Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Impact of Farm and Landscape Scale Floral Components
3. Impacts of Floral Resources on Fruit Damage and Production
3.1. Natural Enemies
3.2. Pollinators
4. Does the Length of Time a Floral Resource Is in Place Impact Benefits?
5. What Is the Impact of Wildflower Intervention (Vegetation) Structure and Composition?
6. What Is the Impact of Floral Resource Size?
7. Do Distance from the Crop and Edge Impact the Effectiveness of Wildflowers?
7.1. Natural Enemies
7.2. Pollinators
7.3. Production
8. Benefits of Floral Resources to Natural Enemies, Pollinators, and Crop Production
8.1. Natural Enemies
8.2. Pollinators
8.3. Detrimental Effects
9. Choice of Floral Resources
10. Establishment and Management of Floral Resource
11. Overall Conclusions and Future Directions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Senapathi, D.; Carvalheiro, L.G.; Biesmeijer, J.C.; Dodson, C.A.; Evans, R.L.; McKerchar, M.; Morton, R.D.; Moss, E.D.; Roberts, S.P.; Kunin, W.E.; et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. Biol. Sci. 2015, 282, 20150294. [Google Scholar] [CrossRef] [Green Version]
- BRIG. UK Biodiversity Action Plan Priority Habitat Descriptions; JNCC: Peterborough, UK, 2011. [Google Scholar]
- DEFRA. UK National Action Plan for the Sustainable Use of Pesticides (Plant Protection Products); DEFRA: York, UK, 2013. [Google Scholar]
- Larson, B.M.H.; Kevan, P.G.; Inouye, D.W. Flies and flowers: Taxonomic diversity of anthophiles and pollinators. Can. Entomol. 2001, 133, 439–465. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, A.; Borges, P.A.V. Worldwide importance of insect pollination in apple orchards: A review. Agric. Ecosyst. Environ. 2020, 293, 106839. [Google Scholar] [CrossRef]
- Pecenka, J.R.; Ingwell, L.L.; Foster, R.E.; Krupke, C.H.; Kaplan, I. IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef]
- Egan, P.A.; Dicks, L.V.; Hokkanen, H.M.T.; Stenberg, J.A. Delivering Integrated Pest and Pollinator Management (IPPM). Trends Plant Sci. 2020, 25, 577–589. [Google Scholar] [CrossRef]
- Michaud, J.P. Problems inherent to augmentation of natural enemies in open agriculture. Neotrop. Entomol. 2018, 47, 161–170. [Google Scholar] [CrossRef]
- McCravy, K. Conservation biological control. In Encyclopedia of Entomology, 2nd ed.; Springer: Amsterdam, The Netherlands, 2008; pp. 1021–1023. [Google Scholar]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [Green Version]
- Pardo, A.; Lopes, D.H.; Fierro, N.; Borges, P.A.V. Limited effect of management on apple pollination: A case study from an oceanic island. Insects 2020, 11, 351. [Google Scholar] [CrossRef]
- Holland, J.M.; Jeanneret, P.; Moonen, A.C.; van der Werf, W.; Rossing, W.A.H.; Antichi, D.; Entling, M.H.; Giffard, B.; Helsen, H.; Szalai, M.; et al. Approaches to identify the value of seminatural habitats for conservation biological control. Insects 2020, 11, 195. [Google Scholar] [CrossRef] [Green Version]
- Schweiger, O.; Musche, M.; Bailey, D.; Billeter, R.; Diekotter, T.; Hendrickx, F.; Herzog, F.; Liira, J.; Maelfait, J.P.; Speelmans, M.; et al. Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos 2007, 116, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Snyder, W.E.; Snyder, G.B.; Finke, D.L.; Straub, C.S. Predator biodiversity strengthens herbivore suppression. Ecol. Lett. 2006, 9, 789–796. [Google Scholar] [CrossRef]
- Senapathi, D.; Biesmeijer, J.C.; Breeze, T.D.; Kleijn, D.; Potts, S.G.; Carvalheiro, L.G. Pollinator conservation—the difference between managing for pollination services and preserving pollinator diversity. Curr. Opin. Insect Sci. 2015, 12, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.W.; Brigham, C.A.; Hoeksema, J.D.; Lyons, K.G.; Mills, M.H.; Van Mantgem, P.J. Linking biodiversity to ecosystem function: Implications for conservation ecology. Oecologia 2000, 122, 297–305. [Google Scholar] [CrossRef]
- Breeze, T.D.; Bailey, A.P.; Balcombe, K.G.; Potts, S.G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 2011, 142, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Defra. Horticulture Statistics. Available online: https://www.gov.uk/government/statistics/latest-horticulture-statistics (accessed on 25 November 2021).
- Morlat, R.; Jacquet, A. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Vitic. 2003, 54, 1–7. [Google Scholar]
- Losey, J.E.; Vaughan, M. The economic value of ecological services provided by insects. Bioscience 2006, 56, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- Andow, D.A. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 1991, 36, 561–586. [Google Scholar] [CrossRef]
- Jonsson, M.; Wratten, S.D.; Landis, D.A.; Tompkins, J.-M.L.; Cullen, R. Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biol. Invasions 2010, 12, 2933–2945. [Google Scholar] [CrossRef] [Green Version]
- Wratten, S.D.; Gillespie, M.; Decourtye, A.; Mader, E.; Desneux, N. Pollinator habitat enhancement: Benefits to other ecosystem services. Agric. Ecosyst. Environ. 2012, 159, 112–122. [Google Scholar] [CrossRef]
- Klatt, B.K.; Holzschuh, A.; Westphal, C.; Clough, Y.; Smit, I.; Pawelzik, E.; Tscharntke, T. Bee pollination improves crop quality, shelf life and commercial value. Proc. Biol. Sci. 2014, 281, 20132440. [Google Scholar] [CrossRef] [PubMed]
- Granatstein, D.; Sánchez, E. Research knowledge and needs for orchard floor management in organic tree fruit systems. Int. J. Fruit Sci. 2009, 9, 257–281. [Google Scholar] [CrossRef]
- Altieri, M.A.; Schmidt, L.L. Cover crops affect insect and spider populations in apple orchards. Calif. Agric. 1986, 40, 15–17. [Google Scholar]
- Denys, C.; Tscharntke, T. Plant-insect communities and predator-prey ratios in field margin strips, adjacent crop fields, and fallows. Oecologia 2002, 130, 315–324. [Google Scholar] [CrossRef]
- Harrington, K.C.; Hartley, M.J.; Rahman, A.; James, T.K. Long term ground cover options for apple orchards. N. Z. Plant Prot. 2005, 58, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Meagher, R., Jr.; Meyer, J. Effects of ground cover management on certain abiotic and biotic interactions in peach orchard ecosystems. Crop Prot. 1990, 9, 65–72. [Google Scholar] [CrossRef]
- Bugg, R.L.; Waddington, C. Using cover crops to manage arthropod pests of orchards: A review. Agric. Ecosyst. Environ. 1994, 50, 11–28. [Google Scholar] [CrossRef]
- Green, M. The role of cover crops in agri-environment schemes past and present. Asp. Appl. Biol. 2015, 77–84. [Google Scholar]
- Cross, J.; Fountain, M.; Markó, V.; Nagy, C. Arthropod ecosystem services in apple orchards and their economic benefits. Ecol. Entomol. 2015, 40, 82–96. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Regetz, J.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Bogdanski, A.; Gemmill-Herren, B.; Greenleaf, S.S.; Klein, A.M.; Mayfield, M.M.; et al. Landscape effects on crop pollination services: Are there general patterns? Ecol. Lett. 2008, 11, 499–515. [Google Scholar] [CrossRef]
- Kleijn, D.; Sutherland, W.J. How effective are agri-environment schemes in maintaining and conserving biodiversity. J. Appl. Ecol. 2003, 40, 947–969. [Google Scholar] [CrossRef]
- Wood, T.J.; Holland, J.M.; Goulson, D.; Beggs, J. Providing foraging resources for solitary bees on farmland: Current schemes for pollinators benefit a limited suite of species. J. Appl. Ecol. 2016, 54, 323–333. [Google Scholar] [CrossRef]
- Defra. Environmental Land Management Schemes: Outcomes. Available online: https://www.gov.uk/government/publications/environmental-land-management-schemes-outcomes/environmental-land-management-schemes-outcomes (accessed on 6 January 2022).
