Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = polarimetric radar signatures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5205 KiB  
Article
Temporal Associations Between Polarimetric Updraft Proxies and Signatures of Inflow and Hail in Supercells
by Matthew S. Van Den Broeke and Erik R. Green
Remote Sens. 2024, 16(22), 4314; https://doi.org/10.3390/rs16224314 - 19 Nov 2024
Viewed by 762
Abstract
Recurring polarimetric radar signatures in supercells include deep and persistent differential reflectivity (ZDR) columns, hail inferred in low-level scans, and the ZDR arc signature. Prior investigations of supercell polarimetric signatures reveal positive correlations between the ZDR column depth [...] Read more.
Recurring polarimetric radar signatures in supercells include deep and persistent differential reflectivity (ZDR) columns, hail inferred in low-level scans, and the ZDR arc signature. Prior investigations of supercell polarimetric signatures reveal positive correlations between the ZDR column depth and cross-sectional area and quantitative characteristics of the radar reflectivity field. This study expands upon prior work by examining temporal associations between supercell polarimetric radar signatures, incorporating a dataset of relatively discrete, right-moving supercells from the continental United States observed by the Weather Surveillance Radar 1988-Doppler (WSR-88D) network. Cross-correlation coefficients were calculated between the ZDR column area and depth and the base-scan hail area, ZDR arc area, and mean ZDR arc value. These correlation values were computed with a positive and negative lag time of up to 45 min. Results of the lag correlation analysis are consistent with prior observations indicative of storm cycling, including temporal associations between ZDR columns and inferred hail signatures/ZDR arcs in both tornadic and nontornadic supercells, but were most pronounced in tornadic storms. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

23 pages, 41466 KiB  
Article
Enhanced Tracer Particle Detection in Dynamic Bulk Systems Based on Polarimetric Radar Signature Correlation
by Birk Hattenhorst, Nicholas Karsch and Thomas Musch
Sensors 2024, 24(9), 2673; https://doi.org/10.3390/s24092673 - 23 Apr 2024
Viewed by 1086
Abstract
This contribution focuses on the detection of tracer particles within non-homogeneous bulk media, aiming to enhance insights into particulate systems. Polarimetric radar measurements are employed, utilizing cross-polarizing channels in order to mitigate interference from bulk media reflections. To distinguish the tracer particle in [...] Read more.
This contribution focuses on the detection of tracer particles within non-homogeneous bulk media, aiming to enhance insights into particulate systems. Polarimetric radar measurements are employed, utilizing cross-polarizing channels in order to mitigate interference from bulk media reflections. To distinguish the tracer particle in the measurements, a resonant cross-polarizing structure is constructed, facilitating the isolation of frequency signatures from the surrounding bulk clutter. In addition to characterizing the bulk and tracer components, this study provides a detailed presentation and discussion of the measurement setup, along with the employed signal processing methods. The effectiveness of the proposed methods is demonstrated through comprehensive measurements, where a tracer particle is systematically positioned at various locations. The results affirm the feasibility and efficacy of the approach, highlighting its applicability for enhanced dynamic monitoring in particulate systems within industrial processes. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

