Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = polar pesticides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3648 KiB  
Article
Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
by Maria Karayianni, Emi Haladjova, Stanislav Rangelov and Stergios Pispas
Polysaccharides 2025, 6(3), 67; https://doi.org/10.3390/polysaccharides6030067 - 1 Aug 2025
Viewed by 386
Abstract
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its [...] Read more.
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its potential use in agriculture for pathogen control is a promising alternative to traditional chemical fertilisers and pesticides, which raise concerns regarding public health, environmental protection, and pesticide resistance. This study focused on the preparation of chitosan nanoparticles (CS-NPs) through cross-linking with organic molecules, such as tannic acid (TA). Various formulations were explored for the development of stable nanoscale particles having encapsulation capabilities towards low compounds of varying polarity and with potential agricultural applications relevant to plant health and growth. The solution properties of the NPs were assessed using dynamic and electrophoretic light scattering (DLS and ELS); their morphology was observed through atomic force microscopy (AFM), while analytical ultracentrifugation (AUC) measurements provided insights into their molar mass. Their properties proved to be primarily influenced by the concentration of CS, which significantly affected its intrinsic conformation. Additional structural insights were obtained via infrared and UV–Vis spectroscopic measurements, while detailed fluorescence analysis with the use of three different probes, as model cargo molecules, provided information regarding the hydrophobic and hydrophilic microdomains within the particles. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Figure 1

21 pages, 793 KiB  
Article
Development and Validation of LC–MS/MS and IC–HRMS Methods for Highly Polar Pesticide Detection in Honeybees: A Multicenter Study for the Determination of Pesticides in Honeybees to Support Pollinators and Environmental Protection
by Tommaso Pacini, Emanuela Verdini, Serenella Orsini, Katia Russo, Tabita Mauti, Mara Gasparini, Marialuisa Borgia, Barbara Angelone, Teresa D’Amore and Ivan Pecorelli
J. Xenobiot. 2025, 15(4), 95; https://doi.org/10.3390/jox15040095 - 20 Jun 2025
Cited by 1 | Viewed by 691
Abstract
The widespread use of agrochemicals raises concerns about environmental impacts, particularly on pollinators, such as bees, which serve as bioindicators of contamination. Developing methods to assess contamination risks in bioindicators supports regulatory frameworks, including EU regulations on the maximum residue limits (MRLs) for [...] Read more.
The widespread use of agrochemicals raises concerns about environmental impacts, particularly on pollinators, such as bees, which serve as bioindicators of contamination. Developing methods to assess contamination risks in bioindicators supports regulatory frameworks, including EU regulations on the maximum residue limits (MRLs) for pesticides in food and the environment. This study presents the development and validation of two complementary analytical methods (LC–MS/MS and IC–HRMS) for highly polar pesticide (HPP) detection and quantification in bee matrices. Both methods were validated according to document SANTE/11312/2021 v2. LC–MS/MS was validated with a limit of quantification (LOQ) of 0.005 mg/kg for all the analytes. Repeatability at 0.005, 0.010, 0.020, and 0.100 mg/kg showed RSDr from 1.6% to 19.7% and recoveries between 70% and 119%. Interlaboratory precision at 0.020 mg/kg across two labs showed RSDR from 5.5% to 13.6%, with recoveries between 91% and 103%. The IC–HRMS method achieved LOQs of 0.01 mg/kg (glufosinate, N-acetyl glufosinate, MPPA, glyphosate, N-acetyl glyphosate, N-acetyl AMPA) and 0.1 mg/kg (fosetyl, phosphonic acid, AMPA), with mean recoveries in repeatability conditions from 84% to 114% and RSDr from 2% to 14%. Intralaboratory precision showed mean recoveries from 87% to 119%, with RSDwR values between 10% and 18%. These methods enable accurate monitoring of HPP contamination, supporting risk assessment and sustainable agriculture. Full article
Show Figures