- Mateos-Fierro, Z.; Fountain, M.T.; Garratt, M.P.; Ashbrook, K.; Westbury, D.B. Active management of wildflower strips in commercial sweet cherry orchards enhances natural enemies and pest regulation services. Agric. Ecosyst. Environ. 2021, 317, 107485. [Google Scholar] [CrossRef]
- Altieri, M.; Whitcomb, W. Weed manipulation for insect pest management in corn. Environ. Manag. 1980, 4, 483–489. [Google Scholar] [CrossRef]
- Sutter, L.; Albrecht, M. Synergistic interactions of ecosystem services: Florivorous pest control boosts crop yield increase through insect pollination. Proc. Biol. Sci. 2016, 283, 2529. [Google Scholar] [CrossRef] [Green Version]
- Földesi, R.; Kovács-Hostyánszki, A.; Kőrösi, Á.; Somay, L.; Elek, Z.; Markó, V.; Sárospataki, M.; Bakos, R.; Varga, Á.; Nyisztor, K.; et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 2016, 18, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, A.M.; Ekroos, J.; Dänhardt, J.; Andersson, G.K.S.; Olsson, O.; Smith, H.G. Sown flower strips in southern Sweden increase abundances of wild bees and hoverflies in the wider landscape. Biol. Conserv. 2015, 184, 51–58. [Google Scholar] [CrossRef]
- Redhead, J.W.; Dreier, S.; Bourke, A.F.G.; Heard, M.S.; Jordan, W.C.; Sumner, S.; Wang, J.; Carvell, C. Effects of habitat composition and landscape structure on worker foraging distances of five bumble bee species. Ecol. Appl. 2016, 26, 726–739. [Google Scholar] [CrossRef] [Green Version]
- Angelella, G.M.; McCullough, C.T.; OߣRourke, M.E. Honey bee hives decrease wild bee abundance, species richness, and fruit count on farms regardless of wildflower strips. Sci. Rep. 2021, 11, 3202. [Google Scholar] [CrossRef] [PubMed]
- Bostanian, N.J.; Goulet, H.; O’Hara, J.; Masner, L.; Racette, G. Towards insecticide free apple orchards: Flowering plants to attract beneficial arthropods. Biocontrol Sci. Technol. 2004, 14, 25–37. [Google Scholar] [CrossRef]
- McKerchar, M.; Potts, S.; Fountain, M.; Garratt, M.P.; Westbury, D.B. The potential for wildflower interventions to enhance natural enemies and pollinators in commercial apple orchards is limited by other management practices. Agric. Ecosyst. Environ. 2020, 301, 107034. [Google Scholar] [CrossRef]
- Markó, V.; Jenser, G.; Mihályi, K.; Hegyi, T.; Balázs, K. Flowers for better pest control? Effects of apple orchard groundcover management on mites (Acari), leafminers (Lepidoptera, Scitellidae), and fruit pests. Biocontrol Sci. Technol. 2012, 22, 39–60. [Google Scholar] [CrossRef]
- Cahenzli, F.; Sigsgaard, L.; Daniel, C.; Herz, A.; Jamar, L.; Kelderer, M.; Jacobsen, S.K.; Kruczyńska, D.; Matray, S.; Porcel, M.; et al. Perennial flower strips for pest control in organic apple orchards—A pan-European study. Agric. Ecosyst. Environ. 2019, 278, 43–53. [Google Scholar] [CrossRef]
- Samnegård, U.; Alins, G.; Boreux, V.; Bosch, J.; García, D.; Happe, A.K.; Klein, A.M.; Miñarro, M.; Mody, K.; Porcel, M.; et al. Management trade-offs on ecosystem services in apple orchards across Europe: Direct and indirect effects of organic production. J. Appl. Ecol. 2018, 56, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Carvalheiro, L.G.; Seymour, C.L.; Nicolson, S.W.; Veldtman, R.; Clough, Y. Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. J. Appl. Ecol. 2012, 49, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Eeraerts, M.; Smagghe, G.; Meeus, I. Pollinator diversity, floral resources and semi-natural habitat, instead of honey bees and intensive agriculture, enhance pollination service to sweet cherry. Agric. Ecosyst. Environ. 2019, 284, 106586. [Google Scholar] [CrossRef]
- Holzschuh, A.; Dudenhöffer, J.-H.; Tscharntke, T. Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biol. Conserv. 2012, 153, 101–107. [Google Scholar] [CrossRef]
- Muñoz, A.E.; Plantegenest, M.; Amouroux, P.; Zaviezo, T. Native flower strips increase visitation by non-bee insects to avocado flowers and promote yield. Basic Appl. Ecol. 2021, 56, 369–378. [Google Scholar] [CrossRef]
- Osterman, J.; Theodorou, P.; Radzevičiūtė, R.; Schnitker, P.; Paxton, R.J. Apple pollination is ensured by wild bees when honey bees are drawn away from orchards by a mass co-flowering crop, oilseed rape. Agric. Ecosyst. Environ. 2021, 315. [Google Scholar] [CrossRef]
- Campbell, A.J.; Wilby, A.; Sutton, P.; Wäckers, F.L. Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agric. Ecosyst. Environ. 2017, 239, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Sastre, R.; Miñarro, M.; García, D. Animal biodiversity in cider apple orchards: Simultaneous environmental drivers and effects on insectivory and pollination. Agric. Ecosyst. Environ. 2020, 295, 106918. [Google Scholar] [CrossRef]
- Bone, N.J.; Thomson, L.J.; Ridland, P.M.; Cole, P.; Hoffmann, A.A. Cover crops in Victorian apple orchards: Effects on production, natural enemies and pests across a season. Crop Prot. 2009, 28, 675–683. [Google Scholar] [CrossRef]
- Gervais, A.; Belisle, M.; Mazerolle, M.J.; Fournier, V. Landscape enhancements in apple orchards: Higher bumble bee queen species richness, but no effect on apple quality. Insects 2021, 12, 421. [Google Scholar] [CrossRef]
- Castle, D.; Grass, I.; Westphal, C. Fruit quantity and quality of strawberries benefit from enhanced pollinator abundance at hedgerows in agricultural landscapes. Agric. Ecosyst. Environ. 2019, 275, 14–22. [Google Scholar] [CrossRef]
- Blaauw, B.R.; Isaacs, R. Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wildflowers. Basic Appl. Ecol. 2014, 15, 701–711. [Google Scholar] [CrossRef]
- Pywell, R.F.; Heard, M.S.; Woodcock, B.A.; Hinsley, S.; Ridding, L.; Nowakowski, M.; Bullock, J.M. Wildlife-friendly farming increases crop yield: Evidence for ecological intensification. Proc. Biol. Sci. 2015, 282, 20151740. [Google Scholar] [CrossRef] [Green Version]
- Gruys, P. Hits and misses. The ecological approach to pest control in orchards. Entomol. Exp. Appl. 1982, 31, 70–87. [Google Scholar] [CrossRef]
- Beizhou, S.; Jie, Z.; Jinghui, H.; Hongying, W.; Yun, K.; Yuncong, Y. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants. Pest. Manag. Sci. 2011, 67, 1107–1114. [Google Scholar] [CrossRef]
- Wyss, E. The effect of weed strips on aphids and aphidophagous predators in an apple orchard. Entomol. Exp. Appl. 1995, 75, 43–49. [Google Scholar] [CrossRef]
- Wyss, E.; Niggli, U.; Nentwig, W. The impact of spiders on aphid populations in a strip-managed apple orchard. J. Appl. Entomol. 1995, 119, 473–478. [Google Scholar] [CrossRef]
- Markó, V.; Keresztes, B. Flowers for better pest control? Ground cover plants enhance apple orchard spiders (Araneae), but not necessarily their impact on pests. Biocontrol Sci. Technol. 2014, 24, 574–596. [Google Scholar] [CrossRef]
- Markó, V.; Jenser, G.; Kondorosy, E.; Ábrahám, L.; Balázs, K. Flowers for better pest control? The effects of apple orchard ground cover management on green apple aphids (Aphisspp.) (Hemiptera: Aphididae), their predators and the canopy insect community. Biocontrol Sci. Technol. 2013, 23, 126–145. [Google Scholar] [CrossRef]
- Carvell, C.; Mitschunas, N.; McDonald, R.; Hulmes, S.; Hulmes, L.; OߣConnor, R.S.; Garratt, M.P.D.; Potts, S.G.; Fountain, M.T.; Sadykova, D. Establishment and management of wildflower areas for insect pollinators in commercial orchards. Basic Appl. Ecol. 2022, 58, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, B.A.; Potts, S.G.; Tscheulin, T.; Pilgrim, E.; Ramsey, A.J.; Harrison-Cripps, J.; Brown, V.K.; Tallowin, J.R. Responses of invertebrate trophic level, feeding guild and body size to the management of improved grassland field margins. J. Appl. Ecol. 2009, 46, 920–929. [Google Scholar] [CrossRef]
- Scheper, J.; Bommarco, R.; Holzschuh, A.; Potts, S.G.; Riedinger, V.; Roberts, S.P.M.; Rundlöf, M.; Smith, H.G.; Steffan-Dewenter, I.; Wickens, J.B.; et al. Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J. Appl. Ecol. 2015, 52, 1165–1175. [Google Scholar] [CrossRef]
- Kral-O’Brien, K.C.; O’Brien, P.L.; Hovick, T.J.; Harmon, J.P.; Reddy, G.V.P. Meta-analysis: Higher plant richness supports higher pollinator richness across many land use types. Ann. Entomol. Soc. Am. 2021, 114, 267–275. [Google Scholar] [CrossRef]