22 pages, 12411 KiB  
Article
Evaluating Simulated Microphysics of Stratiform and Convective Precipitation in a Squall Line Event Using Polarimetric Radar Observations
by Yuting Sun, Zhimin Zhou, Qingjiu Gao, Hongli Li and Minghuan Wang
Remote Sens. 2023, 15(6), 1507; https://doi.org/10.3390/rs15061507 - 9 Mar 2023
Cited by 5 | Viewed by 2466
Abstract
Recent upgrades to China’s radar network now allow for polarimetric measurements of convective systems in central China, providing an effective data set with which to evaluate the microphysics schemes employed in local squall line simulations. We compared polarimetric radar variables derived by Weather [...] Read more.
Recent upgrades to China’s radar network now allow for polarimetric measurements of convective systems in central China, providing an effective data set with which to evaluate the microphysics schemes employed in local squall line simulations. We compared polarimetric radar variables derived by Weather Research and Forecasting (WRF) and radar forward models and the corresponding hydrometeor species with radar observations and retrievals for a severe squall line observed over central China on 16 March 2022. Two microphysics schemes were tested and were able to accurately depict the contrast between convective and stratiform regions in terms of the drop size distribution (DSD) and reproduce the classical polarimetric signatures of the observed differential reflectivity (ZDR) and specific differential phase (KDP) columns. However, for the convective region, the simulated DSDs in both schemes exhibited lower proportions of large drops and lower liquid water content; by contrast, for the stratiform region, the proportion of large drops was found to be too high in the Morrison (MORR) scheme. The underprediction of ice-phase processes in the convective region, particularly the riming processes associated with graupel and hail, was likely responsible for the bias toward large raindrops at low levels. In the stratiform region, raindrop evaporation in the WRF Double-Moment 6-Class (WDM6) scheme, which partially offsets the overestimation of ice-phase processes, produced ground DSDs that more closely matched the observational data, and did not exhibit the overly strong warm-rain collisional growth processes of MORR. Full article
(This article belongs to the Special Issue Processing and Application of Weather Radar Data)
Show Figures

Figure 1

21 pages, 2608 KiB  
Article
An Advanced Data Processing Algorithm for Extraction of Polarimetric Radar Signatures of Moving Automotive Vehicles Using the H/A/α Decomposition Technique
by Detmer A. Bosma, Oleg A. Krasnov and Alexander Yarovoy
Remote Sens. 2023, 15(4), 1060; https://doi.org/10.3390/rs15041060 - 15 Feb 2023
Cited by 4 | Viewed by 2505
Abstract
A dedicated signal and data processing chain is proposed for a fully polarimetric Doppler surveillance S-band radar to extract the polarimetric signatures of moving targets. To extract the target’s polarimetric features, detection, clustering, and tracking steps are realized for a multi-target environment in [...] Read more.
A dedicated signal and data processing chain is proposed for a fully polarimetric Doppler surveillance S-band radar to extract the polarimetric signatures of moving targets. To extract the target’s polarimetric features, detection, clustering, and tracking steps are realized for a multi-target environment in the range-Doppler domain. A dedicated data fusion method for all four polarimetric radar channel signals is implemented to take full advantage of the additional polarimetric information and improve the detection performance. While tracking each particular target, polarization information is collected and used to describe their polarization scattering characteristics. Using the polarimetric H/A/α decomposition technique, the polarimetric features of moving automotive targets are extracted and investigated. The developed processing chain has been applied to the signals scattered from vehicles moving in a highway. By employing both time averaging and spatial averaging of the statistical coherency matrix, the polarimetric signatures of both moving vehicles and static clutter have been presented in the two-dimensional H/α plane. It has been found that the spatial averaging approach results in polarimetric signatures of moving vehicles that give the opportunity to directly and without consideration of the motion of the targets compare the polarization features of moving targets and static clutter. Therefore, this method can be used to improve the performance of target detection or target classification. Full article
Show Figures