Graphical abstract

17 pages, 2381 KiB  
Article
Wettability of the Plant Growth Regulator 28-HB on Pepper Leaves at Different Developmental Stages
by Xiaoya Dong, Kaiyuan Wang, Zhouming Gao, Cuicui Zhu, Xianping Guan and Baijing Qiu
Horticulturae 2025, 11(6), 661; https://doi.org/10.3390/horticulturae11060661 - 10 Jun 2025
Viewed by 429
Abstract
Studying the wettability of plant growth regulators on crop leaf surfaces is essential for enhancing crop yield. In this study, the wetting behavior of the plant growth regulator 28-homo-brassinolide (28-HB), supplemented with different surfactants, was investigated on the adaxial and abaxial surfaces of [...] Read more.
Studying the wettability of plant growth regulators on crop leaf surfaces is essential for enhancing crop yield. In this study, the wetting behavior of the plant growth regulator 28-homo-brassinolide (28-HB), supplemented with different surfactants, was investigated on the adaxial and abaxial surfaces of pepper leaves at the seedling, early flowering, and fruiting stages. The microstructure of the leaf surface was characterized using an ultra-depth field microscope. The surface free energy (SFE) of the leaves was calculated using the Owens-Wendt-Rabel-Kaelble (OWRK) method. Additionally, the surface tension of the 28-HB solutions containing various surfactants, as well as the contact angles on pepper leaves at different growth stages, were measured. The experimental results indicate that the surface free energy (SFE) of pepper leaves significantly decreases with plant maturation. Specifically, the SFE of the adaxial leaf surface declined from 43.4 mJ/m2 at the seedling stage to 26.6 mJ/m2 at the fruiting stage, while the abaxial surface decreased from 27.5 mJ/m2 to 22.5 mJ/m2. At all growth stages, the relative polar component (RP) of the adaxial surface was consistently higher than that of the abaxial surface and showed a gradual decline from 94.70% to 57.34% as development progressed. The contact angle measurement showed that the addition of surfactant decreased the contact angle of 28-HB on the leaf surface and increased the wetting area. Among the tested formulations, the addition of fatty alcohol ethoxylates (AEO-9) significantly reduced the contact angle to below 45°, and resulted in an adhesion tension below 30 mN/m and adhesion work lower than 105 mJ/m2. These values indicate superior wetting performance compared to formulations containing sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). This study integrates the surface free energy characteristics of pepper leaves at different growth stages with the wetting performance of various surfactant systems, providing a quantitative basis for the selection and optimization of surfactants in agricultural spray formulations. The findings offer theoretical support for precise pesticide application strategies, enhancing pesticide adhesion and absorption on leaf surfaces, thereby improving pesticide utilization efficiency throughout the crop growth cycle. Full article
(This article belongs to the Special Issue New Technologies Applied in Horticultural Crop Protection)
Show Figures

Figure 1

20 pages, 1866 KiB  
Article
Biosynthesis of Fe3O4 Nanoparticles Using Egg Albumin: Antifungal, Dielectric Analysis and Photocatalytic Activity
by Azam Raza, Sally Mostafa Khadrawy, Irfan Ahmad, Mohd Imran, Gulrana Khuwaja, Humaira Parveen, Sayeed Mukhtar, Bhagyashree R. Patil, Ahmed A. Allam, Hassan A. Rudayni, Syed Kashif Ali and Absar Ahmad
Catalysts 2025, 15(6), 505; https://doi.org/10.3390/catal15060505 - 22 May 2025
Viewed by 714
Abstract
The use of chemical pesticides has led to adverse effects on human health and the environment, prompting the exploration of alternative solutions. This study successfully biosynthesized iron oxide nanoparticles (Fe3O4 NPs) using chicken egg albumin, which served as reducing and [...] Read more.
The use of chemical pesticides has led to adverse effects on human health and the environment, prompting the exploration of alternative solutions. This study successfully biosynthesized iron oxide nanoparticles (Fe3O4 NPs) using chicken egg albumin, which served as reducing and capping agents, and evaluated their antifungal efficacy against Macrophomina phaseolina. The fungicidal potential of Fe3O4 NPs was assessed in vitro, demonstrating enhanced inhibition of M. phaseolina’s radial growth with increasing concentrations from 100 ppm to 300 ppm. Dielectric properties were also studied, revealing advantageous current conduction processes and conductive network development with temperature variation, which is particularly beneficial in the low-frequency range. At a fixed pH, dielectric studies showed increased mobile carrier movement and polarization with rising temperature at a fixed frequency. The photocatalytic activity of Fe3O4 NPs was assessed for the degradation of methylene blue (MB), an organic dye, under solar irradiation. In this study, Fe3O4 NPs photocatalysts achieved 89% (MB) degradation within 75 min. This research underscores the potential of using chicken egg albumin for the biosynthesis of Fe3O4 NPs. It offers a promising alternative for plant disease control and highlights their suitability for integration into eco-friendly plant protection strategies. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Figure 1