- Ebeling, A.; Klein, A.-M.; Schumacher, J.; Weisser, W.W.; Tscharntke, T. How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos 2008, 117, 1808–1815. [Google Scholar] [CrossRef]
- Senapathi, D.; Frund, J.; Albrecht, M.; Garratt, M.P.D.; Kleijn, D.; Pickles, B.J.; Potts, S.G.; An, J.; Andersson, G.K.S.; Bansch, S.; et al. Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proc. Biol. Sci. 2021, 288, 20210212. [Google Scholar] [CrossRef]
- Hicks, D.M.; Ouvrard, P.; Baldock, K.C.; Baude, M.; Goddard, M.A.; Kunin, W.E.; Mitschunas, N.; Memmott, J.; Morse, H.; Nikolitsi, M.; et al. Food for pollinators: Quantifying the nectar and pollen resources of urban flower meadows. PLoS ONE 2016, 11, e0158117. [Google Scholar] [CrossRef] [Green Version]
- Bihaly, Á.D.; Kovács-Hostyánszki, A.; Szalai, M.; Sárospataki, M. Nesting activity of cavity-nesting bees and wasps is lower in small-scale apple orchards compared to nearby semi-natural habitats. Agric. For. Entomol. 2020, 23, 49–58. [Google Scholar] [CrossRef]
- Hellwig, N.; Schubert, L.F.; Kirmer, A.; Tischew, S.; Dieker, P. Effects of wildflower strips, landscape structure and agricultural practices on wild bee assemblages—A matter of data resolution and spatial scale? Agric. Ecosyst. Environ. 2022, 326, 107764. [Google Scholar] [CrossRef]
- Dicks, L.V.; Baude, M.; Roberts, S.P.; Phillips, J.; Green, M.; Carvell, C. How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecol. Entomol. 2015, 40, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Heard, M.S.; Carvell, C.; Carreck, N.L.; Rothery, P.; Osborne, J.L.; Bourke, A.F. Landscape context not patch size determines bumble-bee density on flower mixtures sown for agri-environment schemes. Biol. Lett. 2007, 3, 638–641. [Google Scholar] [CrossRef] [Green Version]
- Westphal, C.; Steffan-Dewenter, I.; Tscharntke, T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 2003, 6, 961–965. [Google Scholar] [CrossRef]
- Hevia, V.; Carmona, C.P.; Azcárate, F.M.; Heredia, R.; González, J.A. Role of floral strips and semi-natural habitats as enhancers of wild bee functional diversity in intensive agricultural landscapes. Agric. Ecosyst. Environ. 2021, 319, 107544. [Google Scholar] [CrossRef]
- McHugh, N.M.; Bown, B.; McVeigh, A.; Powell, R.; Swan, E.; Szczur, J.; Wilson, P.; Holland, J. The value of two agri-environment scheme habitats for pollinators: Annually cultivated margins for arable plants and floristically enhanced grass margins. Agric. Ecosyst. Environ. 2022, 326, 107773. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Carvalheiro, L.G.; Vaissière, B.E.; Gemmill-Herren, B.; Hipólito, J.; Freitas, B.M.; Ngo, H.T.; Azzu, N.; Sáez, A.; Åström, J. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 2016, 351, 388–391. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, R.; Kirk, A.K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 2010, 47, 841–849. [Google Scholar] [CrossRef]
- Tscharntke, T.; Steffan-Dewenter, I.; Kruess, A.; Thies, C. Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol. Appl. 2002, 12, 354–363. [Google Scholar]
- Kremen, C.; Williams, N.M.; Bugg, R.L.; Fay, J.P.; Thorp, R.W. The area requirements of an ecosystem service: Crop pollination by native bee communities in California. Ecol. Lett. 2004, 7, 1109–1119. [Google Scholar] [CrossRef]
- Delaplane, K.; Mayer, D. Honey bees: Managing honey bees for pollination. In Crop Pollination by Bees: Evolution, Ecology, Conservation, and Management; CABI: Oxfordshire, UK, 2000; pp. 51–62. [Google Scholar]
- Marshall, E.J.P.; West, T.M. Impacts of field margins, landscape and crop on the distributions of Syrphidae on an arable farm. Asp. Appl. Biol. 2006, 81, 91. [Google Scholar]
- Ries, L.; Fletcher, R.J.; Battin, J.; Sisk, T.D. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 491–522. [Google Scholar] [CrossRef] [Green Version]
- Blitzer, E.J.; Dormann, C.F.; Holzschuh, A.; Klein, A.-M.; Rand, T.A.; Tscharntke, T. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 2012, 146, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Albert, L.; Franck, P.; Gilles, Y.; Plantegenest, M. Impact of agroecological infrastructures on the dynamics of Dysaphis plantaginea (Hemiptera: Aphididae) and its natural enemies in apple orchards in Northwestern France. Environ. Entomol. 2017, 46, 528–537. [Google Scholar] [CrossRef]
- Shaw, B.; Nagy, C.; Fountain, M.T. Organic control strategies for use in IPM of invertebrate pests in apple and pear orchards. Insects 2021, 12, 1106. [Google Scholar] [CrossRef]
- Mateos-Fierro, Z. Sustainable production of sweet cherry: Maximising benefits from ecosystem services. Ph.D. Thesis, University of Worcester, Worcester, UK, 2020. [Google Scholar]
- Walton, N.J.; Isaacs, R. Influence of native flowering plant strips on natural enemies and herbivores in adjacent blueberry fields. Environ. Entomol. 2011, 40, 697–705. [Google Scholar] [CrossRef]
- Miliczky, E.; Horton, D. Densities of beneficial arthropods within pear and apple orchards affected by distance from adjacent native habitat and association of natural enemies with extra-orchard host plants. Biol. Control 2005, 33, 249–259. [Google Scholar] [CrossRef]
- Salveter, R. The influence of sown herb strips and spontaneous weeds on the larval stages of aphidophagous hoverflies (Dipt., Syrphidae). J. Appl. Entomol. 1998, 122, 103–114. [Google Scholar] [CrossRef]
- Wratten, S.D.; Bowie, M.H.; Hickman, J.M.; Evans, A.M.; Sedcole, J.R.; Tylianakis, J.M. Field boundaries as barriers to movement of hover flies (Diptera: Syrphidae) in cultivated land. Oecologia 2003, 134, 605–611. [Google Scholar] [CrossRef]
- Harwood, R.; Hickman, J.; Macleod, A.; Sherratt, T.; Wratten, S. Managing field margins for hoverflies. In Proceedings of the Field Margins: Integrating Agriculture and Conservation, University of Warwick, Coventry, UK, 18–20 April 1994; pp. 147–152. [Google Scholar]
- Frank, T. Density of adult hoverflies (Dipt., Syrphidae) in sown weed strips and adjacent fields. J. Appl. Entomol. 1999, 123, 351–355. [Google Scholar] [CrossRef]
- Laubertie, E. The role of resource subsidies in enhancing biological control of aphids by hoverflies (Diptera: Syrphidae). Ph.D. Thesis, Lincoln University, Lincoln, UK, 2007. [Google Scholar]
- Wratten, S.D.; White, A.J.; Bowie, M.; Berry, N.A.; Weigmann, U. Phenology and ecology of hoverflies (Diptera: Syrphidae) in New Zealand. Environ. Entomol. 1995, 24, 595–600. [Google Scholar] [CrossRef]
- Lövei, G.; Hodgson, D.; MacLeod, A.; Wratten, S. Attractiveness of some novel crops for flower-visiting hoverflies (Diptera: Syrphidae): Comparisons from two continents. In Pest Control and Sustainable Agriculture; CSIRO: Canberra, Australia, 1993; pp. 368–370. [Google Scholar]
- Sackett, T.E.; Buddle, C.M.; Vincent, C. Dynamics of spider colonization of apple orchards from adjacent deciduous forest. Agric. Ecosyst. Environ. 2009, 129, 144–148. [Google Scholar] [CrossRef]
- Scarratt, S.L.; Wratten, S.D.; Shishehbor, P. Measuring parasitoid movement from floral resources in a vineyard. Biol. Control 2008, 46, 107–113. [Google Scholar] [CrossRef]
- Sigsgaard, L.; Betzer, C.; Naulin, C.; Eilenberg, J.; Enkegaard, A.; Kristensen, K.; Michaud, J.P. The effect of floral resources on parasitoid and host longevity: Prospects for conservation biological control in strawberries. J. Insect Sci. 2013, 13, 104. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Kremen, C.; Morales, J.M.; Bommarco, R.; Cunningham, S.A.; Carvalheiro, L.G.; Chacoff, N.P.; Dudenhoffer, J.H.; Greenleaf, S.S.; et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 2011, 14, 1062–1072. [Google Scholar] [CrossRef]
- Lentini, P.E.; Martin, T.G.; Gibbons, P.; Fischer, J.; Cunningham, S.A. Supporting wild pollinators in a temperate agricultural landscape: Maintaining mosaics of natural features and production. Biol. Conserv. 2012, 149, 84–92. [Google Scholar] [CrossRef]
- Kleijn, D.; van Langevelde, F. Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl. Ecol. 2006, 7, 201–214. [Google Scholar] [CrossRef]
- Fountain, M.T.; Mateos-Fierro, Z.; Shaw, B.; Brain, P.; Delgado, A. Insect pollinators of conference pear (Pyrus communis L.) and their contribution to fruit quality. J. Pollinat. Ecol. 2019, 25, 103–114. [Google Scholar] [CrossRef]