Figure 1

22 pages, 10479 KiB  
Article
On the Effects of the Incidence Angle on the L-Band Multi-Polarisation Scattering of a Small Ship
by Muhammad Adil, Andrea Buono, Ferdinando Nunziata, Emanuele Ferrentino, Domenico Velotto and Maurizio Migliaccio
Remote Sens. 2022, 14(22), 5813; https://doi.org/10.3390/rs14225813 - 17 Nov 2022
Cited by 19 | Viewed by 2942
Abstract
The monitoring of ships is of paramount importance for ocean and coastal area surveillance. The synthetic aperture radar is shown to be a key sensor to provide effective and continuous observation of ships due to its unique imaging capabilities. When advanced synthetic aperture [...] Read more.
The monitoring of ships is of paramount importance for ocean and coastal area surveillance. The synthetic aperture radar is shown to be a key sensor to provide effective and continuous observation of ships due to its unique imaging capabilities. When advanced synthetic aperture radar imaging systems are considered, the full scattering information is available that was demonstrated to be beneficial in developing improved ship detection and classification algorithms. Nonetheless, the capability of polarimetric synthetic aperture radar to observe marine vessels is significantly affected by several imaging and environmental parameters, including the incidence angle. Nonetheless, how changes in the incidence angle affect the scattering of ships still needs to be further investigated since only a sparse analysis, i.e., on different kinds of ships of different sizes observed at multiple incidence angles, has been performed. Hence, in this study, for the first time, the polarimetric scattering of the same ship, i.e., a small fishing trawler, which is imaged multiple times under the same sea state conditions but in a wide range of incidence angles, is analysed. This unique opportunity is provided by a premium L-band UAVSAR airborne dataset that consists of five full-polarimetric synthetic aperture radar scenes collected in the Gulf of Mexico. Experimental results highlight the key role played by the incidence angle on both coherent, i.e., co-polarisation signature and pedestal height, and incoherent, i.e., multi-polarisation and total backscattering power, polarimetric scattering descriptors. Experimental results show that: (1) the polarised scattering component is more sensitive to the incidence angle with respect to the unpolarised one; (2) the co-polarised channel under horizontal polarisation dominated the polarimetric backscattering from the fishing trawler at lower angles of incidence, while both co-polarised channels contribute to the polarimetric backscattering at higher incidence angles; (3) the HV polarisation provides the largest target-to-clutter ratio at lower incidence angles, while the HH polarisation should be preferred at higher angles of incidence. Full article
(This article belongs to the Special Issue Added-Value SAR Products for the Observation of Coastal Areas)
Show Figures

Figure 1

8 pages, 4491 KiB  
Proceeding Paper
Polarimetric Distortion Analysis of L- and S-Band Airborne SAR (LS-ASAR): A Precursor Study of the Spaceborne Dual-Frequency L- and S-Band NASA ISRO Synthetic Aperture Radar (NISAR) Mission
by Shashi Kumar
Eng. Proc. 2022, 27(1), 77; https://doi.org/10.3390/ecsa-9-13186 - 1 Nov 2022
Cited by 1 | Viewed by 1660
Abstract
The polarimetric calibration (PolCal) is an essential process to ensure the minimization of distortions from airborne and spaceborne SAR data for scattering-based characterization of the targeted objects. The present study investigates the polarimetric distortions in the L-and S-band airborne dual-frequency SAR data. The [...] Read more.
The polarimetric calibration (PolCal) is an essential process to ensure the minimization of distortions from airborne and spaceborne SAR data for scattering-based characterization of the targeted objects. The present study investigates the polarimetric distortions in the L-and S-band airborne dual-frequency SAR data. The L- and S-band airborne SAR (LS-ASAR) is a precursor mission of the spaceborne dual-frequency L- and S-band NASA ISRO Synthetic Aperture Radar (NISAR). The present work utilizes the LS-ASAR data acquired over the Rosamond Corner Reflector Array (RCRA). The polarimetric signature analysis of co-pol and cross-pol channels shows that perfect behavior is shown by the co-pol signature but the distortions could be easily identified in the cross-pol signatures. Full article
Show Figures

Figure 1

17 pages, 12346 KiB  
Article
Dual-Polarization Radar Observations of the Evolution of a Supercell Tornado and Analysis of the Echo Mechanisms
by Bin Wu, Ming Wei and Yanfang Li
Atmosphere 2022, 13(5), 797; https://doi.org/10.3390/atmos13050797 - 13 May 2022
Cited by 7 | Viewed by 3551
Abstract
To gain a deeper understanding of the structural and evolutionary characteristics of supercell tornadoes that occurred in eastern China on 14 May 2021, observations from the S-band dual-polarization radars, soundings and other instruments are used to investigate the evolutionary process of the tornado [...] Read more.
To gain a deeper understanding of the structural and evolutionary characteristics of supercell tornadoes that occurred in eastern China on 14 May 2021, observations from the S-band dual-polarization radars, soundings and other instruments are used to investigate the evolutionary process of the tornado formation by the mergering and strengthening of supercell storms. The results are described as follows. The updraft by upper divergence and vertical thermal instability induced by the cold source at the tropopause provided the environmental conditions suitable for tornado formation. The tornado event involved three storm merger processes, each of which was associated with an increase in the echo intensity, vertical rising speed, and vertical vorticity of the supercell. Furthermore, during the last merger, the merging of the two vortices resulted in the reduction of the rotation radius of the new vortex, which also provided a favorable condition for tornadogenesis. A schematic was proposed to describe storm mergers. The characteristics of the velocity spectrum width were indicative of the occurrence and evolution of the tornado in this case. During the tornado stage, distinct polarimetric variable signatures (e.g., a tornado debris signature and a differential reflectivity arc) and radial velocity signatures (i.e., a tornadic vortex signature) were observed. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

