Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = plum brandy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3024 KiB  
Article
Preliminary Investigation of Fruit Mash Inoculation with Pure Yeast Cultures: A Case of Volatile Profile of Industrial-Scale Plum Distillates
by Josef Balák, Lucie Drábová, Vojtěch Ilko, Dominik Maršík and Irena Jarošová Kolouchová
Foods 2024, 13(12), 1955; https://doi.org/10.3390/foods13121955 - 20 Jun 2024
Viewed by 1553
Abstract
This study investigates the effect of pure yeast culture fermentation versus spontaneous fermentation on the volatile compound profile of industrially produced plum brandy. Using traditional distillation methods, the evolution of key volatile compounds is monitored at seven different moments during the distillation process. [...] Read more.
This study investigates the effect of pure yeast culture fermentation versus spontaneous fermentation on the volatile compound profile of industrially produced plum brandy. Using traditional distillation methods, the evolution of key volatile compounds is monitored at seven different moments during the distillation process. By integrating advanced analytical techniques such as GC-MS and sensory evaluation, significant differences in the composition of the distillates are highlighted, particularly in terms of ethyl esters and higher alcohols which are key to the sensory properties of the final product. Distillates produced with the addition of pure cultures gave higher concentrations of esters than those obtained by wild fermentation. The results of our industrial research show that the most critical step is to limit the storage of the input raw material, thereby reducing the subsequent risk of producing higher concentrations of 1-propanol. Furthermore, our results indicate that the heart of the distillate can only be removed up to an ethanol content of approximately 450 g/L and that the removal of additional ethanol results in only a 10% increase in the total volume of the distillate, which in turn results in an increase in boiler heating costs of approximately 30%. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

15 pages, 3048 KiB  
Article
Differences in Volatile Profiles and Sensory Characteristics in Plum Spirits on a Production Scale
by Josef Balak, Lucie Drábová, Olga Maťátková, Marek Doležal, Dominik Marsík and Irena Jarosova Kolouchova
Fermentation 2024, 10(5), 235; https://doi.org/10.3390/fermentation10050235 - 27 Apr 2024
Cited by 1 | Viewed by 1734
Abstract
The specific sensory properties attributed to distillates from different plum varieties are intricately linked to aromatic substances, fruit quality, and technology employed during production. This study compares four plum brandies, each made from a renowned plum variety: Presenta, Valjevka, Čačanská lepotica, and Čačanská [...] Read more.
The specific sensory properties attributed to distillates from different plum varieties are intricately linked to aromatic substances, fruit quality, and technology employed during production. This study compares four plum brandies, each made from a renowned plum variety: Presenta, Valjevka, Čačanská lepotica, and Čačanská rodná on a production scale. Analytical and sensory profiles were assessed using GC-FID, an available analytical method advantageous for monitoring industrial fruit distillate production. Between 71 and 85 analytes were detected in the distillates, with the Presenta plum distillate containing the highest number of substances. Statistically significant differences in analyte concentration between plum varieties (p < 0.05) were observed for 11 analytes. The comparison of analytical profiles and sensory evaluation revealed that a high concentration of 1-propanol, despite its negative sensory perception, significantly impacts the overall perception of a distillate, contrasting with substances like acetaldehyde and propyl acetate, which have positive sensory evaluations but lesser significance in content. Our work identified key compounds and procedures that can be used as benchmarks for production of plum brandy with positive sensory evaluation. These findings demonstrate the broad application potential of GC-FID in fruit distillate production as an independent tool for aromatic profile assessment and quality control. Full article
Show Figures

Figure 1

32 pages, 7913 KiB  
Article
The Potential of Plum Seed Residue: Unraveling the Effect of Processing on Phytochemical Composition and Bioactive Properties
by Sandra Rodríguez-Blázquez, Laura Pedrera-Cajas, Esther Gómez-Mejía, David Vicente-Zurdo, Noelia Rosales-Conrado, María Eugenia León-González, Juan José Rodríguez-Bencomo and Ruben Miranda
Int. J. Mol. Sci. 2024, 25(2), 1236; https://doi.org/10.3390/ijms25021236 - 19 Jan 2024
Cited by 6 | Viewed by 3564
Abstract
Bioactive compounds extracted from plum seeds were identified and quantified, aiming to establish how the brandy manufacturing process affects the properties and possible cascade valorization of seed residues. Extraction with n-hexane using Soxhlet has provided oils rich in unsaturated fatty acids (92.24–92.51%), [...] Read more.
Bioactive compounds extracted from plum seeds were identified and quantified, aiming to establish how the brandy manufacturing process affects the properties and possible cascade valorization of seed residues. Extraction with n-hexane using Soxhlet has provided oils rich in unsaturated fatty acids (92.24–92.51%), mainly oleic acid (72–75.56%), which is characterized by its heart-healthy properties. The fat extracts also contain tocopherols with antioxidant and anti-inflammatory properties. All the ethanol–water extracts of the defatted seeds contain neochlorogenic acid (90–368 µg·g−1), chlorogenic acid (36.1–117 µg·g−1), and protocatechuate (31.8–100 µg·g−1) that have an impact on bioactive properties such as antimicrobial and antioxidant. Anti-amyloidogenic activity (25 mg·mL−1) was observed in the after both fermentation and distillation extract, which may be related to high levels of caffeic acid (64 ± 10 µg·g−1). The principal component analysis showed that all plum seed oils could have potential applications in the food industry as edible oils or in the cosmetic industry as an active ingredient in anti-aging and anti-stain cosmetics, among others. Furthermore, defatted seeds, after both fermentation and distillation, showed the greatest applicability in the food and nutraceutical industry as a food supplement or as an additive in the design of active packaging. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