- Joshi, N.K.; Otieno, M.; Rajotte, E.G.; Fleischer, S.J.; Biddinger, D.J. Proximity to woodland and landscape structure drives pollinator visitation in apple orchard ecosystem. Front. Ecol. Evol. 2016, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.M.; Fleischmann, A.; Renner, S.S. Foraging distances in six species of solitary bees with body lengths of 6 to 15 mm, inferred from individual tagging, suggest 150 m-rule-of-thumb for flower strip distances. J. Hymenopt. Res. 2020, 77, 105–117. [Google Scholar] [CrossRef]
- Greenleaf, S.S.; Williams, N.M.; Winfree, R.; Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 2007, 153, 589–596. [Google Scholar] [CrossRef]
- Gathmann, A.; Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 2002, 71, 757–764. [Google Scholar] [CrossRef]
- Zurbuchen, A.; Landert, L.; Klaiber, J.; Müller, A.; Hein, S.; Dorn, S. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biol. Conserv. 2010, 143, 669–676. [Google Scholar] [CrossRef]
- Morandin, L.A.; Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 2013, 23, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Carvalheiro, L.G.; Seymour, C.L.; Veldtman, R.; Nicolson, S.W. Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J. Appl. Ecol. 2010, 47, 810–820. [Google Scholar] [CrossRef]
- Hall, M.A.; Jones, J.; Rocchetti, M.; Wright, D.; Rader, R. Bee visitation and fruit quality in berries under protected cropping vary along the length of polytunnels. J. Econ. Entomol. 2019, 113, 1337–1346. [Google Scholar] [CrossRef]
- Bennewicz, J. Aphidivorous hoverflies (Diptera: Syrphidae) at field boundaries and woodland edges in an agricultural landscape. Pol. J. Entomol. Pol. Pismo Entomol. 2011, 80, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Duelli, P.; Studer, M.; Marchand, I.; Jakob, S. Population movements of arthropods between natural and cultivated areas. Biol. Conserv. 1990, 54, 193–207. [Google Scholar] [CrossRef]
- Campbell, A.J.; Wilby, A.; Sutton, P.; Wackers, F. Getting More Power from Your Flowers: Multi-Functional Flower Strips Enhance Pollinators and Pest Control Agents in Apple Orchards. Insects 2017, 8, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogg, B.N.; Daane, K.M. The role of dispersal from natural habitat in determining spider abundance and diversity in California vineyards. Agric. Ecosyst. Environ. 2010, 135, 260–267. [Google Scholar] [CrossRef]
- He, X.; Kiær, L.P.; Jensen, P.M.; Sigsgaard, L. The effect of floral resources on predator longevity and fecundity: A systematic review and meta-analysis. Biol. Control 2021, 153, 104476. [Google Scholar] [CrossRef]
- Simon, S.; Bouvier, J.-C.; Debras, J.-F.; Sauphanor, B. Biodiversity and pest management in orchard systems. A review. Agron. Sustain. Dev. 2010, 30, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Fye, R.E. Cover crop manipulation for building pear Psylla (Homoptera: Psyllidae) predator populations in pear orchards. J. Econ. Entomol. 1983, 76, 306–310. [Google Scholar] [CrossRef]
- Stephens, M.J.; France, C.M.; Wratten, S.D.; Frampton, C. Enhancing biological control of leafrollers (Lepidoptera: Tortricidae) by sowing buckwheat (Fagopyrum esculentum) in an orchard. Biocontrol Sci. Technol. 1998, 8, 547–558. [Google Scholar] [CrossRef]
- Prieto-Benítez, S.; Méndez, M. Effects of land management on the abundance and richness of spiders (Araneae): A meta-analysis. Biol. Conserv. 2011, 144, 683–691. [Google Scholar] [CrossRef]
- Cardenas, M.; Pascual, F.; Campos, M.; Pekar, S. The spider assemblage of olive groves under three management systems. Environ. Entomol. 2015, 44, 509–518. [Google Scholar] [CrossRef]
- Dib, H.; Libourel, G.; Warlop, F. Entomological and functional role of floral strips in an organic apple orchard: Hymenopteran parasitoids as a case study. J. Insect Conserv. 2012, 16, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Marliac, G.; Simon, S.; Mazzia, C.; Penvern, S.; Lescourret, F.; Capowiez, Y. Increased grass cover height in the alleys of apple orchards does not promote Cydia pomonella biocontrol. BioControl 2015, 60, 805–815. [Google Scholar] [CrossRef]
- Leius, K. Influence of wild flowers on parasitism of tent caterpillar and codling moth. Can. Entomol. 1967, 99, 444–446. [Google Scholar] [CrossRef]
- Berndt, L.A.; Wratten, S.D.; Scarratt, S.L. The influence of floral resource subsidies on parasitism rates of leafrollers (Lepidoptera: Tortricidae) in New Zealand vineyards. Biol. Control 2006, 37, 50–55. [Google Scholar] [CrossRef]
- English-Loeb, G.; Rhainds, M.; Martinson, T.; Ugine, T. Influence of flowering cover crops on Anagrus parasitoids (Hymenoptera: Mymaridae) and Erythroneura leafhoppers (Homoptera: Cicadellidae) in New York vineyards. Agric. For. Entomol. 2003, 5, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Irvin, N.A.; Bistline-East, A.; Hoddle, M.S. The effect of an irrigated buckwheat cover crop on grape vine productivity, and beneficial insect and grape pest abundance in southern California. Biol. Control 2016, 93, 72–83. [Google Scholar] [CrossRef]
- Irvin, N.A.; Scarratt, S.L.; Wratten, S.D.; Frampton, C.M.; Chapman, R.B.; Tylianakis, J.M. The effects of floral understoreys on parasitism of leafrollers (Lepidoptera: Tortricidae) on apples in New Zealand. Agric. For. Entomol. 2006, 8, 25–34. [Google Scholar] [CrossRef]
- Frank, S.D.; Wratten, S.D.; Sandhu, H.S.; Shrewsbury, P.M. Video analysis to determine how habitat strata affects predator diversity and predation of Epiphyas postvittana (Lepidoptera: Tortricidae) in a vineyard. Biol. Control 2007, 41, 230–236. [Google Scholar] [CrossRef]
- Serra, G.; Lentini, A.; Verdinelli, M.; Delrio, G. Effects of cover crop management on grape pests in a Mediterranean environment. IOBC WPRS Bull. 2006, 29, 209. [Google Scholar]
- Chant, D. Predacious spiders in orchards in south-eastern England. J. Hortic. Sci. 1956, 31, 35–46. [Google Scholar] [CrossRef]
- Solomon, M.G.; Cross, J.V.; Fitzgerald, J.D.; Campbell, C.A.M.; Jolly, R.L.; Olszak, R.W.; Niemczyk, E.; Vogt, H. Biocontrol of pests of apples and pears in Northern and Central Europe—3. Predators. Biocontrol Sci. Technol. 2000, 10, 91–128. [Google Scholar] [CrossRef]
- Silva, E.B.; Franco, J.C.; Vasconcelos, T.; Branco, M. Effect of ground cover vegetation on the abundance and diversity of beneficial arthropods in citrus orchards. Bull. Entomol. Res. 2010, 100, 489–499. [Google Scholar] [CrossRef]
- Wyss, E. The effects of artificial weed strips on diversity and abundance of the arthropod fauna in a Swiss experimental apple orchard. Agric. Ecosyst. Environ. 1996, 60, 47–59. [Google Scholar] [CrossRef]
- Vogt, H.; Weigel, A. Is it possible to enhance biological control of aphids in an apple orchard with flowering strips? IOBC WPRS Bull. 1999, 22, 39–46. [Google Scholar]
- Gontijo, L.M.; Beers, E.H.; Snyder, W.E. Flowers promote aphid suppression in apple orchards. Biol. Control 2013, 66, 8–15. [Google Scholar] [CrossRef]
- Fitzgerald, J.D.; Solomon, M.G. Can flowering plants enhance numbers of beneficial arthropods in UK apple and pear orchards? Biocontrol Sci. Technol. 2004, 14, 291–300. [Google Scholar] [CrossRef]
- Hodgkiss, D.; Brown, M.J.F.; Fountain, M.T. The effect of within-crop floral resources on pollination, aphid control and fruit quality in commercial strawberry. Agric. Ecosyst. Environ. 2019, 275, 112–122. [Google Scholar] [CrossRef]
- Winkler, K.; Helsen, H.; Devkota, B.H. Predatory bugs show higher abundance close to flower strips in pear orchards. In Proceedings of the Section Experimental and Applied Entomology-Netherlands Entomological Society; Nederlandse Entomologische Vereniging: Amsterdam, The Netherlands, 2007; Volume 18. [Google Scholar]
- Rieux, R.; Simon, S.; Defrance, H. Role of hedgerows and ground cover management on arthropod populations in pear orchards. Agric. Ecosyst. Environ. 1999, 73, 119–127. [Google Scholar] [CrossRef]
- Vogt, H.; Weigel, A.; Wyss, E. Aspects of indirect plant protection strategies in orchards: Are flowering strips an adequate measure to control apple aphids? In Proceedings of the 6th European Congress of Entomology; Ceske Budejovice, Czech Republic, 23–29 August 1998.