24 pages, 7995 KiB  
Article
A Polarimetric Radar Operator and Application for Convective Storm Simulation
by Xuanli Li, John R. Mecikalski, Jason A. Otkin, David S. Henderson and Jayanthi Srikishen
Atmosphere 2022, 13(5), 645; https://doi.org/10.3390/atmos13050645 - 19 Apr 2022
Cited by 3 | Viewed by 2980
Abstract
In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This [...] Read more.
In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere. Full article
Show Figures

Figure 1

26 pages, 10119 KiB  
Article
Applying Machine Learning and Time-Series Analysis on Sentinel-1A SAR/InSAR for Characterizing Arctic Tundra Hydro-Ecological Conditions
by Michael Allan Merchant, Mayah Obadia, Brian Brisco, Ben DeVries and Aaron Berg
Remote Sens. 2022, 14(5), 1123; https://doi.org/10.3390/rs14051123 - 24 Feb 2022
Cited by 15 | Viewed by 7227
Abstract
Synthetic aperture radar (SAR) is a widely used tool for Earth observation activities. It is particularly effective during times of persistent cloud cover, low light conditions, or where in situ measurements are challenging. The intensity measured by a polarimetric SAR has proven effective [...] Read more.
Synthetic aperture radar (SAR) is a widely used tool for Earth observation activities. It is particularly effective during times of persistent cloud cover, low light conditions, or where in situ measurements are challenging. The intensity measured by a polarimetric SAR has proven effective for characterizing Arctic tundra landscapes due to the unique backscattering signatures associated with different cover types. However, recently, there has been increased interest in exploiting novel interferometric SAR (InSAR) techniques that rely on both the amplitude and absolute phase of a pair of acquisitions to produce coherence measurements, although the simultaneous use of both intensity and interferometric coherence in Arctic tundra image classification has not been widely tested. In this study, a time series of dual-polarimetric (VV, VH) Sentinel-1 SAR/InSAR data collected over one growing season, in addition to a digital elevation model (DEM), was used to characterize an Arctic tundra study site spanning a hydrologically dynamic coastal delta, open tundra, and high topographic relief from mountainous terrain. SAR intensity and coherence patterns based on repeat-pass interferometry were analyzed in terms of ecological structure (i.e., graminoid, or woody) and hydrology (i.e., wet, or dry) using machine learning methods. Six hydro-ecological cover types were delineated using time-series statistical descriptors (i.e., mean, standard deviation, etc.) as model inputs. Model evaluations indicated SAR intensity to have better predictive power than coherence, especially for wet landcover classes due to temporal decorrelation. However, accuracies improved when both intensity and coherence were used, highlighting the complementarity of these two measures. Combining time-series SAR/InSAR data with terrain derivatives resulted in the highest per-class F1 score values, ranging from 0.682 to 0.955. The developed methodology is independent of atmospheric conditions (i.e., cloud cover or sunlight) as it does not rely on optical information, and thus can be regularly updated over forthcoming seasons or annually to support ecosystem monitoring. Full article
(This article belongs to the Special Issue Remote Sensing of Polar Regions)
Show Figures

