Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = pollen deficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3801 KiB  
Article
Characteristics and Transcriptome Analysis of Anther Abortion in Male Sterile Celery (Apium graveolens L.)
by Yao Gong, Zhenyue Yang, Huan Li, Kexiao Lu, Chenyang Wang, Aisheng Xiong, Yangxia Zheng, Guofei Tan and Mengyao Li
Horticulturae 2025, 11(8), 901; https://doi.org/10.3390/horticulturae11080901 (registering DOI) - 3 Aug 2025
Viewed by 46
Abstract
To elucidate the molecular mechanisms underlying anther abortion in celery male sterile lines, this study investigates the morphological differences of floral organs and differential gene expression patterns between two lines at the flowering stage. Using the male sterile line of celery ‘QCBU-001’ and [...] Read more.
To elucidate the molecular mechanisms underlying anther abortion in celery male sterile lines, this study investigates the morphological differences of floral organs and differential gene expression patterns between two lines at the flowering stage. Using the male sterile line of celery ‘QCBU-001’ and the fertile line ‘Jinnan Shiqin’ as materials, anther structure was analyzed by paraffin sections, and related genes were detected using transcriptome sequencing and qRT-PCR. The results indicated that the anther locules were severely shrunken at maturity in the sterile lines. The callose deficiency led to abnormal development of microspores, preventing the formation of mature pollen grains and ultimately leading to complete anther abortion. The transcriptome results revealed that 3246 genes were differentially expressed in sterile and fertile lines, which were significantly enriched in pathways such as starch and sucrose metabolism and phenylpropanoid biosynthesis. Additionally, differential expression patterns of transcription factor families (MYB, bHLH, AP2, GRAS, and others) suggested their potential involvement in regulating anther abortion. Notably, the expression level of callose synthase gene AgGSL2 was significantly downregulated in sterile anthers, which might be an important cause of callose deficiency and pollen sterility. This study not only provides a theoretical basis for elucidating the molecular mechanism underlying male sterility in celery but also lays a foundation for the utilization and improvement of male sterile lines in vegetable hybrid breeding. Full article
Show Figures

Figure 1

16 pages, 3991 KiB  
Article
Non-Target Metabolomics Reveals Changes in Metabolite Profiles in Distant Hybrid Incompatibility Between Paeonia sect. Moutan and P. lactiflora
by Wenqing Jia, Yingyue Yu, Zhaorong Mi, Yan Zhang, Guodong Zhao, Yingzi Guo, Zheng Wang, Erqiang Wang and Songlin He
Plants 2025, 14(9), 1381; https://doi.org/10.3390/plants14091381 - 3 May 2025
Viewed by 465
Abstract
Peonies are globally renowned ornamental plants, and distant hybridization is a key method for breeding new varieties, though it often faces cross-incompatibility challenges. The metabolic mechanisms underlying the crossing barrier between tree peony (Paeonia sect. Moutan) and herbaceous peony ( [...] Read more.
Peonies are globally renowned ornamental plants, and distant hybridization is a key method for breeding new varieties, though it often faces cross-incompatibility challenges. The metabolic mechanisms underlying the crossing barrier between tree peony (Paeonia sect. Moutan) and herbaceous peony (P. lactiflora) remain unclear. To identify key metabolites involved in cross-incompatibility, we performed a cross between P. ostii ‘Fengdanbai’ (female parent) and P. lactiflora ‘Red Sara’ (male parent) and analyzed metabolites in the stigma 12 h after pollination using UPLC-MS. We identified 1242 differential metabolites, with 433 up-regulated and 809 down-regulated, including sugars, nucleotides, amino acids, lipids, organic acids, benzenoids, flavonoids, and alkaloids. Most differential metabolites were down-regulated in hybrid stigmas, potentially affecting pollen germination and pollen tube growth. Cross-pollinated stigma exhibited lower levels of high-energy nutrients (such as amino acids, nucleotides, and tricarboxylic acid cycle metabolites) compared to self-pollinated stigma, which suggests that energy deficiency is a contributing factor to the crossing barrier. Additionally, cross-pollination significantly impacted KEGG pathways such as nucleotide metabolism, purine metabolism, and vitamin B6 metabolism, with most metabolites in these pathways being down-regulated. These findings provide new insights into the metabolic basis of cross-incompatibility between tree and herbaceous peonies, offering a foundation for overcoming hybridization barriers in peony breeding. Full article
(This article belongs to the Special Issue Omics in Horticultural Crops)
Show Figures