15 pages, 1256 KiB  
Article
Pesticides’ Cornea Permeability—How Serious Is This Problem?
by Anna W. Sobańska, Andrzej M. Sobański and Karolina Wanat
Pharmaceutics 2025, 17(2), 156; https://doi.org/10.3390/pharmaceutics17020156 - 24 Jan 2025
Viewed by 798
Abstract
Background: A total of 348 pesticides from different chemical families (carbamates, organochlorines organophosphorus compounds, pyrethroids, triazines and miscellaneous) were investigated in the context of their cornea permeability and potential to cause eye corrosion. Methods: Multivariate models of cornea permeability based on compounds whose [...] Read more.
Background: A total of 348 pesticides from different chemical families (carbamates, organochlorines organophosphorus compounds, pyrethroids, triazines and miscellaneous) were investigated in the context of their cornea permeability and potential to cause eye corrosion. Methods: Multivariate models of cornea permeability based on compounds whose cornea permeability has been determined experimentally were proposed. The models, applicable to compounds across a relatively broad lipophilicity range (e.g., pesticides with octanol–water partition coefficient log P up to ca. 8), assume a reverse-parabolic relationship between cornea permeability and lipophilicity, expressed as XLOGP3; other main descriptors present in the models are log D at pH 7.4 and polar surface area (PSA). Results: It appears that the trans-corneal transport of all studied pesticides is possible to some degree; however, it is more difficult for the majority of highly lipophilic pesticides from the organochlorine and pyrethroid families. The same set of 348 pesticides was also evaluated for their eye-corrosive potential using novel artificial neural network models involving simple physico-chemical properties of the compounds (lipophilicity, aqueous solubility, polar surface area, H-bond donor and acceptor count and the count of atoms such as N, NH, O, P, S and halogens). Conclusions: It was concluded that eye corrosion is an issue, especially among the pesticides from organochlorine and organophosphorus families. Full article
(This article belongs to the Special Issue Transport of Drugs through Biological Barriers—an Asset or Risk)
Show Figures

Figure 1

17 pages, 4073 KiB  
Article
Fluorescence Polarization Immunoassay for Rapid, Sensitive Detection of the Herbicide 2,4-Dichlorophenoxyacetic Acid in Juice and Water Samples
by Liliya I. Mukhametova, Marya K. Kolokolova, Ivan A. Shevchenko, Boris S. Tupertsev, Anatoly V. Zherdev, Chuanlai Xu and Sergei A. Eremin
Biosensors 2025, 15(1), 32; https://doi.org/10.3390/bios15010032 - 9 Jan 2025
Cited by 2 | Viewed by 1268
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the popular herbicides that is widely used in agriculture and can be found in food and water. A rapid and sensitive fluorescence polarization immunoassay (FPIA) was proposed for the detection of 2,4-D in juice and water. New [...] Read more.
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the popular herbicides that is widely used in agriculture and can be found in food and water. A rapid and sensitive fluorescence polarization immunoassay (FPIA) was proposed for the detection of 2,4-D in juice and water. New tracers, 2,4-D-buthylenediamin fluoresceinthiocarbamyl (2,4-D-BDF) and 2,4-D-glycine aminofluorescein (2,4-D-GAF), were obtained and characterized. Monoclonal antibodies (MAb) obtained against 2,4-D were used as a recognition reagent. The kinetics of the interaction of MAb and tracers were studied, and the kinetic parameters of their binding were calculated. High specificity of binding of tracers and MAb was shown. In this work, an approach was elaborated on to reduce the detection limit of 2,4-D by the FPIA method by changing the volume of the studied sample. The optimized FPIA in a competitive format was characterized by the LODs of 2,4-D 8 and 0.4 ng/mL and the working ranges 30–3000 ng/mL and 3–300 ng/mL for juice and water, respectively. The entire test cycle (from sample receipt to evaluation of the analysis results) took only 20 min. The test for the recovery of 2,4-D in juice and water gave values from 95 to 120%, which demonstrated the reliability of the herbicide determination in real samples. Full article
(This article belongs to the Special Issue Recent Advances and Perspectives of Fluorescent Biosensors)
Show Figures