46 pages, 3992 KiB  
Review
Wood Waste from Fruit Trees: Biomolecules and Their Applications in Agri-Food Industry
by Maria Jose Aliaño-González, Julien Gabaston, Victor Ortiz-Somovilla and Emma Cantos-Villar
Biomolecules 2022, 12(2), 238; https://doi.org/10.3390/biom12020238 - 1 Feb 2022
Cited by 55 | Viewed by 9657
Abstract
In the European Union (EU), a total of 11,301,345 hectares are dedicated to the cultivation of fruit trees, mainly olive orchards, grapevines, nut trees (almond, walnut, chestnut, hazelnut, and pistachio), apple and pear trees, stone fruit trees (peach, nectarine, apricot, cherry, and plum), [...] Read more.
In the European Union (EU), a total of 11,301,345 hectares are dedicated to the cultivation of fruit trees, mainly olive orchards, grapevines, nut trees (almond, walnut, chestnut, hazelnut, and pistachio), apple and pear trees, stone fruit trees (peach, nectarine, apricot, cherry, and plum), and citrus fruit trees (orange, clementine, satsuma, mandarin, lemon, grapefruit, and pomelo). Pruning these trees, together with plantation removal to a lesser extent, produces a huge amount of wood waste. A theoretical calculation of the wood waste in the European Union estimates approximately 2 and 25 million tons from wood plantation removal and pruning, respectively, per year. This wood waste is usually destroyed by in-field burning or crushing into the soil, which result in no direct economic benefits. However, wood from tree pruning, which is enriched in high added-value molecules, offers a wide spectrum of possibilities for its valorization. This review focuses on the contribution of wood waste to both sustainability and the circular economy, considering its use not only as biomass but also as a potential source of bioactive compounds. The main bioactive compounds found in wood are polyphenols, terpenes, polysaccharides, organic compounds, fatty acids, and alkaloids. Polyphenols are the most ubiquitous compounds in wood. Large amounts of hydroxytyrosol (up to 25 g/kg dw), resveratrol (up to 66 g/kg dw), protocatechuic acid (up to 16.4 g/kg), and proanthocyanins (8.5 g/kg dw) have been found in the wood from olive trees, grapevines, almond trees and plum trees, respectively. The bioactivity of these compounds has been demonstrated at lower concentrations, mainly in vitro studies. Bioactive compounds present antioxidant, antimicrobial, antifungal, biostimulant, anti-inflammatory, cardioprotective, and anticarcinogenic properties, among others. Therefore, wood extracts might have several applications in agriculture, medicine, and the food, pharmaceutical, nutraceutical, and cosmetics industries. For example, olive tree wood extract reduced thrombin-induced platelet aggregation in vitro; grapevine tree wood extract acts a preservative in wine, replacing SO2; chestnut tree wood extract has antifungal properties on postharvest pathogens in vitro; and stone tree wood extracts are used for aging both wines and brandies. Moreover, the use of wood waste contributes to the move towards both a more sustainable development and a circular economy. Full article
(This article belongs to the Special Issue Biomolecules from Plant Residues, 2nd Version)
Show Figures

