Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,467)

Search Parameters:
Keywords = policy mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1260 KiB  
Review
Comprehensive Overview Assessment on Legal Guarantee System of Wetland Carbon Sink Trading for One Belt and One Road Initiative
by Jingjing Min, Wanwu Yuan, Wei He, Pingping Luo, Hanming Zhang and Yang Zhao
Land 2025, 14(8), 1583; https://doi.org/10.3390/land14081583 (registering DOI) - 3 Aug 2025
Abstract
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks [...] Read more.
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks in these countries. It explores the necessity of legal system construction for their carbon sink trading. This study finds that smooth trading requires clear property rights definition rules, efficient market trading entities, definite carbon sink trading price rules, financial support aligned with the Equator Principles, and support from biodiversity-compatible environmental regulatory principles. Currently, there are still obstacles in wetland carbon sink trading in the Belt and Road, such as property rights confirmation, an accounting system, an imperfect market trading mechanism, and the coexistence of multiple trading risks. Therefore, this paper first proposes to clarify the goal of the legal guarantee mechanism. Efforts should focus on promoting a consensus on wetland carbon sink ownership and establishing a unified accounting standard system; simultaneously, the relevant departments should conduct field investigations and monitoring, standardize the market order, and strengthen government financial support and funding guarantees. Full article
Show Figures

Figure 1

24 pages, 985 KiB  
Article
A Spatiotemporal Deep Learning Framework for Joint Load and Renewable Energy Forecasting in Stability-Constrained Power Systems
by Min Cheng, Jiawei Yu, Mingkang Wu, Yihua Zhu, Yayao Zhang and Yuanfu Zhu
Information 2025, 16(8), 662; https://doi.org/10.3390/info16080662 (registering DOI) - 3 Aug 2025
Abstract
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep [...] Read more.
With the increasing uncertainty introduced by the large-scale integration of renewable energy sources, traditional power dispatching methods face significant challenges, including severe frequency fluctuations, substantial forecasting deviations, and the difficulty of balancing economic efficiency with system stability. To address these issues, a deep learning-based dispatching framework is proposed, which integrates spatiotemporal feature extraction with a stability-aware mechanism. A joint forecasting model is constructed using Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to handle multi-source inputs, while a reinforcement learning-based stability-aware scheduler is developed to manage dynamic system responses. In addition, an uncertainty modeling mechanism combining Dropout and Bayesian networks is incorporated to enhance dispatch robustness. Experiments conducted on real-world power grid and renewable generation datasets demonstrate that the proposed forecasting module achieves approximately a 2.1% improvement in accuracy compared with Autoformer and reduces Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) by 18.1% and 14.1%, respectively, compared with traditional LSTM models. The achieved Mean Absolute Percentage Error (MAPE) of 5.82% outperforms all baseline models. In terms of scheduling performance, the proposed method reduces the total operating cost by 5.8% relative to Autoformer, decreases the frequency deviation from 0.158 Hz to 0.129 Hz, and increases the Critical Clearing Time (CCT) to 2.74 s, significantly enhancing dynamic system stability. Ablation studies reveal that removing the uncertainty modeling module increases the frequency deviation to 0.153 Hz and raises operational costs by approximately 6.9%, confirming the critical role of this module in maintaining robustness. Furthermore, under diverse load profiles and meteorological disturbances, the proposed method maintains stable forecasting accuracy and scheduling policy outputs, demonstrating strong generalization capabilities. Overall, the proposed approach achieves a well-balanced performance in terms of forecasting precision, system stability, and economic efficiency in power grids with high renewable energy penetration, indicating substantial potential for practical deployment and further research. Full article
(This article belongs to the Special Issue Real-World Applications of Machine Learning Techniques)
20 pages, 641 KiB  
Article
The Impact of China’s Circular Economy Demonstration Policy on Urban Green Innovation Efficiency
by Yanqiu Zhu, Ming Zhang, Hongan Chen, Jun Ma and Fei Pan
Sustainability 2025, 17(15), 7037; https://doi.org/10.3390/su17157037 (registering DOI) - 3 Aug 2025
Abstract
Green innovation is a critical driver of sustainable development, yet it often faces efficiency challenges in rapidly industrializing economies. This study investigates the effect of China’s Circular Economy Demonstration Policy (CEDP) on urban green innovation efficiency (GIE) using city-level panel data from 2010 [...] Read more.
Green innovation is a critical driver of sustainable development, yet it often faces efficiency challenges in rapidly industrializing economies. This study investigates the effect of China’s Circular Economy Demonstration Policy (CEDP) on urban green innovation efficiency (GIE) using city-level panel data from 2010 to 2021. Employing a difference-in-differences (DID) approach, we find that CEDP significantly enhances GIE, with the policy effect becoming statistically significant after a three-year lag and accumulating over time. Robustness tests, including placebo analyses, alternative dependent variables, and propensity score matching, confirm the validity of the results. Mechanism analysis reveals that the policy improves green innovation primarily by reducing capital distortion, promoting market integration, and enhancing resource allocation efficiency. Further heterogeneity analyses show that the positive effects are stronger in central cities, capital cities, and eastern regions, reflecting the role of local economic and institutional conditions. The study concludes with policy implications emphasizing regionally tailored implementation, capacity building, and long-term commitment to maximize green innovation outcomes. Full article
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 (registering DOI) - 2 Aug 2025
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 1651 KiB  
Article
A Comprehensive User Acceptance Evaluation Framework of Intelligent Driving Based on Subjective and Objective Integration—From the Perspective of Value Engineering
by Wang Zhang, Fuquan Zhao, Zongwei Liu, Haokun Song and Guangyu Zhu
Systems 2025, 13(8), 653; https://doi.org/10.3390/systems13080653 (registering DOI) - 2 Aug 2025
Abstract
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty [...] Read more.
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty of this framework lies in three aspects: (1) It unifies behavioral theory and utility theory under the value engineering framework, and it extracts key indicators such as safety, travel efficiency, trust, comfort, and cost, thus addressing the issue of the lack of integration between subjective and objective factors in previous studies. (2) It establishes a systematic mapping mechanism from technical solutions to evaluation indicators, filling the gap of insufficient targeting at different technical routes in the existing literature. (3) It quantifies acceptance differences via VE’s core formula of V = F/C, overcoming the ambiguity of non-technical evaluation in prior research. A case study comparing single-vehicle intelligence vs. collaborative intelligence and different sensor combinations (vision-only, map fusion, and lidar fusion) shows that collaborative intelligence and vision-based solutions offer higher comprehensive acceptance due to balanced functionality and cost. This framework guides enterprises in technical strategy planning and assists governments in formulating industrial policies by quantifying acceptance differences across technical routes. Full article
(This article belongs to the Special Issue Modeling, Planning and Management of Sustainable Transport Systems)
25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 (registering DOI) - 2 Aug 2025
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