Figure 1

15 pages, 3075 KiB  
Article
Effectiveness of Different Organic Solvent Additions to Water Samples for Reducing the Adsorption Effects of Organic Pesticides Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry
by Yucan Liu, Xinyi Xu, Ying Wang, Yan Zhang, Jianbo Lu, Chengbin Liu, Jinming Duan and Hongwei Sun
Molecules 2025, 30(1), 200; https://doi.org/10.3390/molecules30010200 - 6 Jan 2025
Viewed by 1282
Abstract
This study systematically investigated the effect of organic solvent addition on the detection signal intensity of 15 organic pesticides in water using ultra-high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC–ESI–MS/MS). The analysis of chromatographic peak area ratios in ultrapure water (UPW) versus 30% methanol [...] Read more.
This study systematically investigated the effect of organic solvent addition on the detection signal intensity of 15 organic pesticides in water using ultra-high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC–ESI–MS/MS). The analysis of chromatographic peak area ratios in ultrapure water (UPW) versus 30% methanol (MeOH)–UPW showed that the adsorption effects (AEs, mainly from injection vials with weaker polarity) were the main factor influencing the detection intensity of the organic pesticides. The AEs varied with pesticide type and concentration, especially for those with high logKow values and longer retention times, such as malathion, triadimefon, prometryn, S–metolachlor, diazinon, and profenofos. Significant differences were observed in the ability of five organic solvents (MeOH, dimethyl sulfoxide, isopropanol, acetonitrile, and acetone) to reduce AEs, with MeOH being the most effective. Optimal solvent ratios were determined to minimize AEs in aqueous solutions. Additionally, plastic injection vials caused greater AEs than glass injection vials, but the addition of organic solvents increased the detection intensity of the analytes for vials of both materials. Density functional theory calculations of the binding energies between pesticides (diazinon, malathion, and S–metolachlor) and vial materials further confirmed the effect of AE on the detection intensity of the analytes. This study showed that the addition of MeOH to real water samples effectively reduced or eliminated the effects of AEs, achieving a good linearity of calibration curves (0.05/0.1–5 μg/L, R2 = 0.9853–0.9998), high sensitivity (LOD = 5–32 ng/L), precision (RSD = 1.4–14.5%), and accuracy (average recoveries = 80.6–121.8%). These results provide technical and methodological support for mitigating the effects of AEs on pesticide detection in water using UHPLC–ESI–MS/MS. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

10 pages, 3149 KiB  
Article
Density Functional Theory Insight in Photocatalytic Degradation of Dichlorvos Using Covalent Triazine Frameworks Modified by Various Oxygen-Containing Acid Groups
by Shouxi Yu and Zhongliao Wang
Toxics 2024, 12(12), 928; https://doi.org/10.3390/toxics12120928 - 21 Dec 2024
Cited by 1 | Viewed by 899
Abstract
Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox [...] Read more.
Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP) is a highly toxic organophosphorus insecticide, and its persistence in air, water, and soil poses potential threats to human health and ecosystems. Covalent triazine frameworks (CTFs), with their sufficient visible-light harvesting capacity, ameliorated charge separation, and exceptional redox ability, have emerged as promising candidates for the photocatalytic degradation of DDVP. Nevertheless, pure CTFs lack effective oxidative active sites, resulting in elevated reaction energy barriers during the photodegradation of DDVP. In this work, density functional theory (DFT) calculations were employed to investigate the impact of various oxygen-containing acid groups (-COOH, -HSO3, -H2PO3) on DDVP photodegradation performance. First, simulations of the structure and optical properties of modified CTFs reveal that oxygen-containing acid groups induce surface distortion and result in a redshift in the absorption edge. Subsequently, analysis of the density of states, frontier molecular orbitals, surface electrostatic potential, work function, and dipole moment demonstrates that oxygen-containing acid groups enhance CTF polarization, facilitate charge separation, and ameliorate their oxidative capability. Additionally, the free-energy diagram of DDVP degradation uncovers that oxygen-containing acid groups lower the energy barrier by elevating the adsorption and activation capability of DDVP. Notably, -H2PO3 presents optimal potential for the photodegradation of DDVP by unique electronic structure and activation capability. This work offers a valuable reference for the development of oxygen-containing acid CTF-based photocatalysts applied in degrading toxic organophosphate pesticides. Full article
Show Figures