Figure 1

20 pages, 2253 KiB  
Article
Molecular Assessment of Genes Linked to Honeybee Health Fed with Different Diets in Nuclear Colonies
by Worrel A. Diedrick, Lambert H. B. Kanga, Rachel Mallinger, Manuel Pescador, Islam Elsharkawy and Yanping Zhang
Insects 2025, 16(4), 374; https://doi.org/10.3390/insects16040374 - 2 Apr 2025
Cited by 1 | Viewed by 713
Abstract
Honeybees are of economic importance not only for honey production, but also for crop pollination, which amounts to USD 20 billion per year in the United States. However, the number of honeybee colonies has declined more than 40% during the last few decades. [...] Read more.
Honeybees are of economic importance not only for honey production, but also for crop pollination, which amounts to USD 20 billion per year in the United States. However, the number of honeybee colonies has declined more than 40% during the last few decades. Although this decline is attributed to a combination of factors (parasites, diseases, pesticides, and nutrition), unlike other factors, the effect of nutrition on honeybee health is not well documented. In this study, we assessed the differential expression of seven genes linked to honeybee health under three different diets. These included immune function genes [Cactus, immune deficiency (IMD), Spaetzle)], genes involved in nutrition, cellular defense, longevity, and behavior (Vitellogenin, Malvolio), a gene involved in energy metabolism (Maltase), and a gene associated with locomotory behavior (Single-minded). The diets included (a) commercial pollen patties and sugar syrup, (b) monofloral (anise hyssop), and (c) polyfloral (marigold, anise hyssop, sweet alyssum, and basil). Over the 2.7-month experimental periods, adult bees in controls fed pollen patties and sugar syrup showed upregulated Cactus (involved in Toll pathway) and IMD (signaling pathway controls antibacterial defense) expression, while their counterparts fed monofloral and polyfloral diets downregulated the expression of these genes. Unlike Cactus and IMD, the gene expression profile of Spaetzle (involved in Toll pathway) did not differ across treatments during the experimental period except that it was significantly downregulated on day 63 and day 84 in bees fed polyfloral diets. The Vitellogenin gene indicated that monofloral and polyfloral diets significantly upregulated this gene and enhanced lifespan, foraging behavior, and immunity in adult bees fed with monofloral diets. The expression of Malvolio (involved in sucrose responsiveness and foraging behavior) was upregulated when food reserves (pollen and nectar) were limited in adult bees fed polyfloral diets. Adult bees fed with monofloral diets significantly upregulated the expression of Maltase (involved in energy metabolisms) compared to their counterparts in control diets to the end of the experimental period. Single-Minded Homolog 2 (involved in locomotory behavior) was also upregulated in adult bees fed pollen patties and sugar syrup compared to their counterparts fed monofloral and polyfloral diets. Thus, the food source significantly affected honeybee health and triggered an up- and downregulation of these genes, which correlated with the health and activities of the honeybee colonies. Overall, we found that the companion crops (monofloral and polyfloral) provided higher nutritional benefits to enhance honeybee health than the pollen patty and sugar syrup used currently by beekeepers. Furthermore, while it has been reported that bees require pollen from diverse sources to maintain a healthy physiology and hive, our data on nuclear colonies indicated that a single-species diet (such as anise hyssop) is nutritionally adequate and better or comparable to polyfloral diets. To the best of our knowledge, this is the first report indicating better nutritional benefits from monofloral diets (anise hyssop) over polyfloral diets for honeybee colonies (nucs) in semi-large-scale experimental runs. Thus, we recommend that the landscape of any apiary include highly nutritious food sources, such as anise hyssop, throughout the season to enhance honeybee health. Full article
(This article belongs to the Special Issue Insect Mitogenome, Phylogeny, and Mitochondrial Genome Expression)
Show Figures