- McClure, M.S.; Andreadis, T.G.; Lacy, G.H. Manipulating orchard ground cover to reduce invasion by leafhopper vectors of peach X-disease. J. Econ. Entomol. 1982, 75, 64–68. [Google Scholar] [CrossRef]
- Meagher, R.L., Jr.; Meyer, J.R. Influence of ground cover and herbicide treatments on Tetranychus urticae populations in peach orchards. Exp. Appl. Acarol. 1990, 9, 149–158. [Google Scholar] [CrossRef]
- Spellman, B.; Brown, M.; Mathews, C.R. Effect of floral and extrafloral resources on predation of Aphis spiraecola by Harmonia axyridis on apple. BioControl 2006, 51, 715–724. [Google Scholar] [CrossRef]
- Jenser, G.; Balázs, K.; Erdélyi, C.S.; Haltrich, A.; Kádár, F.; Kozár, F.; Markó, V.; Rácz, V.; Samu, F. Changes in arthropod population composition in IPM apple orchards under continental climatic conditions in Hungary. Agric. Ecosyst. Environ. 1999, 73, 141–154. [Google Scholar] [CrossRef]
- Nyrop, J.P.; Minns, J.C.; Herring, C.P. Influence of ground cover on dynamics of Amblyseius fallacis Garman (Acarina; Phytoseiidae) in New York apple orchards. Agric. Ecosyst. Environ. 1994, 50, 61–72. [Google Scholar] [CrossRef]
- Brown, M.W. Flowering ground cover plants for pest management in peach and apple orchards. IOBC Wprs Bull. 2001, 24, 379–382. [Google Scholar]
- Pfammatter, W.; Vuignier, R. Amélioration de la lutte biologique dans les cultures fruitières au moyen de bandes de plantes sauvages. In Proceedings of the 1er Colloque transnational sur les luttes biologique, intégrée et raisonnée, Lille, France, 21–23 January 1998; pp. 71–72. [Google Scholar]
- Costello, M.J.; Daane, K.M. Spider and leafhopper (Erythroneura spp.) response to vineyard ground cover. Environ. Entomol. 2003, 32, 1085–1098. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Mathews, C.; Krawczyk, G. Analyzing the results of biodiversity experiments: Enhancing parasitism of tufted apple budmoth. In Proceedings of the 7th IOBC International Conference on Integrated Fruit Production (Book of Abstracts), Avignon, France, 28–30 October 2008; p. 6. [Google Scholar]
- Debras, J.F. Choix des essences dߣune haie composite pour lutter contre le psylle du poirier. ADALIA Bull. Dߣinformation Tech. Club Prot. Raison. 2002, 49, 1923. [Google Scholar]
- Debras, J.F. Rôles fonctionnels des haies dans la régulation des ravageurs: Le cas du psylle Cacopsylla pyri L. dans les vergers du sud-est de la France. Ph.D. Thesis, Avignon University, Avignon, France, 2007. [Google Scholar]
- Alston, D.G. Effect of apple orchard floor vegetation on density and dispersal of phytophagous and predaceous mites in Utah. Agric. Ecosyst. Environ. 1994, 50, 73–84. [Google Scholar] [CrossRef]
- Croft, B. Management of apple orchard weeds to improve biological control of spider mites. Abstr. Meet Weed Sci. Soc. Am. 1982, 257, 134. [Google Scholar]
- Tuovinen, T. Influence of surrounding trees and bushes on the phytoseiid mite fauna on apple orchard trees in Finland. Agric. Ecosyst. Environ. 1994, 50, 39–47. [Google Scholar] [CrossRef]
- Yan, Y.-H.; Yu, Y.; Du, X.-G.; Zhao, B.-G. Conservation and augmentation of natural enemies in pest management of Chinese apple orchards. Agric. Ecosyst. Environ. 1997, 62, 253–260. [Google Scholar] [CrossRef]
- Blaauw, B.R.; Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 2014, 51, 890–898. [Google Scholar] [CrossRef]
- Feltham, H.; Park, K.; Minderman, J.; Goulson, D. Experimental evidence that wildflower strips increase pollinator visits to crops. Ecol. Evol. 2015, 5, 3523–3530. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, C.C.; Ward, K.L.; Williams, N.M.; Isaacs, R.; Mason, K.S.; Wilson, J.K.; Brokaw, J.; Gut, L.J.; Rothwell, N.L.; Wood, T.J.; et al. Mismatched outcomes for biodiversity and ecosystem services: Testing the responses of crop pollinators and wild bee biodiversity to habitat enhancement. Ecol. Lett. 2019, 23, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Sheffield, C.S.; Westby, S.M.; Smith, R.F.; Kevan, P.G. Potential of bigleaf lupine for building and sustaining Osmia lignaria populations for pollination of apple. Can. Entomol. 2008, 140, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Mallinger, R.E.; Gibbs, J.; Gratton, C. Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods. Landsc. Ecol. 2016, 31, 1523–1535. [Google Scholar] [CrossRef]
- Son, M.W.; Jung, C. Effects of blooming in ground cover on the pollinator network and fruit production in apple orchards. Korean J. Appl. Entomol. 2021, 60, 115–122. [Google Scholar]
- Martins, K.T.; Albert, C.H.; Lechowicz, M.J.; Gonzalez, A. Complementary crops and landscape features sustain wild bee communities. Ecol. Appl. 2018, 28, 1093–1105. [Google Scholar] [CrossRef]
- Blitzer, E.J.; Gibbs, J.; Park, M.G.; Danforth, B.N. Pollination services for apple are dependent on diverse wild bee communities. Agric. Ecosyst. Environ. 2016, 221, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Garratt, M.P.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 2014, 184, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Garratt, M.; Breeze, T.; Boreux, V.; Fountain, M.; Mckerchar, M.; Webber, S.; Coston, D.; Jenner, N.; Dean, R.; Westbury, D. Apple pollination: Demand depends on variety and supply depends on pollinator identity. PLoS ONE 2016, 11, e0153889. [Google Scholar] [CrossRef] [Green Version]
- Otieno, M.; Woodcock, B.A.; Wilby, A.; Vogiatzakis, I.N.; Mauchline, A.L.; Gikungu, M.W.; Potts, S.G. Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem. Biol. Conserv. 2011, 144, 2424–2431. [Google Scholar] [CrossRef]
- Jung, C. Integrated pollinator-pest management (IPPM) strategy as future apple IPM. Korean J. Appl. Entomol. 2021, 61, 145–154. [Google Scholar] [CrossRef]
- Lundin, O.; Rundlöf, M.; Jonsson, M.; Bommarco, R.; Williams, N.M. Integrated pest and pollinator management—Expanding the concept. Front. Ecol. Environ. 2021, 19, 283–291. [Google Scholar] [CrossRef]
- Forbes, S.J.; Northfield, T.D. Increased pollinator habitat enhances cacao fruit set and predator conservation. Ecol. Appl. 2017, 27, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Korpela, E.-L.; Hyvönen, T.; Lindgren, S.; Kuussaari, M. Can pollination services, species diversity and conservation be simultaneously promoted by sown wildflower strips on farmland? Agric. Ecosyst. Environ. 2013, 179, 18–24. [Google Scholar] [CrossRef]
- Bartholomée, O.; Aullo, A.; Becquet, J.; Vannier, C.; Lavorel, S. Pollinator presence in orchards depends on landscape-scale habitats more than in-field flower resources. Agric. Ecosyst. Environ. 2020, 293, 106806. [Google Scholar] [CrossRef]
- Holzschuh, A.; Steffan-Dewenter, I.; Tscharntke, T. Grass strip corridors in agricultural landscapes enhance nest-site colonization by solitary wasps. Ecol. Appl. 2009, 19, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Vulliamy, B.; Dafni, A.; Neߣeman, G.; Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 2003, 84, 2628–2642. [Google Scholar] [CrossRef] [Green Version]
- Holzschuh, A.; Dainese, M.; Gonzalez-Varo, J.P.; Mudri-Stojnic, S.; Riedinger, V.; Rundlof, M.; Scheper, J.; Wickens, J.B.; Wickens, V.J.; Bommarco, R.; et al. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 2016, 19, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D.; Nicholls, E.; Botias, C.; Rotheray, E.L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015, 347, 1255957. [Google Scholar] [CrossRef]
- Toivonen, M.; Herzon, I.; Toikkanen, J.; Kuussaari, M. Linking pollinator occurrence in field margins to pollinator visitation to a mass-flowering crop. J. Pollinat. Ecol. 2021, 28, 153–166. [Google Scholar] [CrossRef]
- Winfree, R.; Williams, N.M.; Gaines, H.; Ascher, J.S.; Kremen, C. Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J. Appl. Ecol. 2008, 45, 793–802. [Google Scholar] [CrossRef]
- Forge, T.; Neilsen, G.; Neilsen, D. Organically acceptable practices to improve replant success of temperate tree-fruit crops. Sci. Hortic. 2016, 200, 205–214. [Google Scholar] [CrossRef]