Graphical abstract

19 pages, 2438 KiB  
Article
Botanical Pesticides: Role of Ricinus communis in Managing Bactrocera zonata (Tephritidae: Diptera)
by Rasheed Akbar, Sadia Manzoor, Rashid Azad, Gul Makai, Junaid Rahim, Umer Ayyaz Aslam Sheikh, Amjad Ali, Tariq Aziz, Hafiz Ishfaq Ahmad, Mukhtar Ahmed, Daolin Du and Jianfan Sun
Insects 2024, 15(12), 959; https://doi.org/10.3390/insects15120959 - 2 Dec 2024
Cited by 4 | Viewed by 1612
Abstract
The melon fruit fly, Bactrocera zonata (Coquillett) (Diptera: Tephritidae), is a notorious pest, posing a significant threat to a wide range of fruits and vegetables, leading to substantial agricultural losses worldwide. With growing concerns over chemical pesticide resistance and environmental safety, plant-based insecticides [...] Read more.
The melon fruit fly, Bactrocera zonata (Coquillett) (Diptera: Tephritidae), is a notorious pest, posing a significant threat to a wide range of fruits and vegetables, leading to substantial agricultural losses worldwide. With growing concerns over chemical pesticide resistance and environmental safety, plant-based insecticides have emerged as eco-friendly and economically sustainable alternatives. In this context, the present study delves into the insecticidal potential of Ricinus communis extracts against B. zonata. The crude extract of R. communis was systematically fractionated using a series of organic solvents with increasing polarities. The fraction demonstrating the highest insecticidal activity was further purified for the isolation of bioactive compounds, employing advanced chromatographic techniques such as Column Chromatography, coupled with state-of-the-art analytical methods including Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR). Bioassays were conducted on B. zonata using the crude extract and its fractions in n-hexane, methanol, and ethyl acetate. Among the isolated compounds, 11,14,17-Eicosatrienoic acid was identified in both the methanol and ethyl acetate fractions. This compound exhibited remarkable insecticidal efficacy, with an LC50 value of 1.36%, a linearity of R2 = 0.64, and a statistically significant probability (p < 0.01). Particularly, 11,14,17-Eicosatrienoic acid emerged as the most potent bioactive agent against B. zonata highlighting its potential as a natural insecticide. These findings underscore the potential of R. communis as a valuable source of bioactive compounds for the sustainable management of B. cucurbitae. This study not only broadens the scope of plant-based pest control strategies but also opens avenues for further exploration of natural compounds in integrated pest management. Full article
Show Figures

Graphical abstract

16 pages, 3375 KiB  
Article
Mastering Snow Analysis: Enhancing Sampling Techniques and Introducing ACF Extraction Method with Applications in Svalbard
by Marina Cerasa, Catia Balducci, Benedetta Giannelli Moneta, Ettore Guerriero, Maria Luisa Feo, Alessandro Bacaloni and Silvia Mosca
Molecules 2024, 29(21), 5111; https://doi.org/10.3390/molecules29215111 - 29 Oct 2024
Cited by 1 | Viewed by 1309
Abstract
Semi-volatile organic contaminants (SVOCs) are known for their tendency to evaporate from source regions and undergo atmospheric transport to distant areas. Cold condensation intensifies dry deposition, particle deposition, and scavenging by snow and rain, allowing SVOCs to move from the atmosphere into terrestrial [...] Read more.
Semi-volatile organic contaminants (SVOCs) are known for their tendency to evaporate from source regions and undergo atmospheric transport to distant areas. Cold condensation intensifies dry deposition, particle deposition, and scavenging by snow and rain, allowing SVOCs to move from the atmosphere into terrestrial and aquatic ecosystems in alpine and polar regions. However, no standardized methods exist for the sampling, laboratory processing, and instrumental analysis of persistent organic pollutants (POPs) in snow. The lack of reference methods makes these steps highly variable and prone to errors. This study critically reviews the existing literature to highlight the key challenges in the sampling phase, aiming to develop a reliable, consistent, and easily reproducible technique. The goal is to simplify this crucial step of the analysis, allowing data to be shared more effectively through standardized methods, minimizing errors. Additionally, an innovative method for laboratory processing is introduced, which uses activated carbon fibers (ACFs) as adsorbents, streamlining the analysis process. The extraction method is applied to analyze polychlorobiphenyls (PCBs) and chlorinated pesticides (α-HCH, γ-HCH, p,p′-DDE, o,p′-DDT, HCB, and PeCB). The entire procedure, from sampling to instrumental analysis, is subsequently tested on snow samples collected on the Svalbard Islands. To validate the efficiency of the new extraction system, quality control measures based on the EPA methods 1668B and 1699 for aqueous methods are employed. This study presents a new, reliable method that covers both sampling and lab analysis, tailored for detecting POPs in snow. Full article
(This article belongs to the Special Issue Novel Analytical Methods to Evaluate and Monitor the Pollutants)
Show Figures