29 pages, 12910 KiB  
Article
Co-Creation, Co-Construction, and Co-Governance in Community Renewal: A Case Study of Civic Participation and Sustainable Mechanisms
by Yitong Shen, Ran Tan and Suhui Zhang
Land 2025, 14(8), 1577; https://doi.org/10.3390/land14081577 (registering DOI) - 1 Aug 2025
Abstract
This study focuses on Shanghai, a pioneer city in China’s community renewal practices. In recent years, community renewal driven by civic participation has become a prominent research topic, leading to the emergence of numerous exemplary cases in Shanghai. However, field investigations revealed that [...] Read more.
This study focuses on Shanghai, a pioneer city in China’s community renewal practices. In recent years, community renewal driven by civic participation has become a prominent research topic, leading to the emergence of numerous exemplary cases in Shanghai. However, field investigations revealed that many projects have experienced varying degrees of physical deterioration and a decline in spatial vitality due to insufficient maintenance, reflecting unsustainable outcomes. In response, this study examines a bottom-up community renewal project led by the research team, aiming to explore how broad civic participation can promote sustainable community renewal. A multidisciplinary approach incorporating perspectives from ecology, the humanities, economics, and sociology was used to guide citizen participation, while participatory observation methods recorded emotional shifts and maintenance behavior throughout the process. The results showed that civic participatory actions under the guidance of sustainability principles effectively enhanced citizens’ sense of community identity and responsibility, thereby facilitating the sustainable upkeep and operation of community spaces. However, the study also found that bottom-up efforts alone are insufficient. Sustainable community renewal also requires top-down policy support and institutional safeguards. At the end, the paper concludes by summarizing the practical outcomes and proposing strategies and mechanisms for broader application, aiming to provide a reference for related practices and research. Full article
(This article belongs to the Special Issue Planning for Sustainable Urban and Land Development, Second Edition)
25 pages, 1178 KiB  
Article
A Novel Data-Driven Multi-Branch LSTM Architecture with Attention Mechanisms for Forecasting Electric Vehicle Adoption
by Md Mizanur Rahaman, Md Rashedul Islam, Mia Md Tofayel Gonee Manik, Md Munna Aziz, Inshad Rahman Noman, Mohammad Muzahidur Rahman Bhuiyan, Kanchon Kumar Bishnu and Joy Chakra Bortty
World Electr. Veh. J. 2025, 16(8), 432; https://doi.org/10.3390/wevj16080432 (registering DOI) - 1 Aug 2025
Viewed by 25
Abstract
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short‑Term Memory (LSTM) branches—one for past EV sales, one for [...] Read more.
Accurately predicting how quickly people will adopt electric vehicles (EVs) is vital for planning charging stations, managing supply chains, and shaping climate policy. We present a forecasting model that uses three separate Long Short‑Term Memory (LSTM) branches—one for past EV sales, one for infrastructure and policy signals, and one for economic trends. An attention mechanism first highlights the most important weeks in each branch, then decides which branch matters most at any point in time. Trained end‑to‑end on publicly available data, the model beats traditional statistical methods and newer deep learning baselines while remaining small enough to run efficiently. An ablation study shows that every branch and both attention steps improve accuracy, and that adding policy and economic data helps more than relying on EV history alone. Because the network is modular and its attention weights are easy to interpret, it can be extended to produce confidence intervals, include physical constraints, or forecast adoption of other clean‑energy technologies. Full article
23 pages, 1139 KiB  
Article
A Critical Appraisal of Off-Label Use and Repurposing of Statins for Non-Cardiovascular Indications: A Systematic Mini-Update and Regulatory Analysis
by Anna Artner, Irem Diler, Balázs Hankó, Szilvia Sebők and Romána Zelkó
J. Clin. Med. 2025, 14(15), 5436; https://doi.org/10.3390/jcm14155436 (registering DOI) - 1 Aug 2025
Viewed by 29
Abstract
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to [...] Read more.
Background: Statins exhibit pleiotropic anti-inflammatory, antioxidant, and immunomodulatory effects, suggesting their potential in non-cardiovascular conditions. However, evidence supporting their repurposing remains limited, and off-label prescribing policies vary globally. Objective: To systematically review evidence on statin repurposing in oncology and infectious diseases, and to assess Hungarian regulatory practices regarding off-label statin use. Methods: A systematic literature search (PubMed, Web of Science, Scopus, ScienceDirect; 2010–May 2025) was conducted using the terms “drug repositioning” OR “off-label prescription” AND “statin” NOT “cardiovascular,” following PRISMA guidelines. Hungarian off-label usage data from the NNGYK (2008–2025) were also analyzed. Results: Out of 205 publications, 12 met the inclusion criteria—75% were oncology-focused, and 25% focused on infectious diseases. Most were preclinical (58%); only 25% offered strong clinical evidence. Applications included hematologic malignancies, solid tumors, Cryptococcus neoformans, SARS-CoV-2, and dengue virus. Mechanisms involved mevalonate pathway inhibition and modulation of host immune responses. Hungarian data revealed five approved off-label statin uses—three dermatologic and two pediatric metabolic—supported by the literature and requiring post-treatment reporting. Conclusions: While preclinical findings are promising, clinical validation of off-label statin use remains limited. Statins should be continued in cancer patients with cardiovascular indications, but initiation for other purposes should be trial-based. Future directions include biomarker-based personalization, regulatory harmonization, and cost-effectiveness studies. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 (registering DOI) - 1 Aug 2025
Viewed by 30
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