Figure 1

22 pages, 9768 KiB  
Article
Information Extraction from Satellite-Based Polarimetric SAR Data Using Simulated Annealing and SIRT Methods and GPU Processing
by Stanisława Porzycka-Strzelczyk, Jacek Strzelczyk, Kamil Szostek, Maciej Dwornik, Andrzej Leśniak, Justyna Bała and Anna Franczyk
Energies 2022, 15(1), 72; https://doi.org/10.3390/en15010072 - 22 Dec 2021
Cited by 2 | Viewed by 2856
Abstract
The main goal of this research was to propose a new method of polarimetric SAR data decomposition that will extract additional polarimetric information from the Synthetic Aperture Radar (SAR) images compared to other existing decomposition methods. Most of the current decomposition methods are [...] Read more.
The main goal of this research was to propose a new method of polarimetric SAR data decomposition that will extract additional polarimetric information from the Synthetic Aperture Radar (SAR) images compared to other existing decomposition methods. Most of the current decomposition methods are based on scattering, covariance or coherence matrices describing the radar wave-scattering phenomenon represented in a single pixel of an SAR image. A lot of different decomposition methods have been proposed up to now, but the problem is still open since it has no unique solution. In this research, a new polarimetric decomposition method is proposed that is based on polarimetric signature matrices. Such matrices may be used to reveal hidden information about the image target. Since polarimetric signatures (size 18 × 9) are much larger than scattering (size 2 × 2), covariance (size 3 × 3 or 4 × 4) or coherence (size 3 × 3 or 4 × 4) matrices, it was essential to use appropriate computational tools to calculate the results of the proposed decomposition method within an acceptable time frame. In order to estimate the effectiveness of the presented method, the obtained results were compared with the outcomes of another method of decomposition (Arii decomposition). The conducted research showed that the proposed solution, compared with Arii decomposition, does not overestimate the volume-scattering component in built-up areas and clearly separates objects within the mixed-up areas, where both building, vegetation and surfaces occur. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

18 pages, 12661 KiB  
Article
Observational Analysis of a Wind Gust Event during the Merging of a Bow Echo and Mini-Supercell in Southeastern China
by Hui Zheng, Yuchun Zhao, Yipeng Huang, Wei Zhang, Changrong Luo, Ming Wei and Xinfa Qiu
Atmosphere 2021, 12(11), 1511; https://doi.org/10.3390/atmos12111511 - 16 Nov 2021
Viewed by 2488
Abstract
The merging of a fast-moving bow echo with a convective cell of a hook-echo signature was studied by using polarimetric radar detections. Gusts with wind speeds near 35 m s−1 were recorded by the surface station, which caused significant damage. A convective [...] Read more.
The merging of a fast-moving bow echo with a convective cell of a hook-echo signature was studied by using polarimetric radar detections. Gusts with wind speeds near 35 m s−1 were recorded by the surface station, which caused significant damage. A convective cell with a mesovortex signature, which is hereafter referred to as a mini-supercell, was observed over the northeast of the bow echo before the convective merging. It was found that the mesovortex possessed cyclonic circulation and resembled a supercell-like feature. The merging of the bow echo and the mini-supercell strengthened the updraft near the apex of the bow echo. The enhanced updraft was also demonstrated by the appearance of a differential reflectivity (ZDR) column with a topmost height of 4 km above the melting layer (~4 km). The bow was separated into northern and southern sectors after merging with the mini-supercell, leading to the gusty wind over the surface of the south sector. Full article
(This article belongs to the Special Issue Moist Atmospheric Convection)
Show Figures

Figure 1

20 pages, 6009 KiB  
Article
The Impact of Phenological Developments on Interferometric and Polarimetric Crop Signatures Derived from Sentinel-1: Examples from the DEMMIN Study Site (Germany)
by Johannes Löw, Tobias Ullmann and Christopher Conrad
Remote Sens. 2021, 13(15), 2951; https://doi.org/10.3390/rs13152951 - 27 Jul 2021
Cited by 13 | Viewed by 3377
Abstract
This study explores the potential of Sentinel-1 Synthetic Aperture Radar (SAR) to identify phenological phases of wheat, sugar beet, and canola. Breakpoint and extreme value analyses were applied to a dense time series of interferometric (InSAR) and polarimetric (PolSAR) features recorded during the [...] Read more.
This study explores the potential of Sentinel-1 Synthetic Aperture Radar (SAR) to identify phenological phases of wheat, sugar beet, and canola. Breakpoint and extreme value analyses were applied to a dense time series of interferometric (InSAR) and polarimetric (PolSAR) features recorded during the growing season of 2017 at the JECAM site DEMMIN (Germany). The analyses of breakpoints and extrema allowed for the distinction of vegetative and reproductive stages for wheat and canola. Certain phenological stages, measured in situ using the BBCH-scale, such as leaf development and rosette growth of sugar beet or stem elongation and ripening of wheat, were detectable by a combination of InSAR coherence, polarimetric Alpha and Entropy, and backscatter (VV/VH). Except for some fringe cases, the temporal difference between in situ observations and breakpoints or extrema ranged from zero to five days. Backscatter produced the signature that generated the most breakpoints and extrema. However, certain micro stadia, such as leaf development of BBCH 10 of sugar beet or flowering BBCH 69 of wheat, were only identifiable by the InSAR coherence and Alpha. Hence, it is concluded that combining PolSAR and InSAR features increases the number of detectable phenological events in the phenological cycles of crops. Full article
Show Figures