Graphical abstract

23 pages, 4448 KiB  
Article
Chromatographic Comparison of Commercially Available Columns for Liquid Chromatography in Polar Pesticide Detection and Quantification Using a Score-Based Methodology
by Emanuela Verdini, Tommaso Pacini, Serenella Orsini, Stefano Sdogati and Ivan Pecorelli
Foods 2024, 13(19), 3131; https://doi.org/10.3390/foods13193131 - 30 Sep 2024
Cited by 2 | Viewed by 1539
Abstract
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in [...] Read more.
The detection and quantification of polar pesticides in liquid chromatography coupled with mass spectrometry present significant analytical challenges. This study compares the performance of three LC columns (Hypercarb™, Raptor Polar X™, and Anionic Polar Pesticide™) in separating and quantifying eleven polar pesticides in chicken eggs using a score-based methodology. Analytes include glyphosate, its metabolites, and other high-polarity pesticides like Ethephon, Glufosinate, and Fosetyl aluminum, included in the EU’s official control plan. Polar pesticides, characterized by high polarity and hydrophilicity, lead to analytical issues such as poor retention and unconventional peak shapes with traditional reversed-phase methods. Their weak interaction with hydrophobic stationary phases complicates separation, necessitating specific stationary phases to enhance retention and selectivity. This study evaluates these columns’ efficacy in complex matrices like chicken eggs and other food samples. Chromatographic separation was performed using a UPLC system coupled with a Q-TOF mass spectrometer; extraction and purification involved freeze-out, centrifugation, and filtration steps. The study highlights the critical role of column selection in achieving accurate and reliable separation and quantification of highly polar analytes in matrices of animal origin, offering in the meantime an easy-to-apply methodology of selection for the right determination of the best chromatographic column for different purposes. Full article
Show Figures