Figure 1

8 pages, 312 KiB  
Case Report
Bitot-like Spots and Congenital Aniridia: A Case Report
by Valeria Mocanu, Raluca Horhat, Florin-Raul Horhat and Mihai Poenaru-Sava
J. Clin. Med. 2025, 14(3), 987; https://doi.org/10.3390/jcm14030987 - 4 Feb 2025
Cited by 1 | Viewed by 1049
Abstract
Background: Bitot’s spots, defined as white foamy triangular or round-shaped spots with the base located at the temporal limbus and the apex towards the lateral canthus, were initially associated with vitamin A deficiency (VAD). More recently, Bitot’s spots were also described in patients [...] Read more.
Background: Bitot’s spots, defined as white foamy triangular or round-shaped spots with the base located at the temporal limbus and the apex towards the lateral canthus, were initially associated with vitamin A deficiency (VAD). More recently, Bitot’s spots were also described in patients with normal vitamin A levels, associated with aniridia, dry-eye syndrome and post-thermal or chemical injury, as well as the usage of benzalkonium chloride (BAK) eyedrops. The aim of this article is to present the management of Bitot-like spots in a patient with congenital aniridia. Methods: An 8-year-old female patient with type 1 congenital aniridia, glaucoma, cataract, strabismus, congenital nistagmus and aniridia-associated keratopathy presented with changes in conjunctival appearance. The ophthalmological examination revealed Bitot-like spots with a foamy appearance, triangular shape, temporal location and proximity to the limbus. Further investigations were required in order to identify the cause of Bitot-like spots. Vitamin D deficiency, dry-eye syndrome, birch and Phleum genus pollen allergy were diagnosed. The patient underwent oral medication with vitamin D and topical treatment with steroids eye solution, preservative-free artificial tears and vitamin A ointment. Results: After three months of treatment, we observed the disappearance of the Bitot-like spots. Conclusions: Congenital aniridia, but also its complications such as glaucoma, dry-eye syndrome and the use of benzalkonium chloride topical medication, increases the risk of Bitot-like spots. Full article
(This article belongs to the Special Issue Corneal Disease: Clinical Insights and Management Approaches)
Show Figures

Figure 1

15 pages, 8520 KiB  
Article
Floral Developmental Morphology and Biochemical Characteristics of Male Sterile Mutants of Lagerstroemia indica
by Fuyuan Deng, Liushu Lu, Lu Li, Jing Yang, Yi Chen, Huijie Zeng, Yongxin Li and Zhongquan Qiao
Plants 2024, 13(21), 3043; https://doi.org/10.3390/plants13213043 - 30 Oct 2024
Cited by 1 | Viewed by 1222
Abstract
Male sterility is a common phenomenon in higher plants and often plays an important role in the selection of superior offspring. ‘Xiang Yun’ is a mutant of Lagerstroemia indica that does not bear fruit after flowering, and its flowering period is significantly longer [...] Read more.
Male sterility is a common phenomenon in higher plants and often plays an important role in the selection of superior offspring. ‘Xiang Yun’ is a mutant of Lagerstroemia indica that does not bear fruit after flowering, and its flowering period is significantly longer than that of normal L. indica. To explore the timing and molecular mechanisms of sterility in ‘Xiang Yun’, this study determined the period of sterility through anatomical observation and compared the content of nutrients and the activity of antioxidative enzymes at different stages of flower development. Finally, sequence alignment and qPCR were used to analyze the differences in pollen development genes between ‘Xiang Yun’ and ‘Hong Ye’. The results showed that the anthers of ‘Xiang Yun’ dispersed pollen normally, but the pollen grains could not germinate normally. Observations with scanning electron microscopy revealed that the pollen grains were uneven in size and shriveled in shape. Further observation of anther sections found that abnormal development of the microspores began at the S2 stage, with the callose wall between microspores of ‘Xiang Yun’ being thicker than that of ‘Hong Ye’. In addition, during the flower development of ‘Xiang Yun’, the contents of soluble sugar, soluble protein, free proline, and triglycerides were deficient to varying degrees, and the activities of POD, SOD, and MDA were lower. Sequence alignment and qPCR showed that there were several mutations in EFD1, TPD1, and DEX1 of ‘Xiang Yun’ compared with ‘Hong Ye’, and the expression levels of these genes were abnormally elevated in the later stages of development. Our results clarified the timing and phenotype of male sterility in ‘Xiang Yun’. This provides solid and valuable information for further research on the molecular mechanism of sterility in ‘Xiang Yun’ and the genetic breeding of crape myrtle. Full article
(This article belongs to the Special Issue Flower Germplasm Resources and Genetic Breeding, 2nd Edition)
Show Figures