- Sholberg, P. Fumigation of fruit with short-chain organic acids to reduce the potential of postharvest decay. Plant Dis. 1998, 82, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Sholberg, P.; Gaudet, D. Grass as a source of inoculum for rot caused by Coprinus psychromorbidus in stored apples. Can. J. Plant Pathol. 1992, 14, 221–226. [Google Scholar] [CrossRef]
- Agnello, A.; Cox, K.; Lordan, J.; Francescatto, P.; Robinson, T. Comparative programs for arthropod, disease and weed management in New York organic apples. Insects 2017, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.A.M. Influence of companion planting on damson hop aphid Phorodon humuli, two spotted spider mite Tetranychus urticae, and their antagonists in low trellis hops. Crop Prot. 2018, 114, 23–31. [Google Scholar] [CrossRef]
- Kinkorová, J.; Kocourek, F. The effect of integrated pest management practices in an apple orchard on Heteroptera community structure and population dynamics. J. Appl. Entomol. 2000, 124, 381–385. [Google Scholar] [CrossRef]
- Killian, J.C.; Meyer, J.R. Effect of orchard weed management on catfacing damage to peaches in North Carolina. J. Econ. Entomol. 1984, 77, 1596–1600. [Google Scholar] [CrossRef]
- Thistlewood, H.M.A.; Borden, J.H.; McMullen, R.D. Seasonal abundance of the mullein bug, Campylomma verbasci (Meyer)(Heteroptera: Miridae), on apple and mullein in the Okanagan Valley. Can. Entomol. 1990, 122, 1045–1058. [Google Scholar] [CrossRef]
- Carrié, R.J.G.; George, D.R.; Wäckers, F.L. Selection of floral resources to optimise conservation of agriculturally-functional insect groups. J. Insect Conserv. 2012, 16, 635–640. [Google Scholar] [CrossRef]
- Lethmayer, C.; Nentwig, W.; Frank, T. Effects of weed strips on the occurrence of noxious coleopteran species (Nitidulidae, Chrysomelidae, Curculionidae). J. Plant Dis. Prot. 1997, 104, 75–92. [Google Scholar]
- Haley, S.; Hogue, E. Ground cover influence on apple aphid, Aphis pomi DeGeer (Homoptera: Aphididae), and its predators in a young apple orchard. Crop Prot. 1990, 9, 225–230. [Google Scholar] [CrossRef]
- Frank, T. Slug damage and number of slugs (Gastropoda: Pulmonata) in winter wheat in fields with sown wildflower strips. J. Molluscan Stud. 1998, 64, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Frank, T. Slug damage and numbers of slugs in oilseed rape bordering on grass strips. J. Molluscan Stud. 1998, 64, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Frank, T. Slug damage and numbers of the slug pests, Arion lusitanicus and Deroceras reticulatum, in oilseed rape grown beside sown wildflower strips. Agric. Ecosyst. Environ. 1998, 67, 67–78. [Google Scholar] [CrossRef]
- Petherbidge, P.E. Apple attacked by the larvae of the dock sawfly (Ametastegia (Taxonus) glabrata, fallen). Ann. Appl. Biol. 1924, 11, 24–30. [Google Scholar] [CrossRef]
- Foulis, E.S.J.; Goulson, D. Commercial bumble bees on soft fruit farms collect pollen mainly from wildflowers rather than the target crops. J. Apic. Res. 2014, 53, 404–407. [Google Scholar] [CrossRef]
- Arnold, S.E.J.; Dudenhöffer, J.-H.; Fountain, M.T.; James, K.L.; Hall, D.R.; Farman, D.I.; Wäckers, F.L.; Stevenson, P.C. Bumble bees show an induced preference for flowers when primed with caffeinated nectar and a target floral odor. Curr. Biol. 2021, 31, 4127–4131. [Google Scholar] [CrossRef]
- Martin, C.D.; Fountain, M.T.; Brown, M.J. Varietal and seasonal differences in the effects of commercial bumblebees on fruit quality in strawberry crops. Agric. Ecosyst. Environ. 2019, 281, 124–133. [Google Scholar] [CrossRef]
- Pfiffner, L.; Wyss, E. Use of sown wildflower strips to enhance natural enemies of agricultural pests. Ecol. Eng. Pest Manag. Adv. Habitat Manip. Arthropods 2004, 165–186. [Google Scholar]
- Nowakowski, M.; Pywell, R. Habitat Creation and Management for Pollinators; UK Centre For Ecology & Hydrology: Lancaster, UK, 2016. [Google Scholar]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; van Ruijven, J.; et al. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef]
- Haaland, C.; Naisbit, R.E.; Bersier, L.-F. Sown wildflower strips for insect conservation: A review. Insect Conserv. Divers. 2011, 4, 60–80. [Google Scholar] [CrossRef]
- Aviron, S.; Herzog, F.; Klaus, I.; Schüpbach, B.; Jeanneret, P. Effects of wildflower strip quality, quantity, and connectivity on butterfly diversity in a Swiss arable landscape. Restor. Ecol. 2011, 19, 500–508. [Google Scholar] [CrossRef]
- Holzschuh, A.; Steffan-Dewenter, I.; Kleijn, D.; Tscharntke, T. Diversity of flower-visiting bees in cereal fields: Effects of farming system, landscape composition and regional context. J. Appl. Ecol. 2007, 44, 41–49. [Google Scholar] [CrossRef]
- Uyttenbroeck, R.; Hatt, S.; Piqueray, J.; Paul, A.; Bodson, B.; Francis, F.; Monty, A. Creating perennial flower strips: Think functional! Agric. Agric. Sci. Procedia 2015, 6, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Sutter, L.; Jeanneret, P.; Bartual, A.M.; Bocci, G.; Albrecht, M.; MacIvor, S. Enhancing plant diversity in agricultural landscapes promotes both rare bees and dominant crop-pollinating bees through complementary increase in key floral resources. J. Appl. Ecol. 2017, 54, 1856–1864. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.J.; Biesmeijer, J.C.; Varma, V.; Wäckers, F.L. Realising multiple ecosystem services based on the response of three beneficial insect groups to floral traits and trait diversity. Basic Appl. Ecol. 2012, 13, 363–370. [Google Scholar] [CrossRef]
- Langoya, L.A.; Van Rijn, P.C.J. The Significance of Floral Resources for Natural Control of Aphids; Netherlands Institute for Ecology: Heteren, The Netherland, 2008; pp. 67–74. [Google Scholar]
- Tooker, J.F.; Hauser, M.; Hanks, L.M. Floral host plants of Syrphidae and Tachinidae (Diptera) of central Illinois. Ann. Entomol. Soc. Am. 2006, 99, 96–112. [Google Scholar] [CrossRef]
- van Rijn, P.C.J.; Kooijman, J.; Wackers, F.L. The impact of floral resources on syrphid performance and cabbage aphid biological control. IOBC Wprs Bull. 2006, 29, 149. [Google Scholar]
- Sadeghi, H. Abundance of adult hoverflies (Diptera: Syrphidae) on different flowering plants. Casp. J. Environ. Sci. 2008, 6, 47–51. [Google Scholar]
- Pineda, A.; Marcos-Garcia, M.A. Use of selected flowering plants in greenhouses to enhance aphidophagous hoverfly populations (Diptera: Syrphidae). Ann. Société Entomol. Fr. 2008, 44, 487–492. [Google Scholar] [CrossRef]
- Colley, M.R.; Luna, J.M. Relative Attractiveness of Potential Beneficial Insectary Plants to Aphidophagous Hoverflies (Diptera: Syrphidae). Environ. Entomol. 2000, 29, 1054–1059. [Google Scholar] [CrossRef]
- Dunn, L.; Lequerica, M.; Reid, C.R.; Latty, T. Dual ecosystem services of syrphid flies (Diptera: Syrphidae): Pollinators and biological control agents. Pest Manag. Sci 2020, 76, 1973–1979. [Google Scholar] [CrossRef]
- Irvin, N.A.; Hoddle, M.S.; Castle, S.J. The effect of resource provisioning and sugar composition of foods on longevity of three Gonatocerus spp., egg parasitoids of Homalodisca vitripennis. Biol. Control 2007, 40, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Baker, H.; Baker, I. Floral nectar constituents in relations to pollinator type. In Handbooks of Experimental Pollination Biology; Jones, C.E., Little, R.J., Eds.; Van Nostrand-Reinhold: New York, NY, USA, 1982; pp. 131–191. [Google Scholar]
- Tompkins, J.-M.; Wratten, S.; Wäckers, F. Nectar to improve parasitoid fitness in biological control: Does the sucrose: Hexose ratio matter? Basic Appl. Ecol. 2010, 11, 264–271. [Google Scholar] [CrossRef]
- Wykes, G. The sugar content of nectars. Biochem. J. 1953, 53, 294. [Google Scholar] [CrossRef]
- Hatt, S.; Uyttenbroeck, R.; Lopes, T.; Chen, J.L.; Piqueray, J.; Monty, A.; Francis, F. Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops. Arthropod.-Plant Interact. 2018, 12, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Carrié, R.; George, D.; Wäckers, F.L. Flowering forbs for field margins: Selecting species that optimise ecosystem services. Iobc Wprs Bull. 2012, 75, 57–60. [Google Scholar]
- Perrin, R. The role of the perennial stinging nettle, Urtica dioica, as a reservoir of beneficial natural enemies. Ann. Appl. Biol. 1975, 81, 289–297. [Google Scholar] [CrossRef]