Figure 1

12 pages, 1276 KiB  
Technical Note
On the Spectral and Polarimetric Signatures of a Bright Scatterer before and after Hardware Replacement
by Marco Gabella
Remote Sens. 2021, 13(5), 919; https://doi.org/10.3390/rs13050919 - 1 Mar 2021
Cited by 3 | Viewed by 1867
Abstract
A previous study has used the stable and peculiar echoes backscattered by a single “bright scatterer” (BS) during five winter days to characterize the hardware of C-band, the dual-polarization radar located at Monte Lema (1625 m altitude) in Southern Switzerland. The BS is [...] Read more.
A previous study has used the stable and peculiar echoes backscattered by a single “bright scatterer” (BS) during five winter days to characterize the hardware of C-band, the dual-polarization radar located at Monte Lema (1625 m altitude) in Southern Switzerland. The BS is the 90 m tall metallic tower on Cimetta (1633 m altitude, 18 km range). In this note, the statistics of the echoes from the BS were derived from other ten dry days with normal propagation conditions in winter 2015 and January 2019. The study confirms that spectral signatures, such as spectrum width, wideband noise and Doppler velocity, were persistently stable. Regarding the polarimetric signatures, the large values (with small dispersion) of the copolar correlation coefficient between horizontal and vertical polarization were also confirmed: the average value was 0.9961 (0.9982) in winter 2015 (January 2019); the daily standard deviations were very small, ranging from 0.0007 to 0.0030. The dispersion of the differential phase shift was also confirmed to be quite small: the daily standard deviation ranged from a minimum of 2.5° to a maximum of 5.3°. Radar reflectivities in both polarizations were typically around 80 dBz and were confirmed to be among the largest values observed in the surveillance volume of the Monte Lema radar. Finally, another recent 5-day data set from January 2020 was analyzed after the replacement of the radar calibration unit that includes low noise amplifiers: these five days show poorer characteristics of the polarimetric signatures and a few outliers affecting the spectral signatures. It was shown that the “historical” polarimetric and spectral signatures of a bright scatterer could represent a benchmark for an in-depth comparison after hardware replacements. Full article
(This article belongs to the Special Issue Advance of Radar Meteorology and Hydrology)
Show Figures