Figure 1

13 pages, 520 KiB  
Article
Composition and Quality of Honey Bee Feed: The Methodology and Monitoring of Candy Boards
by Soraia I. Falcão, Michel Bocquet, Robert Chlebo, João C. M. Barreira, Alessandra Giacomelli, Maja Ivana Smodiš Škerl and Giancarlo Quaglia
Animals 2024, 14(19), 2836; https://doi.org/10.3390/ani14192836 - 1 Oct 2024
Cited by 2 | Viewed by 2545
Abstract
The nutritional status of a honey bee colony is recognized as a key factor in ensuring a healthy hive. A deficient flow of nectar and pollen in the honey bee colony immediately affects its development, making room for pathogen proliferation and, consequently, for [...] Read more.
The nutritional status of a honey bee colony is recognized as a key factor in ensuring a healthy hive. A deficient flow of nectar and pollen in the honey bee colony immediately affects its development, making room for pathogen proliferation and, consequently, for a reduction in the activities and strength of the colony. It is, therefore, urgent for the beekeepers to use more food supplements and/or substitutes in apiary management, allowing them to address colony nutritional imbalances according to the beekeeper’s desired results. In this context, the commercial market for beekeeping products is growing rapidly due to low regulation of animal food products and the beekeeper’s willingness to guarantee healthy colonies. There are numerous products (bee food additives) currently available on the worldwide market, with a highly variable and sometimes even undefined composition, claiming a set of actions at the level of brood stimulation, energy supplementation, queen rearing support, reduction of Varroa reproduction levels, improvement of the intestinal microflora of bees, Nosema prevention, and improvement of the health of honey bee colonies infested by American foulbrood, among others. To address this issue, the members of the COLOSS (Honey Bee Research Association) NUTRITION Task Force are proposing, for the first time, action on honey bee feed control and monitoring. In our common study, we focused on candy board composition and quality parameters. For that, a selected number of commercial candy boards usually found in Europe were analyzed in terms of water and ash content, pH, acidity, 5-hydroxymethylfurfural, sugars, C3-C4 sugar origin, and texture. Results revealed differences between the values found and the ones displayed on the label, demonstrating the need for regulation of the quality of these products. Full article
(This article belongs to the Special Issue Apiculture and Challenges for Future—2nd Edition)
Show Figures

Figure 1

15 pages, 1802 KiB  
Article
Pollen-Food Allergy Syndrome: From Food Avoidance to Deciphering the Potential Cross-Reactivity between Pru p 3 and Ole e 7
by Paula Álvarez, Rocío Aguado, Juan Molina, Antonio Trujillo-Aguilera, Mayte Villalba, Araceli Díaz-Perales, Carmen Oeo-Santos, Eduardo Chicano, Nadine Blanco, Ana Navas, Berta Ruiz-León and Aurora Jurado
Nutrients 2024, 16(17), 2869; https://doi.org/10.3390/nu16172869 - 27 Aug 2024
Cited by 1 | Viewed by 2108
Abstract
Background: Cross-reactivity between nonspecific lipid transfer proteins could cause anaphylaxis, further influencing food avoidance and nutrient deficiencies. The one affecting olive pollen (Ole e 7) and peach (Pru p 3) may underlie a variety of pollen-food syndromes, though a deep molecular analysis is [...] Read more.
Background: Cross-reactivity between nonspecific lipid transfer proteins could cause anaphylaxis, further influencing food avoidance and nutrient deficiencies. The one affecting olive pollen (Ole e 7) and peach (Pru p 3) may underlie a variety of pollen-food syndromes, though a deep molecular analysis is necessary. Methods: Three Ole e 7-monosensitised patients (MON_OLE), three Pru p 3-monosensitised patients (MON_PRU) and three bisensitised patients (BI) were selected. For epitope mapping, both digested proteins were incubated with patient sera, and the captured IgE-bound peptides were characterised by LC-MS. Results: The analysis revealed two Ole e 7 epitopes and the three Pru p 3 epitopes previously described. Interestingly, the “KSALALVGNKV” Ole e 7 peptide was recognised by MON_OLE, BI and MON_PRU patients. Conversely, all patients recognised the “ISASTNCATVK” Pru p 3 peptide. Although complete sequence alignment between both proteins revealed 32.6% identity, local alignment considering seven residue fragments showed 50 and 57% identity when comparing “ISASTNCATVK” with Ole e 7 and “KSALALVGNKV” with Pru p 3. Conclusions: This study mapped sIgE-Ole e 7-binding epitopes, paving the way for more precise diagnostic tools. Assuming non-significant sequence similarity, structural homology and shared key residues may underlie the potential cross-reactivity between Ole e 7 and Pru p 3 nsLTPs. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