Figure 1

16 pages, 2072 KiB  
Article
Direct Determination of Glyphosate and Its Metabolites in Foods of Animal Origin by Liquid Chromatography–Tandem Mass Spectrometry
by Marija Denžić Lugomer, Nina Bilandžić, Damir Pavliček and Tiana Novosel
Foods 2024, 13(15), 2451; https://doi.org/10.3390/foods13152451 - 2 Aug 2024
Cited by 1 | Viewed by 3168
Abstract
Glyphosate is the most used herbicide in agriculture. Its major metabolite is AMPA (aminomethylphosphonic acid), but N-acetyl-AMPA and N-acetylglyphosate are also metabolites of interest. For risk assessment, a general residue definition was proposed as the sum of glyphosate, AMPA, N-acetyl-glyphosate and N-acetyl-AMPA, expressed [...] Read more.
Glyphosate is the most used herbicide in agriculture. Its major metabolite is AMPA (aminomethylphosphonic acid), but N-acetyl-AMPA and N-acetylglyphosate are also metabolites of interest. For risk assessment, a general residue definition was proposed as the sum of glyphosate, AMPA, N-acetyl-glyphosate and N-acetyl-AMPA, expressed as glyphosate. A confirmatory method for glyphosate in fat, liver and kidneys, as well as a confirmatory method for AMPA and N-acetyl-glyphosate in all matrices, are still missing. In this paper, we present a method for the quantitative determination of glyphosate residues and its metabolites AMPA, N-acetyl-AMPA and N-acetyl-glyphosate by liquid chromatography–mass spectrometry (LC-MS/MS) in adipose tissue, liver, eggs, milk and honey without derivatization. Different chromatographic columns were tested, with the Hypercarb column providing the best results. The analytes were eluted with mobile phases of acidified water with 1.2% formic acid and 0.5% formic acid in acetonitrile. Sample purification procedures were also optimized by varying the solvent extraction mixtures (water, methanol and mixture ψ (methanol, water) = 1:1, each with the addition of 1% formic acid (v/v)), using different sorbents in solid phase extraction (SPE) (polymeric cationic (PCX) and anionic (PAX)) and using dispersive solid phase extraction (dSPE) (C18 and PSA) by modifying the extraction procedures. Finally, the analytes were extracted from the samples with 1% formic acid in water (v/v). Milk and adipose tissue were purified by the addition of dichloromethane, while liver and egg samples were purified by SPE with a mixed cation exchange sorbent and ultrafiltration with cut-off filters. The proposed analytical procedures were validated according to SANTE/11312/2021 guidelines: linearity, limits of quantification, precision and accuracy were determined for all matrices. The limits of quantification (LOQs) ranged from 0.025 to 0.2 mg kg−1. Precision, expressed as relative standard deviation, was <20%, while accuracy, expressed as analytical recovery, ranged from 70% to 120%. During method validation, the measurement uncertainty was estimated to be <50% for all analytes. Good validation parameters according to the SANTE document were achieved for all analytes. Therefore, the method can be considered reliable and sensitive enough for routine monitoring of polar pesticides. The application of the accredited method in routine analysis will provide data that are useful for the re-evaluation of risk assessment studies in foods of animal origin. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 1506 KiB  
Article
Assessing the Dissipation of Pesticides of Different Polarities in Soil Samples
by Carlos Eduardo Rodríguez-Palma, Pilar Campíns-Falcó and Rosa Herráez-Hernández
Soil Syst. 2024, 8(3), 71; https://doi.org/10.3390/soilsystems8030071 - 24 Jun 2024
Cited by 3 | Viewed by 1340
Abstract
A methodology has been developed to assess the presence and dissipation of herbicides of a wide range of polarities in soil using in-tube solid-phase microextraction (IT-SPME) coupled online to capillary liquid chromatography (capLC). The compounds investigated were tritosulfuron (TRT), triflusulfuron-methyl (TRF), aclonifen (ACL), [...] Read more.
A methodology has been developed to assess the presence and dissipation of herbicides of a wide range of polarities in soil using in-tube solid-phase microextraction (IT-SPME) coupled online to capillary liquid chromatography (capLC). The compounds investigated were tritosulfuron (TRT), triflusulfuron-methyl (TRF), aclonifen (ACL), and bifenox (BF), with log octanol-water partition coefficients (log Kow) ranging from 0.62 to 4.48. The method provided suitable linearity at concentration levels of 0.5–4.0 µg/g for TRT and TRF, and 0.2–1.0 µg/g for ACL and BF, and intra- and interday precision (expressed as relative standard deviation) ≤4% and ≤8%, respectively. The mean recoveries ranged from 90% to 101%, and the limits of detection (LODs) and quantification (LOQs) were in the intervals of 0.05–0.1 µg/g and 0.1–0.4 µg/g, respectively. The accuracy of the method was also satisfactory. The proposed approach was successfully applied to assess the degradation of the tested herbicides in different types of soil (agricultural, urban and forest) after being exposed to different laboratory and outdoor conditions. The results obtained showed a greater persistence of the most apolar compounds ACL and BF, with percentages of degraded herbicide ≤31% regardless of the soil characteristics. In contrast, a significant degradation of highly polar herbicides TRT and TRF was observed in soils with the lowest organic matter, even after a few days of exposure. For example, the percentages of remaining TRT and TRF in this kind of soil after 20 days were ≤65%; the half-life time of TRF was only 24.8 days. These results indicate that the proposed approach can be considered as an effective tool for a better understanding of soil pollution. Full article
Show Figures