- Anderson, N.H. Biomnomics of six species of Anthocoris (Heteroptera: Anthocoridae) in England. Trans. R. Entomol. Soc. Lond. 1962, 114, 67–95. [Google Scholar] [CrossRef]
- Haaland, C.; Bersier, L.-F. What can sown wildflower strips contribute to butterfly conservation? An example from a Swiss lowland agricultural landscape. J. Insect Conserv. 2010, 15, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Nichols, R.N.; Goulson, D.; Holland, J.M. The best wildflowers for wild bees. J. Insect Conserv. 2019, 23, 819–830. [Google Scholar] [CrossRef] [Green Version]
- Garratt, M.P.; de Groot, G.A.; Albrecht, M.; Bosch, J.; Breeze, T.D.; Fountain, M.T.; Klein, A.M.; McKerchar, M.; Park, M.; Paxton, R.J. Opportunities to reduce pollination deficits and address production shortfalls in an important insect-pollinated crop. Ecol. Appl. 2021, 31, e02445. [Google Scholar] [CrossRef] [PubMed]
- Scriven, L.A.; Sweet, M.J.; Port, G.R. Flower density is more important than habitat type for increasing flower visiting insect diversity. Int. J. Ecol. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Salisbury, A.; Armitage, J.; Bostock, H.; Perry, J.; Tatchell, M.; Thompson, K.; Diamond, S. EDITORߣS CHOICE: Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species? J. Appl. Ecol. 2015, 52, 1156–1164. [Google Scholar] [CrossRef]
- Bryan, C.J.; Sipes, S.D.; Arduser, M.; Kassim, L.; Gibson, D.J.; Scott, D.A.; Gage, K.L. Efficacy of cover crops for pollinator habitat provision and weed suppression. Environ. Entomol. 2021, 50, 208–221. [Google Scholar] [CrossRef]
- Cole, L.J.; Baddeley, J.A.; Robertson, D.; Topp, C.F.E.; Walker, R.L.; Watson, C.A. Supporting wild pollinators in agricultural landscapes through targeted legume mixtures. Agric. Ecosyst. Environ. 2022, 323, 107648. [Google Scholar] [CrossRef]
- Pavek, P.L.S.; Granatstein, D.M. The Potential for Legume Cover Crops in Washington Apple Orchards: A Discussion and Literature Review; USDA: Spokane, WA, USA, 2014; pp. 1–34. [Google Scholar]
- Hill, S.B.; Ramsay, J. Weeds as indicators of soil conditions. McDonald J. 1977, 38, 8–12. [Google Scholar]
- Schlinkert, H.; Westphal, C.; Clough, Y.; Laszlo, Z.; Ludwig, M.; Tscharntke, T. Plant size as determinant of species richness of herbivores, natural enemies and pollinators across 21 brassicaceae species. PLoS ONE 2015, 10, e0135928. [Google Scholar] [CrossRef] [Green Version]
- Diehl, E.; Mader, V.L.; Wolters, V.; Birkhofer, K. Management intensity and vegetation complexity affect web-building spiders and their prey. Oecologia 2013, 173, 579–589. [Google Scholar] [CrossRef]
- Horton, D.R.; Broers, D.A.; Lewis, R.R.; Granatstein, D.; Zack, R.S.; Unruh, T.R.; Moldenke, A.R.; Brown, J.J. Effects of mowing frequency on densities of natural enemies in three Pacific Northwest pear orchards. Entomol. Exp. Appl. 2003, 106, 135–145. [Google Scholar] [CrossRef]
- Pywell, R.; Meek, W.; Hulmes, L.; Hulmes, S.; James, K.; Nowakowski, M.; Carvell, C. Management to enhance pollen and nectar resources for bumblebees and butterflies within intensively farmed landscapes. J. Insect Conserv. 2011, 15, 853–864. [Google Scholar] [CrossRef]
- Carvell, C.; Meek, W.; Pywell, R.; Nowakowski, M. The response of foraging bumblebees to successional change in newly created arable field margins. Biol. Conserv. 2004, 118, 327–339. [Google Scholar] [CrossRef]
- Lu, Z.X.; Zhu, P.Y.; Gurr, G.M.; Zheng, X.S.; Read, D.M.; Heong, K.L.; Yang, Y.J.; Xu, H.X. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: Prospects for enhanced use in agriculture. Insect Sci. 2014, 21, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, M.R. Habitat Considerations for Parasitic Wasps (Hymenoptera). J. Insect Conserv. 2006, 10, 117–127. [Google Scholar] [CrossRef]
- Merwin, I.A.; Ray, J.A.; Curtis, P.D. Orchard groundcover management systems affect meadow vole populations and damage to apple trees. HortScience 1999, 34, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Amy, C.; Noel, G.; Hatt, S.; Uyttenbroeck, R.; Van de Meutter, F.; Genoud, D.; Francis, F. Flower strips in wheat intercropping system: Effect on pollinator abundance and diversity in Belgium. Insects 2018, 9, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, G.; Krauss, J.; Riedinger, V.; Holzschuh, A.; Steffan-Dewenter, I.; Manning, P. Biological pest control and yields depend on spatial and temporal crop cover dynamics. J. Appl. Ecol. 2015, 52, 1283–1292. [Google Scholar] [CrossRef]
- Rand, T.A.; Louda, S.M. Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. Conserv. Biol. 2006, 20, 1720–1729. [Google Scholar] [CrossRef] [Green Version]
- Badenhausser, I.; Gross, N.; Mornet, V.; Roncoroni, M.; Saintilan, A.; Rusch, A. Increasing amount and quality of green infrastructures at different scales promotes biological control in agricultural landscapes. Agric. Ecosyst. Environ. 2020, 290, 106735. [Google Scholar] [CrossRef]
- Woodcock, B.A.; Edwards, M.; Redhead, J.; Meek, W.R.; Nuttall, P.; Falk, S.; Nowakowski, M.; Pywell, R.F. Crop flower visitation by honeybees, bumblebees and solitary bees: Behavioural differences and diversity responses to landscape. Agric. Ecosyst. Environ. 2013, 171, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Stanley, D.A.; Stout, J.C. Pollinator sharing between mass-flowering oilseed rape and co-flowering wild plants: Implications for wild plant pollination. Plant Ecol. 2014, 215, 315–325. [Google Scholar] [CrossRef]
- Morandin, L.A.; Winston, M.L.; Abbott, V.A.; Franklin, M.T. Can pastureland increase wild bee abundance in agriculturally intense areas? Basic Appl. Ecol. 2007, 8, 117–124. [Google Scholar] [CrossRef]
- Tschumi, M.; Albrecht, M.; Collatz, J.; Dubsky, V.; Entling, M.H.; Najar-Rodriguez, A.J.; Jacot, K.; Kleijn, D. Tailored flower strips promote natural enemy biodiversity and pest control in potato crops. J. Appl. Ecol. 2016, 53, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Schmidt-Entling, M.H.; Döbeli, J. Sown wildflower areas to enhance spiders in arable fields. Agric. Ecosyst. Environ. 2009, 133, 19–22. [Google Scholar] [CrossRef]
- Baude, M.; Kunin, W.E.; Boatman, N.D.; Conyers, S.; Davies, N.; Gillespie, M.A.; Morton, R.D.; Smart, S.M.; Memmott, J. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 2016, 530, 85–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Königslöw, V.; Mupepele, A.-C.; Klein, A.-M. Overlooked jewels: Existing habitat patches complement sown flower strips to conserve pollinators. Biol. Conserv. 2021, 261, 109263. [Google Scholar] [CrossRef]
- Cole, L.J.; Kleijn, D.; Dicks, L.V.; Stout, J.C.; Potts, S.G.; Albrecht, M.; Balzan, M.V.; Bartomeus, I.; Bebeli, P.J.; Bevk, D.; et al. A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. J. Appl. Ecol. 2020, 57, 681–694. [Google Scholar] [CrossRef] [PubMed]
Group | Measure | Distance into Crop | Author |
---|---|---|---|
Pollinators | |||
Pollinators | Species richness | Halved at 1500 m | [36] |
Pollinators | Abundance | Up to 100 m | [116] |
Wild pollinators | Abundance | Up to 100 m | [121] |
Wild pollinators | Visitation rates | Halved at 600 m | [36] |
Honeybees | Visitation rates | Halved at 2170 m | [36] |
Honeybees, bumblebees, and solitary bees | Abundance | Declined 15–200 m | [111] |
Solitary bees | Abundance | 400 m | [44] |
Solitary bee; Hylaeus punctulatissimus | Foraging distance | Halved at 100–225 m | [115] |
Hoplitis adunca | Foraging distance | Halved at 300 m | [115] |
Bumblebee worker; Bombus terrestris | Foraging distance | 551 m | [45] |
B. lapidaries | Foraging distance | 536 m | [45] |
B. ruderatus | Foraging distance | 501 m | [45] |
B. hortorum | Foraging distance | 336 m | [45] |
B. pascuorum | Foraging distance | 272 m | [45] |
Bumblebees or hoverflies | Abundance | >800 m | [44] |
Hoverflies and bees | Richness | 500–1000 m | [109] |
Hoverflies | Abundance | >100 m | [116] |
Hoverflies | Abundance | At least 12.5 m | [102] |
Hoverflies | Up to 75 m | [103] | |
Hoverfly; Melanostoma fasciatum | Presence | 180 m | [98] |
Episyrphus balteatus and Metasyrphus corollae | Presence | 200 m | [98] |
Natural enemies | |||
Spiders | Abundance | 0 and 50 m | [122] |