13 pages, 3139 KiB  
Article
Brewers’ Spent Grain as an Alternative Plant Protein Component of Honey Bee Feed
by Paweł Migdał, Martyna Wilk, Ewelina Berbeć and Natalia Białecka
Agriculture 2024, 14(6), 929; https://doi.org/10.3390/agriculture14060929 - 12 Jun 2024
Viewed by 1752
Abstract
Bee organisms need nutrients to function properly. Deficiencies of any nutrients decrease the condition and shorten the lifespan of insects. Moreover, protein deficiency decreases honey bee queen productivity and increases aggression in bee colonies. All of these aspects affect the efficiency and the [...] Read more.
Bee organisms need nutrients to function properly. Deficiencies of any nutrients decrease the condition and shorten the lifespan of insects. Moreover, protein deficiency decreases honey bee queen productivity and increases aggression in bee colonies. All of these aspects affect the efficiency and the economic aspect of beekeeping production. Limited access to sustainable feed sources for bee colonies during the season forces beekeepers to search for new sources of nutrients, particularly protein. The aim of this study was to investigate the potential use of brewers’ spent grain, which is a by-product of beer production, as a source of protein additive in bees’ diet. Two types of brewers’ spent grain were examined: that from light beer and that from dark porter beer. The spent grains, especially porter spent grains, improved the hemolymph protein content compared to bees fed with sugar cake without additives. It did not fully correspond to the protein levels obtained from bees fed cake with the addition of pollen, but it may be a substitute. The studies showed that brewers’ spent grain has the potential to be used as an alternative plant protein component of honey bee feed. Full article
(This article belongs to the Special Issue Practices and Strategies for Sustainable Apiculture and Pollinators)
Show Figures

Figure 1

11 pages, 1978 KiB  
Article
The Effect of Ficus semicordata Fig Quality on the Sex Ratio of Its Pollinating Wasp Ceratosolen gravelyi
by Xiaoyan Yang, Yunfang Guan, Changqi Chen, Ying Zhang, Yulin Yuan, Tiantian Tang, Zongbo Li and Yuan Zhang
Diversity 2024, 16(5), 298; https://doi.org/10.3390/d16050298 - 15 May 2024
Viewed by 1701
Abstract
The interaction between fig wasps and their host fig trees (Ficus spp.) is a striking example of an obligate pollination mutualism. Male and female fig wasps are confined within their natal patch instead of panmictic; under this circumstance, mating only occurs between [...] Read more.
The interaction between fig wasps and their host fig trees (Ficus spp.) is a striking example of an obligate pollination mutualism. Male and female fig wasps are confined within their natal patch instead of panmictic; under this circumstance, mating only occurs between individuals of the same patch. This is known as a local mate competition (LMC). It pays foundresses to invest mainly in daughters and to only produce enough sons to ensure that all female offspring can be fertilized, but in nature, pollinating fig wasps may face many problems with host quality, such as limitation of oviposition sites and the nutrition deficiency of the host fig. The sex ratio of wasps can determine the stability of fig–fig wasp mutualistic system and, thus, the stability of other species associated with it. In this study, we controlled the quality of host figs in three ways. The results showed that the host fig age can influence the sex ratio of pollinator offspring, while the foundress numbers and the presence of pollen have no significant effect on it. A compelling explanation for this result is that the sex-dependent mortality occurs. This is a novel finding of how host quality influences the interaction of fig and fig wasps, which can also help us understand the evolution and stability mechanism of this symbiotic system. Full article
Show Figures