Figure 1

15 pages, 2469 KiB  
Article
Prediction of Pesticide Interactions with Proteins Involved in Human Reproduction by Using a Virtual Screening Approach: A Case Study of Famoxadone Binding CRBP-III and Izumo
by Fabiana Tortora, Valentina Guerrera, Gennaro Lettieri, Ferdinando Febbraio and Marina Piscopo
Int. J. Mol. Sci. 2024, 25(11), 5790; https://doi.org/10.3390/ijms25115790 - 26 May 2024
Cited by 2 | Viewed by 1741
Abstract
In recent years, the awareness that pesticides can have other effects apart from generic toxicity is growing. In particular, several pieces of evidence highlight their influence on human fertility. In this study, we investigated, by a virtual screening approach, the binding between pesticides [...] Read more.
In recent years, the awareness that pesticides can have other effects apart from generic toxicity is growing. In particular, several pieces of evidence highlight their influence on human fertility. In this study, we investigated, by a virtual screening approach, the binding between pesticides and proteins present in human gametes or associated with reproduction, in order to identify new interactions that could affect human fertility. To this aim, we prepared ligand (pesticides) and receptor (proteins) 3D structure datasets from online structural databases (such as PubChem and RCSB), and performed a virtual screening analysis using Autodock Vina. In the comparison of the predicted interactions, we found that famoxadone was predicted to bind Cellular Retinol Binding Protein-III in the retinol-binding site with a better minimum energy value of −10.4 Kcal/mol and an RMSD of 3.77 with respect to retinol (−7.1 Kcal/mol). In addition to a similar network of interactions, famoxadone binding is more stabilized by additional hydrophobic patches including L20, V29, A33, F57, L117, and L118 amino acid residues and hydrogen bonds with Y19 and K40. These results support a possible competitive effect of famoxadone on retinol binding with impacts on the ability of developing the cardiac tissue, in accordance with the literature data on zebrafish embryos. Moreover, famoxadone binds, with a minimum energy value between −8.3 and −8.0 Kcal/mol, to the IZUMO Sperm–Egg Fusion Protein, interacting with a network of polar and hydrophobic amino acid residues in the cavity between the 4HB and Ig-like domains. This binding is more stabilized by a predicted hydrogen bond with the N185 residue of the protein. A hindrance in this position can probably affect the conformational change for JUNO binding, avoiding the gamete membrane fusion to form the zygote. This work opens new interesting perspectives of study on the effects of pesticides on fertility, extending the knowledge to other typologies of interaction which can affect different steps of the reproductive process. Full article
Show Figures

Figure 1

15 pages, 602 KiB  
Article
Environmental Ethics and the Cambridge Platonist Henry More
by Jonathan David Lyonhart
Religions 2024, 15(2), 157; https://doi.org/10.3390/rel15020157 - 26 Jan 2024
Viewed by 2001
Abstract
Christian environmental ethics have always navigated the thin line between the Scylla of pantheism and the Charybdis of deism. On the one hand, removing God from the world avoids pantheism but can inadvertently render the divine a distant, absentee father who cares little [...] Read more.
Christian environmental ethics have always navigated the thin line between the Scylla of pantheism and the Charybdis of deism. On the one hand, removing God from the world avoids pantheism but can inadvertently render the divine a distant, absentee father who cares little about what we do with the environment. On the other hand, if we bring the Creator too close to creation, we may begin to blur the distinction between them, fringing on pantheism. While making nature divine might at first seem to heighten the environmental desecration of the earth by making it a literal de-sacralizing of the sacred, this may be only a surface-level reading (or, at least, only true of very carefully nuanced versions of pantheism). For the pantheist, God would not just be the trees but the machines that log them; God would not just be the polar bears but the carbon dioxide that is evicting them. God would be no more present in that which is desecrated than in that which does the desecration (e.g., God would be one with the pesticides, bulldozers, and factory smoke). By making God everything, it becomes difficult to call any person, act, legislation, or event godless. This paper offers Henry More’s view of divine space as a constructive, Platonic Christian middle way between these two extremes, charting a God who is spatially present to nature without being pantheistically reducible to it, in the same way that space is intimately close to the objects within it while nonetheless remaining distinct from them. The bulk of the paper counters potential opponents to this proposal, specifically defending Morean space from the charge that it would break down the Creator–creature distinction and/or cave to the environmental Scylla of pantheism. Full article
(This article belongs to the Special Issue The Platonic Tradition, Nature Spirituality and the Environment)
Back to TopTop