20 pages, 3027 KiB  
Article
Evolutionary Game Analysis of Multi-Agent Synergistic Incentives Driving Green Energy Market Expansion
by Yanping Yang, Xuan Yu and Bojun Wang
Sustainability 2025, 17(15), 7002; https://doi.org/10.3390/su17157002 (registering DOI) - 1 Aug 2025
Viewed by 52
Abstract
Achieving the construction sector’s dual carbon objectives necessitates scaling green energy adoption in new residential buildings. The current literature critically overlooks four unresolved problems: oversimplified penalty mechanisms, ignoring escalating regulatory costs; static subsidies misaligned with market maturity evolution; systematic exclusion of innovation feedback [...] Read more.
Achieving the construction sector’s dual carbon objectives necessitates scaling green energy adoption in new residential buildings. The current literature critically overlooks four unresolved problems: oversimplified penalty mechanisms, ignoring escalating regulatory costs; static subsidies misaligned with market maturity evolution; systematic exclusion of innovation feedback from energy suppliers; and underexplored behavioral evolution of building owners. This study establishes a government–suppliers–owners evolutionary game framework with dynamically calibrated policies, simulated using MATLAB multi-scenario analysis. Novel findings demonstrate: (1) A dual-threshold penalty effect where excessive fines diminish policy returns due to regulatory costs, requiring dynamic calibration distinct from fixed-penalty approaches; (2) Market-maturity-phased subsidies increasing owner adoption probability by 30% through staged progression; (3) Energy suppliers’ cost-reducing innovations as pivotal feedback drivers resolving coordination failures, overlooked in prior tripartite models; (4) Owners’ adoption motivation shifts from short-term economic incentives to environmentally driven decisions under policy guidance. The framework resolves these gaps through integrated dynamic mechanisms, providing policymakers with evidence-based regulatory thresholds, energy suppliers with cost-reduction targets, and academia with replicable modeling tools. Full article
Show Figures