Figure 1

16 pages, 11778 KiB  
Article
Integrated Transcriptome and Proteome Analysis Reveals the Regulatory Mechanism of Root Growth by Protein Disulfide Isomerase in Arabidopsis
by Yanan Liu, Peng Song, Meilin Yan, Jinmei Luo, Yingjuan Wang and Fenggui Fan
Int. J. Mol. Sci. 2024, 25(7), 3596; https://doi.org/10.3390/ijms25073596 - 22 Mar 2024
Viewed by 1834
Abstract
Protein disulfide isomerase (PDI, EC 5.3.4.1) is a thiol-disulfide oxidoreductase that plays a crucial role in catalyzing the oxidation and rearrangement of disulfides in substrate proteins. In plants, PDI is primarily involved in regulating seed germination and development, facilitating the oxidative folding of [...] Read more.
Protein disulfide isomerase (PDI, EC 5.3.4.1) is a thiol-disulfide oxidoreductase that plays a crucial role in catalyzing the oxidation and rearrangement of disulfides in substrate proteins. In plants, PDI is primarily involved in regulating seed germination and development, facilitating the oxidative folding of storage proteins in the endosperm, and also contributing to the formation of pollen. However, the role of PDI in root growth has not been previously studied. This research investigated the impact of PDI gene deficiency in plants by using 16F16 [2-(2-Chloroacetyl)-2,3,4,9-tetrahydro-1-methyl-1H-pyrido[3,4-b]indole-1-carboxylic acid methyl ester], a small-molecule inhibitor of PDI, to remove functional redundancy. The results showed that the growth of Arabidopsis roots was significantly inhibited when treated with 16F16. To further investigate the effects of 16F16 treatment, we conducted expression profiling of treated roots using RNA sequencing and a Tandem Mass Tag (TMT)-based quantitative proteomics approach at both the transcriptomic and proteomic levels. Our analysis revealed 994 differentially expressed genes (DEGs) at the transcript level, which were predominantly enriched in pathways associated with “phenylpropane biosynthesis”, “plant hormone signal transduction”, “plant−pathogen interaction” and “starch and sucrose metabolism” pathways. Additionally, we identified 120 differentially expressed proteins (DEPs) at the protein level. These proteins were mainly enriched in pathways such as “phenylpropanoid biosynthesis”, “photosynthesis”, “biosynthesis of various plant secondary metabolites”, and “biosynthesis of secondary metabolites” pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network for root shortening in Arabidopsis seedlings under 16F16 treatment, mainly involving phenylpropane biosynthesis and plant hormone signal transduction pathways. This study enhances our understanding of the significant role of PDIs in Arabidopsis root growth and provides insights into the regulatory mechanisms of root shortening following 16F16 treatment. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 444 KiB  
Article
Changes in Vitellogenin, Abdominal Lipid Content, and Hypopharyngeal Gland Development in Honey Bees Fed Diets with Different Protein Sources
by Mustafa Güneşdoğdu, Aybike Sarıoğlu-Bozkurt, Ahmet Şekeroğlu and Samet Hasan Abacı
Insects 2024, 15(4), 215; https://doi.org/10.3390/insects15040215 - 22 Mar 2024
Cited by 4 | Viewed by 2945
Abstract
Honey bees play an important role in the pollination of flowering plants. When honey bee colonies are deficient in pollen, one of their main nutrients, protein supplements are required. In this study, the effects of diets with six different protein sources on the [...] Read more.
Honey bees play an important role in the pollination of flowering plants. When honey bee colonies are deficient in pollen, one of their main nutrients, protein supplements are required. In this study, the effects of diets with six different protein sources on the physiological characteristics of worker bees (vitellogenin (Vg), abdominal lipid content (ALC), hypopharyngeal gland (HPG)) and consumption were investigated. The protein sources of the diets (diet I, …, diet VI) included pollen, spirulina dust (Arthrospira platensis Gomont), fresh egg yolk, lyophilized lactose-free skimmed milk powder, active fresh yeast, and ApiProtein. It was identified that consumption by worker bees was highest in the diet group supplemented with spirulina (diet II). Although there was no statistical difference regarding the Vg content in the hemolymph, numerically, the highest content was found in diet group IV (lyophilized lactose-free skimmed milk powder) (4.73 ± 0.03 ng/mL). ALC and HPG were highest in the group fed diet II. These results suggest that offering honey bees diets with certain protein sources can support their physiological traits. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 7477 KiB  
Article
Sporopollenin Capsules as Biomimetic Templates for the Synthesis of Hydroxyapatite and β-TCP
by Arianna De Mori, Daniel Quizon, Hannah Dalton, Berzah Yavuzyegit, Guido Cerri, Milan Antonijevic and Marta Roldo
Biomimetics 2024, 9(3), 159; https://doi.org/10.3390/biomimetics9030159 - 4 Mar 2024
Cited by 4 | Viewed by 3296
Abstract
Pollen grains, with their resilient sporopollenin exine and defined morphologies, have been explored as bio-templates for the synthesis of calcium phosphate minerals, particularly hydroxyapatite (HAp) and β-tricalcium phosphate (TCP). Various pollen morphologies from different plant species (black alder, dandelion, lamb’s quarters, ragweed, and [...] Read more.
Pollen grains, with their resilient sporopollenin exine and defined morphologies, have been explored as bio-templates for the synthesis of calcium phosphate minerals, particularly hydroxyapatite (HAp) and β-tricalcium phosphate (TCP). Various pollen morphologies from different plant species (black alder, dandelion, lamb’s quarters, ragweed, and stargazer lily) were evaluated. Pollen grains underwent acid washing to remove allergenic material and facilitate subsequent calcification. Ragweed and lamb’s quarter pollen grains were chosen as templates for calcium phosphate salts deposition due to their distinct morphologies. The calcification process yielded well-defined spherical hollow particles. The washing step, intended to reduce the protein content, did not significantly affect the final product; thus, justifying the removal of this low-yield step from the synthesis process. Characterisation techniques, including X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermal gravimetric analysis, confirmed the successful calcification of pollen-derived materials, revealing that calcified grains were principally composed of calcium deficient HAp. After calcination, biphasic calcium phosphate composed of HAp and TPC was obtained. This study demonstrated the feasibility of using pollen grains as green and sustainable bio-templates for synthesizing biomaterials with controlled morphology, showcasing their potential in biomedical applications such as drug delivery and bone regeneration. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