Natural enemies | Decreasing abundance | 0, 20 and 40 m | [95] |
Spiders and parasitoids | Abundance | up to 60 m | [96] |
Aphidophagous hoverflies | Presence | 17.5 m | [101] |
Spiders (foliage dwelling) | Species composition | ~10 m | [104] |
Parasitoid wasp; Dolichogenidea tasmanica | Presence | Up to 30 m | [104] |
Fruit Crop | Pest Group | Target Pest(s) | Plant Manipulation(s) or Presence | Effect on Pest Control | Source |
---|---|---|---|---|---|
1 Apple | Aphid | Dysaphis plantaginea | Flower strips | Negative | [142,148] |
1 Peach | Hemiptera | Leafhoppers | Plant cover | Negative | [149] |
1 Peach | Hemiptera | Hemiptera species | Plant cover | Negative | [32] |
2 Apple | Heteroptera | Lygus | Flower plant mixture, alleyways | Negative | [29] |
2 Apple | Heteroptera | Lygocoris pabulinus | Flowering weeds, alleyways | Negative | [64] |
2 Pear | Heteroptera | Lygus | Cover crops, wheat | Negative | [125] |
2 Apple | Homoptera | Eriosoma lanigerum | Flower plant mixture, alleyways | Negative | [69] |
1 Peach | Spider mites | Tetranychus urticae | Plant cover | Negative | [150] |
2 Vines | General | Various | Buckwheat | Negative | [134] |
1 Apple | Aphid | Apple aphids | Peach nectaries | Null | [151] |
1 Apple | Aphid | Aphis spiraecola | Buckwheat | Null | [151] |
1 Apple | Aphid | Aphis pomi | Flower strips | Null | [142,148] |
2 Vines | Cicadellidae | Leafhoppers | Buckwheat, alleyways | Null | [133] |
2 Apple | General | Various | Flowering weeds, alleyways | Null | [64] |
1 Apple | General | Apple pests | Plant cover | Null | [152] |
2 Apple | General | Various | Flower plant mixture, alleyways | Null | [68] |
2 Apple | General | Various | Flower plant mixture, alleyways | Null | [48] |
2 Apple | Homoptera | Green apple aphids (Aphis spp.) | Flower plant mixture, alleyways | Null | [69] |
2 Apple | Lepidoptera | Codling moth | Flower plant mixture | Null | [129] |
1 Apple | Lepidoptera | Tortricidae | Phacelia | Null | [135] |
2 Pear | Psyllid | Cacopsylla pyricola | Flower plant mixture, alleyways | Null | [144] |
2 Pear | Psyllid | Cacopsylla pyri | Ash, ivy, polar hedgerow | Null | [147] |
2 Apple | Spider mites | Panonychus ulmi | Flower plant mixture, alleyways | Null | [144] |
1 Apple | Spider mites | Panonychus ulmi | Plant cover | Null | [153] |
2 Vines | Lepidoptera | Tortricidae | Buckwheat | Null, Positive | [132] |
1 Apple | General | Apple pests | Plant cover and or interplanted fruit trees | Null, Variable | [154] |
1 Peach | General | Peach pests | Plant cover and or interplanted fruit trees | Null, Variable | [154] |
2 Vines | General | Various | Flowers, alleyways | Variable | [137] |
2 Apple | Various | Spider mites, Leucoptera malifoliella, codling moth, and Tortricidae | Flower plant mixture, alleyways | Positive, Null | [49] |
1 Apple | Aphid | Dysaphis plantaginea | Flower strips | Positive | [155] |
1 Apple | Aphid | Aphis pomi, Dysaphis plantaginea | Flower strips | Positive | [66,67] |
2 Vines | Cicadellidae | Leafhoppers | Flower plant mixture, alleyways | Positive | [156] |
2 Blueberry | General | Various | Flower plant mixture, margins | Positive | [95] |
2 Apple | Homoptera | Lygus | Flower plant mixture, alleyways | Positive | [69] |
2 Cherry | Homoptera | Aphid bait cards | Flower plant mixture, alleyways | Positive | [40] |
2 Apple | Homoptera, Cicadellidae, Lepidoptera | Dysaphis plantaginea, leaf hopper, and codling moth | Flower plant mixture, alleyways | Positive | [29] |
2 Apple | Homoptera, Formicidae | Dysaphis plantaginea, ants | Flower margins | Positive | [92] |
1 Apple | Lepidoptera | Tortricidae | Peach nectaries | Positive | [157] |
2 Strawberry | Lepidoptera | Acleris comariana, Tortricidae | Margin, buckwheat | Positive | [106] |
2 Vines | Lepidoptera | Tortricidae | Margin, buckwheat | Positive | [105] |
2 Apple | Lepidoptera, Hompotera | Codling moth, Dysaphis plantaginea | Flower plant mixture, alleyways | Positive | [50] |
2 Apple | Lepidoptera, Hompotera | Codling moth, aphids | Flower plant mixture, alleyways | Positive | Fountain et al. (unpublished) |
1 Pear | Psyllid | Cacopsylla pyri | Hedgerow | Positive | [158,159] |
1 Pear | Psyllid | Cacopsylla pyri | Plant cover | Positive | [147] |
2 Pear | Psyllid, Homoptera, Pseudococcidae | Psylla chinensis, Aphis citricola, and Pseudococcus comstocki | Aramatic plants, alleyways | Positive | [65] |
1 Apple | Spider mites | Tetranychus spp. | Understory plants | Positive | [160] |
1 Apple | Spider mites | Spider mites | Understory plants | Positive | [161] |
1 Apple | Spider mites | Panonychus ulmi | Adjacent bushes | Positive | [162] |
1 Apple | Spider mites | Tetranychus spp. | Plant cover | Positive | [163] |
2 Apple | Heteroptera, Lepidoptera | Lygus, caterpillars | Flower plant mixture, alleyways | Positive | [47] |
2 Apple | Homoptera | Eriosoma lanigerum | Flowers | Positive | [143] |
1 Apple | Lepidoptera | Tortricidae | Buckwheat | Positive | [135] |
1 Apple | Lepidoptera | Tortricidae | Alyssum | Positive | [135] |
1 Apple | Lepidoptera | Tent caterpillar and codling moth | Understory plants | Positive | [131] |
1 Apple | Lepidoptera | Tortricidae | Buckwheat, alleyways | Positive | [126] |
Fruit Crop | Target Pollinators | Plant Manipulation(S) or Presence | Location/Scale | Effect on Crop | Effect on Pollinator | Source |
---|---|---|---|---|---|---|
Blueberry (highbush) | Honeybees, wild bees, and hoverflies | 15 perennial wildflower species | Margin | Fruit set, berry weight, mature seeds, yield greater in fields adjacent to wildflower plantings | Null (honeybees), positive (wild bees and hoverflies) | [164] |
Apple (cider) | Honeybees, wild bees, and hoverflies | 25 wildflower species | Alley | Increase visits to apple blossoms, fruit set | Positive (wild bees, Andrenid, and flies) | [121] |
Mango | Pollinators | Aloe greatheadii, Barleria obtusa | Margin | Higher production | Positive | [52] |
Strawberry | Honeybees, wild bees, and hoverflies | Annual and biennial fowering species | Margin | Not measured | Positive (wild bees and bumblebees) | [165] |
Apple | Honeybees, wild bees, and hoverflies | Nine herbaceous species | Alley | None | Null (bees), positive (hoverflies) | [48] |
Blueberry, sour-cherry, and watermelon | Wild bees | Enhanced floral margins | Margin | Not measured | Positive | [166] |
Apple | Osmia lignaria | Bigleaf lupine, Lupinus polyphyllus | Margin | Not measured | Positive | [167] |
Cherry (protected) | Pollinating insects | Perennial wildflower mix | Alley | Not measured | Positive | [94] |
Cherry | Wild bees | Semi-natural habitat, including floral resources in orchards | Alley and landscape | Wild pollinator positive influence on fruit set | Positive | [53] |
Apple | Honeybees | Semi-natural habitat including floral resources in orchards | Within orchard | Not measured | Positive | [43] |
Cherry | Honeybees, wild bees | Non-intensively managed areas | Landscape | Increased bee resources from 20% to 50% enhanced fruit set by 150% | Positive (wild bees) | [54] |
Apple | Wild bees (spring wild bees) | Local and landscape flora | Landscape and local | Not measured | Positive | [168] |
Apple, cider | Wild pollinators | Landscape and small-scale orchard features | Landscape and local | Increased fruit set and seed set | Positive | [58] |
Apple | Wild pollinators | Organic vs. integrated management | Margin, landscape | Reduced pollination deficit measured | Positive | [51] |
Apple | Bumblebees | Hedgerows, flower strips | Landscape, margins | No consistent impact on fruit quality | Positive | [60] |
Apple | Wild pollinators | Dandelion | Alley | Larger apples | Positive (apples), null (pollinators) | [169] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fountain, M.T. Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review. Insects 2022, 13, 304. https://doi.org/10.3390/insects13030304
Fountain MT. Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review. Insects. 2022; 13(3):304. https://doi.org/10.3390/insects13030304
Chicago/Turabian StyleFountain, Michelle T. 2022. "Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review" Insects 13, no. 3: 304. https://doi.org/10.3390/insects13030304