Figure 1

22 pages, 1814 KiB  
Systematic Review
The Role of Financial Stability in Mitigating Climate Risk: A Bibliometric and Literature Analysis
by Ranila Suciati
J. Risk Financial Manag. 2025, 18(8), 428; https://doi.org/10.3390/jrfm18080428 (registering DOI) - 1 Aug 2025
Viewed by 118
Abstract
This study provides a comprehensive synthesis of climate risk and financial stability literature through a systematic review and bibliometric analysis of 174 Scopus-indexed publications from 1988 to 2024. Publications increased by 500% from 1988 to 2019, indicating growing research interest following the 2015 [...] Read more.
This study provides a comprehensive synthesis of climate risk and financial stability literature through a systematic review and bibliometric analysis of 174 Scopus-indexed publications from 1988 to 2024. Publications increased by 500% from 1988 to 2019, indicating growing research interest following the 2015 Paris Agreement. It explores how physical and transition climate risks affect financial markets, asset pricing, financial regulation, and long-term sustainability. Common themes include macroprudential policy, climate disclosures, and environmental risk integration in financial management. Influential authors and key journals are identified, with keyword analysis showing strong links between “climate change”, “financial stability”, and “climate risk”. Various methodologies are used, including econometric modeling, panel data analysis, and policy review. The main finding indicates a shift toward integrated, risk-based financial frameworks and rising concern over systemic climate threats. Policy implications include the need for harmonized disclosures, ESG integration, and strengthened adaptation finance mechanisms. Full article
(This article belongs to the Special Issue Featured Papers in Climate Finance)
Show Figures

Figure 1

20 pages, 2327 KiB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 52
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