19 pages, 6709 KiB  
Article
Functional Characterization of CsSWEET5a, a Cucumber Hexose Transporter That Mediates the Hexose Supply for Pollen Development and Rescues Male Fertility in Arabidopsis
by Liping Hu, Jiaxing Tian, Feng Zhang, Shuhui Song, Bing Cheng, Guangmin Liu, Huan Liu, Xuezhi Zhao, Yaqin Wang and Hongju He
Int. J. Mol. Sci. 2024, 25(2), 1332; https://doi.org/10.3390/ijms25021332 - 22 Jan 2024
Cited by 4 | Viewed by 1819
Abstract
Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading [...] Read more.
Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and β-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

26 pages, 4770 KiB  
Article
A Rapid Alkalinization Factor-like Peptide EaF82 Impairs Tapetum Degeneration during Pollen Development through Induced ATP Deficiency
by Chiu-Yueh Hung, Farooqahmed S. Kittur, Keely N. Wharton, Makendra L. Umstead, D’Shawna B. Burwell, Martinique Thomas, Qi Qi, Jianhui Zhang, Carla E. Oldham, Kent O. Burkey, Jianjun Chen and Jiahua Xie
Cells 2023, 12(11), 1542; https://doi.org/10.3390/cells12111542 - 4 Jun 2023
Cited by 4 | Viewed by 3959
Abstract
In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as [...] Read more.
In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as defense against biotic and abiotic stresses. However, the functions of most of them remain unknown, while no RALF has been reported to involve tapetum degeneration. In this study, we demonstrated that a novel cysteine-rich peptide, EaF82, isolated from shy-flowering ‘Golden Pothos’ (Epipremnum aureum) plants, is a RALF-like peptide and displays alkalinizing activity. Its heterologous expression in Arabidopsis delayed tapetum degeneration and reduced pollen production and seed yields. RNAseq, RT-qPCR, and biochemical analyses showed that overexpression of EaF82 downregulated a group of genes involved in pH changes, cell wall modifications, tapetum degeneration, and pollen maturation, as well as seven endogenous Arabidopsis RALF genes, and decreased proteasome activity and ATP levels. Yeast two-hybrid screening identified AKIN10, a subunit of energy-sensing SnRK1 kinase, as its interacting partner. Our study reveals a possible regulatory role for RALF peptide in tapetum degeneration and suggests that EaF82 action may be mediated through AKIN10 leading to the alteration of transcriptome and energy metabolism, thereby causing ATP deficiency and impairing pollen development. Full article
Show Figures

Figure 1

53 pages, 5405 KiB  
Review
Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World
by Rachid Kacemi and Maria G. Campos
Nutrients 2023, 15(10), 2413; https://doi.org/10.3390/nu15102413 - 22 May 2023
Cited by 15 | Viewed by 10368
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In [...] Read more.
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information. Full article
(This article belongs to the Special Issue Bee Products in Human Health)
Show Figures

Figure 1

Back to TopTop