
Landscape and Local Controls of Insect Biodiversity in Conservation Grasslands: Implications for the Conservation of Ecosystem Service Providers in Agricultural Environments
by Thomas O. Crist and Valerie E. Peters
Land 2014, 3(3), 693-718; https://doi.org/10.3390/land3030693 - 14 Jul 2014
Cited by 12 | Viewed by 9554
Abstract
The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and [...] Read more.
The conservation of biodiversity in intensively managed agricultural landscapes depends on the amount and spatial arrangement of cultivated and natural lands. Conservation incentives that create semi-natural grasslands may increase the biodiversity of beneficial insects and their associated ecosystem services, such as pollination and the regulation of insect pests, but the effectiveness of these incentives for insect conservation are poorly known, especially in North America. We studied the variation in species richness, composition, and functional-group abundances of bees and predatory beetles in conservation grasslands surrounded by intensively managed agriculture in Southwest Ohio, USA. Characteristics of grassland patches and surrounding land-cover types were used to predict insect species richness, composition, and functional-group abundance using linear models and multivariate ordinations. Bee species richness was positively influenced by forb cover and beetle richness was positively related to grass cover; both taxa had greater richness in grasslands surrounded by larger amounts of semi-natural land cover. Functional groups of bees and predatory beetles defined by body size and sociality varied in their abundance according to differences in plant composition of grassland patches, as well as the surrounding land-cover diversity. Intensive agriculture in the surrounding landscape acted as a filter to both bee and beetle species composition in conservation grasslands. Our results support the need for management incentives to consider landscape-level processes in the conservation of biodiversity and ecosystem services. Full article
(This article belongs to the Special Issue Landscape Perspectives on Environmental Conservation)
Show Figures

Figure 1

Back to TopTop