22 pages, 760 KiB  
Review
Strengthening Corporate Governance and Financial Reporting Through Regulatory Reform: A Comparative Analysis of Greek Laws 3016/2002 and 4706/2020
by Savvina Paganou, Ioannis Antoniadis, Panagiota Xanthopoulou and Vasilios Kanavas
J. Risk Financial Manag. 2025, 18(8), 426; https://doi.org/10.3390/jrfm18080426 (registering DOI) - 1 Aug 2025
Viewed by 212
Abstract
This study explores how corporate governance reforms can enhance financial reporting quality and organizational transparency, focusing on Greece’s transition from Law 3016/2002 to Law 4706/2020. The legislative reform aimed to modernize governance structures, align national practices with international standards, and strengthen investor protection [...] Read more.
This study explores how corporate governance reforms can enhance financial reporting quality and organizational transparency, focusing on Greece’s transition from Law 3016/2002 to Law 4706/2020. The legislative reform aimed to modernize governance structures, align national practices with international standards, and strengthen investor protection in a post-crisis economic environment. Moving beyond a simple legal comparison, the study examines how Law 3016/2002’s formal compliance model contrasts with Law 4706/2020’s more substantive accountability framework. We hypothesize that Law 4706/2020 introduces substantively stronger governance mechanisms than its predecessor, thereby improving transparency and investor protection, while compliance with the new law imposes materially greater administrative and financial burdens, especially on small- and mid-cap firms. Methodologically, the research employs a narrative literature review and a structured comparative legal analysis to assess the administrative and financial implications of the new law for publicly listed companies, focusing on board composition and diversity, internal controls, suitability policies, and disclosure requirements. Drawing on prior comparative evidence, we posit that Law 4706/2020 will foster governance and disclosure improvements, enhanced oversight, and clearer board roles. However, these measures also impose compliance burdens. Due to the heterogeneity of listed companies and the lack of firm-level data following Law 4706/2020’s implementation, the findings are neither fully generalizable nor quantifiable; future quantitative research using event studies or panel data is required to validate the hypotheses. We conclude that Greece’s new framework is a critical step toward sustainable corporate governance and more transparent financial reporting, offering regulators, practitioners, and scholars examining legal reform’s impact on governance effectiveness and financial reporting integrity. Full article
(This article belongs to the Special Issue Research on Corporate Governance and Financial Reporting)
Show Figures

Figure 1

32 pages, 444 KiB  
Article
Does Digital Literacy Increase Farmers’ Willingness to Adopt Livestock Manure Resource Utilization Modes: An Empirical Study from China
by Xuefeng Ma, Yahui Li, Minjuan Zhao and Wenxin Liu
Agriculture 2025, 15(15), 1661; https://doi.org/10.3390/agriculture15151661 - 1 Aug 2025
Viewed by 150
Abstract
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia [...] Read more.
Enhancing farmers’ digital literacy is both an inevitable requirement for adapting to the digital age and an important measure for promoting the sustainable development of livestock and poultry manure resource utilization. This study surveyed and obtained data from 1047 farm households in Ningxia and Gansu, two provinces in China that have long implemented livestock manure resource utilization policies, from December 2023 to January 2024, and employed the binary probit model to analyze how digital literacy influences farmers’ willingness to adopt two livestock manure resource utilization modes, as well as to analyze the moderating role of three policy regulations. This paper also explores the heterogeneous results in different village forms and income groups. The results are as follows: (1) Digital literacy significantly and positively impacts farmers’ willingness to adopt both the “household collection” mode and the “livestock community” mode. For every one-unit increase in a farmer’s digital literacy, the probability of farmers’ willingness to adopt the “household collection” mode rises by 22 percentage points, and the probability of farmers’ willingness to adopt the “livestock community” mode rises by 19.8 percentage points. After endogeneity tests and robustness checks, the conclusion still holds. (2) Mechanism analysis results indicate that guiding policy and incentive policy have a positive moderation effect on the link between digital literacy and the willingness to adopt the “household collection” mode. Meanwhile, incentive policy also positively moderates the relationship between digital literacy and the willingness to adopt the “livestock community” mode. (3) Heterogeneity analysis results show that the positive effect of digital literacy on farmers’ willingness to adopt two livestock manure resource utilization modes is stronger in “tight-knit society” rural areas and in low-income households. (4) In further discussion, we find that digital literacy removes the information barriers for farmers, facilitating the conversion of willingness into behavior. The value of this study is as follows: this paper provides new insights for the promotion of livestock and poultry manure resource utilization policies in countries and regions similar to the development process of northwest China. Therefore, enhancing farmers’ digital literacy in a targeted way, strengthening the promotion of grassroots policies on livestock manure resource utilization, formulating diversified ecological compensation schemes, and establishing limited supervision and penalty rules can boost farmers’ willingness to adopt manure resource utilization models. Full article
(This article belongs to the Special Issue Application of Biomass in Agricultural Circular Economy)
Show Figures

Figure 1

Back to TopTop