Graphical abstract

30 pages, 39088 KiB  
Article
Multi-Radar Analysis of the 20 May 2013 Moore, Oklahoma Supercell through Tornadogenesis and Intensification
by Clarice N. Satrio, David J. Bodine, Robert D. Palmer and Charles M. Kuster
Atmosphere 2021, 12(3), 313; https://doi.org/10.3390/atmos12030313 - 28 Feb 2021
Cited by 4 | Viewed by 4332
Abstract
A multi-radar analysis of the 20 May 2013 Moore, Oklahoma, U.S. supercell is presented using three Weather Surveillance Radars 1988 Doppler (WSR-88Ds) and PX-1000, a rapid-scan, polarimetric, X-band radar, with a focus on the period between 1930 and 2008 UTC, encompassing supercell maturation [...] Read more.
A multi-radar analysis of the 20 May 2013 Moore, Oklahoma, U.S. supercell is presented using three Weather Surveillance Radars 1988 Doppler (WSR-88Ds) and PX-1000, a rapid-scan, polarimetric, X-band radar, with a focus on the period between 1930 and 2008 UTC, encompassing supercell maturation through rapid tornado intensification. Owing to the 20-s temporal resolution of PX-1000, a detailed radar analysis of the hook echo is performed on (1) the microphysical characteristics through a hydrometeor classification algorithm (HCA)—inter-compared between X- and S-band for performance evaluation—including a hail and debris class and (2) kinematic properties of the low-level mesocyclone (LLM) assessed through ΔVr analyses. Four transient intensifications in ΔVr prior to tornadogenesis are documented and found to be associated with two prevalent internal rear-flank downdraft (RFD) momentum surges, the latter surge coincident with tornadogenesis. The momentum surges are marked by a rapidly advancing reflectivity (ZH) gradient traversing around the LLM, descending reflectivity cores (DRCs), a drop in differential reflectivity (ZDR) due to the advection of smaller drops into the hook echo, a decrease in correlation coefficient (ρhv), and the detection of debris from the HCA. Additionally, volumetric analyses of ZDR and specific differential phase (KDP) signatures show general diffusivity of the ZDR arc even after tornadogenesis in contrast with explosive deepening of the KDP foot downshear of the updraft. Similarly, while the vertical extent of the ZDR and KDP columns decrease leading up to tornadogenesis, the phasing of these signatures are offset after tornadogenesis, with the ZDR column deepening the lagging of KDP. Full article
(This article belongs to the Special Issue Radar Applications for Severe Weather Understanding and Nowcasting)
Show Figures

Figure 1

18 pages, 4254 KiB  
Article
Multisensor Characterization of the Incandescent Jet Region of Lava Fountain-Fed Tephra Plumes
by Luigi Mereu, Simona Scollo, Costanza Bonadonna, Valentin Freret-Lorgeril and Frank Silvio Marzano
Remote Sens. 2020, 12(21), 3629; https://doi.org/10.3390/rs12213629 - 5 Nov 2020
Cited by 19 | Viewed by 3006
Abstract
Explosive basaltic eruptions eject a great amount of pyroclastic material into the atmosphere, forming columns rising to several kilometers above the eruptive vent and causing significant disruption to both proximal and distal communities. Here, we analyze data, collected by an X-band polarimetric weather [...] Read more.
Explosive basaltic eruptions eject a great amount of pyroclastic material into the atmosphere, forming columns rising to several kilometers above the eruptive vent and causing significant disruption to both proximal and distal communities. Here, we analyze data, collected by an X-band polarimetric weather radar and an L-band Doppler fixed-pointing radar, as well as by a thermal infrared (TIR) camera, in relation to lava fountain-fed tephra plumes at the Etna volcano in Italy. We clearly identify a jet, mainly composed of lapilli and bombs mixed with hot gas in the first portion of these volcanic plumes and here called the incandescent jet region (IJR). At Etna and due to the TIR camera configuration, the IJR typically corresponds to the region that saturates thermal images. We find that the IJR is correlated to a unique signature in polarimetric radar data as it represents a zone with a relatively high reflectivity and a low copolar correlation coefficient. Analyzing five recent Etna eruptions occurring in 2013 and 2015, we propose a jet region radar retrieval algorithm (JR3A), based on a decision-tree combining polarimetric X-band observables with L-band radar constraints, aiming at the IJR height detection during the explosive eruptions. The height of the IJR does not exactly correspond to the height of the lava fountain due to a different altitude, potentially reached by lapilli and blocks detected by the X-band weather radar. Nonetheless, it can be used as a proxy of the lava fountain height in order to obtain a first approximation of the exit velocity of the mixture and, therefore, of the mass eruption rate. The comparisons between the JR3A estimates of IJR heights with the corresponding values recovered from TIR imagery, show a fairly good agreement with differences of less than 20% in clear air conditions, whereas the difference between JR3A estimates of IJR height values and those derived from L-band radar data only are greater than 40%. The advantage of using an X-band polarimetric weather radar in an early warning system is that it provides information in all weather conditions. As a matter of fact, we show that JR3A retrievals can also be obtained in cloudy conditions when the TIR camera data cannot be processed. Full article
Show Figures

Figure 1

Back to TopTop