Figure 1

14 pages, 3679 KiB  
Article
GC-FID-MS Based Metabolomics to Access Plum Brandy Quality
by Stefan Ivanović, Katarina Simić, Vele Tešević, Ljubodrag Vujisić, Marko Ljekočević and Dejan Gođevac
Molecules 2021, 26(5), 1391; https://doi.org/10.3390/molecules26051391 - 5 Mar 2021
Cited by 19 | Viewed by 3876
Abstract
Plum brandy (Slivovitz (en); Šljivovica(sr)) is an alcoholic beverage that is increasingly consumed all over the world. Its quality assessment has become of great importance. In our study, the main volatiles and aroma compounds of 108 non-aged plum brandies originating from three plum [...] Read more.
Plum brandy (Slivovitz (en); Šljivovica(sr)) is an alcoholic beverage that is increasingly consumed all over the world. Its quality assessment has become of great importance. In our study, the main volatiles and aroma compounds of 108 non-aged plum brandies originating from three plum cultivars, and fermented using different conditions, were investigated. The chemical profiles obtained after two-step GC-FID-MS analysis were subjected to multivariate data analysis to reveal the peculiarity in different cultivars and fermentation process. Correlation of plum brandy chemical composition with its sensory characteristics obtained by expert commission was also performed. The utilization of PCA and OPLS-DA multivariate analysis methods on GC-FID-MS, enabled discrimination of brandy samples based on differences in plum varieties, pH of plum mash, and addition of selected yeast or enzymes during fermentation. The correlation of brandy GC-FID-MS profiles with their sensory properties was achieved by OPLS multivariate analysis. Proposed workflow confirmed the potential of GC-FID-MS in combination with multivariate data analysis that can be applied to assess the plum brandy quality. Full article
Show Figures

Graphical abstract

18 pages, 3291 KiB  
Article
Growth Dynamics and Diversity of Yeasts during Spontaneous Plum Mash Fermentation of Different Varieties
by Magdalena Skotniczny, Paweł Satora, Katarzyna Pańczyszyn and Monika Cioch-Skoneczny
Foods 2020, 9(8), 1054; https://doi.org/10.3390/foods9081054 - 4 Aug 2020
Cited by 10 | Viewed by 3172
Abstract
The influence of fruit varieties on yeast ecology during spontaneous plum mash fermentation was investigated. Yeast colonies were isolated from mashes obtained from four plum varieties throughout fermentation in laboratory conditions during two consecutive years. The yeast strains were differentiated by random amplification [...] Read more.
The influence of fruit varieties on yeast ecology during spontaneous plum mash fermentation was investigated. Yeast colonies were isolated from mashes obtained from four plum varieties throughout fermentation in laboratory conditions during two consecutive years. The yeast strains were differentiated by random amplification of polymorphic DNA (RAPD-PCR) and identified by the 26S rDNA D1/D2 sequence analysis. Hanseniaspora uvarum, Metschnikowia spp. and Pichia kudriavzevii were the dominant yeasts during the early stages of plum mash fermentation, while the middle and end phases were dominated by Saccharomyces cerevisiae. The strains of Candida sake, Nakazawaea ernobii, Pichia kluyveri, Rhodotorula mucilaginosa and Wickerhamomyces anomalus were also detected in fermenting plum mashes. Metschnikowia sp. M1, H. uvarum H1 and H2 strains were detected in all samples, irrespective of the tested variety and year. Investigation of the impact of individual yeast strains on the production of volatile compounds showed the potential possibility of using them as starter cultures. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

14 pages, 1208 KiB  
Article
Development of the Method for Determination of Volatile Sulfur Compounds (VSCs) in Fruit Brandy with the Use of HS–SPME/GC–MS
by Urszula Dziekońska-Kubczak, Katarzyna Pielech-Przybylska, Piotr Patelski and Maria Balcerek
Molecules 2020, 25(5), 1232; https://doi.org/10.3390/molecules25051232 - 9 Mar 2020
Cited by 28 | Viewed by 5437
Abstract
Volatile sulfur compounds (VSCs) play an important role in the aroma profile of fermented beverages. However, because of their low concentration in samples, their analysis is difficult. The headspace solid-phase microextraction (HS–SPME) technique coupled with gas chromatography and mass spectrometry (GC–MS) is one [...] Read more.
Volatile sulfur compounds (VSCs) play an important role in the aroma profile of fermented beverages. However, because of their low concentration in samples, their analysis is difficult. The headspace solid-phase microextraction (HS–SPME) technique coupled with gas chromatography and mass spectrometry (GC–MS) is one of the methods successfully used to identify VSCs in wine and beer samples. However, this method encounters more obstacles when spirit beverages are analyzed, as the ethanol content of the matrix decreases the method sensitivity. In this work, different conditions applied during HS–SPME/GC–MS analysis, namely: ethanol concentration, salt addition, time and temperature of extraction, as well as fiber coating, were evaluated in regard to 19 sulfur compounds. The best results were obtained when 50/30 μm Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) was used to preconcentrate the analytes from the sample at 35 °C for 30 min. The dilution of samples to 2.5% v/v ethanol and the addition of 20% w/v NaCl along with 1% EDTA significantly improves the sensitivity of extraction. The optimized method was applied to three fruit brandy samples (plum, pear, and apple) and quantification of VSCs was performed. A total of 10 compounds were identified in brandy samples and their concentration varied greatly depending on the raw material used from production. The highest concentration of identified VSCs was found in apple brandy (82 µg/L). Full article
(This article belongs to the Special Issue Bioactives and Functional Ingredients in Foods and Beverages)
Show Figures

Figure 1

Back to TopTop