Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = platform-based bioeconomy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 - 2 Aug 2025
Viewed by 279
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

18 pages, 1851 KiB  
Article
Immobilization and Monitoring of Clostridium carboxidivorans and Clostridium kluyveri in Synthetic Biofilms
by Josha Herzog, Anna C. Jäkel, Friedrich C. Simmel and Dirk Weuster-Botz
Microorganisms 2025, 13(2), 387; https://doi.org/10.3390/microorganisms13020387 - 10 Feb 2025
Cited by 1 | Viewed by 1014
Abstract
The growing need for sustainable biotechnological solutions to address environmental challenges, such as climate change and resource depletion, has intensified interest in microbial-based production systems. Synthetic biofilms, which mimic natural microbial consortia, offer a promising platform for optimizing complex metabolic processes that can [...] Read more.
The growing need for sustainable biotechnological solutions to address environmental challenges, such as climate change and resource depletion, has intensified interest in microbial-based production systems. Synthetic biofilms, which mimic natural microbial consortia, offer a promising platform for optimizing complex metabolic processes that can convert renewable feedstocks into valuable chemicals. In this context, understanding and harnessing the interactions between co-immobilized microorganisms are critical for advancing bioprocesses that contribute to circular bioeconomy goals. In this study, we investigated the viability and metabolic activity of Clostridium carboxidivorans and Clostridium kluyveri within a synthetic, dual-layered biofilm composed of agar hydrogel. This setup compartmentalized each bacterial species. Embedding the bacteria in a structured biofilm offers numerous opportunities for bioproduction, but the inability to monitor cell growth or movement within the immobilization matrix limits process insights. To address this, we adapted a fluorescence in situ hybridization (FISH) protocol, enabling precise, species-specific visualization of bacterial distribution and growth within the gel matrix. Batch processes with the dual-layered biofilm in anaerobic flasks, designed with a metabolic advantage for C. kluyveri, revealed distinct growth dynamics. C. kluyveri exhibited significant metabolic activity, forming clusters at low initial cell concentrations and converting ethanol and acetate into 1-butyrate and 1-hexanoate, indicating viability and cell growth. C. carboxidivorans remained evenly distributed without significant growth or product formation, suggesting that while the cells were viable, they were not metabolically active under the experimental conditions. Both bacterial species were confined to their respective compartments throughout the process, with C. kluyveri showing enhanced substrate conversion at higher initial cell densities in the hydrogel. The pH drop throughout the batch experiment likely contributed to incomplete substrate consumption, particularly for C. kluyveri, which thrives within a narrow pH range. These findings highlight synthetic biofilms as a promising platform for optimizing microbial interactions and improving bioprocess efficiency, especially in applications involving complex metabolic exchanges between co-immobilized microorganisms. Further research will focus on applying conditions to support the growth and metabolic activity of C. carboxidivorans to explore spatial dynamics of bacterial migration and cooperative relationships in the synthetic biofilm. Full article
Show Figures

Figure 1

27 pages, 1438 KiB  
Review
Metal-Based Catalysts in Biomass Transformation: From Plant Feedstocks to Renewable Fuels and Chemicals
by Muhammad Saeed Akhtar, Muhammad Tahir Naseem, Sajid Ali and Wajid Zaman
Catalysts 2025, 15(1), 40; https://doi.org/10.3390/catal15010040 - 4 Jan 2025
Cited by 9 | Viewed by 2857
Abstract
The transformation of biomass into renewable fuels and chemicals has gained remarkable attention as a sustainable alternative to fossil-based resources. Metal-based catalysts, encompassing transition and noble metals, are crucial in these transformations as they drive critical reactions, such as hydrodeoxygenation, hydrogenation, and reforming. [...] Read more.
The transformation of biomass into renewable fuels and chemicals has gained remarkable attention as a sustainable alternative to fossil-based resources. Metal-based catalysts, encompassing transition and noble metals, are crucial in these transformations as they drive critical reactions, such as hydrodeoxygenation, hydrogenation, and reforming. Transition metals, including nickel, cobalt, and iron, provide cost-effective solutions for large-scale processes, while noble metals, such as platinum and palladium, exhibit superior activity and selectivity for specific reactions. Catalytic advancements, including the development of hybrid and bimetallic systems, have further improved the efficiency, stability, and scalability of biomass transformation processes. This review highlights the catalytic upgrading of lignocellulosic, algal, and waste biomass into high-value platform chemicals, biofuels, and biopolymers, with a focus on processes, such as Fischer–Tropsch synthesis, aqueous-phase reforming, and catalytic cracking. Key challenges, including catalyst deactivation, economic feasibility, and environmental sustainability, are examined alongside emerging solutions, like AI-driven catalyst design and lifecycle analysis. By addressing these challenges and leveraging innovative technologies, metal-based catalysis can accelerate the transition to a circular bioeconomy, supporting global efforts to combat climate change and reduce fossil fuel dependence. Full article
(This article belongs to the Special Issue Catalytic Conversion of Biomass to Chemicals)
Show Figures

Figure 1

20 pages, 1557 KiB  
Article
A Critical Analysis of the Dynamics of Stakeholders for Bioeconomy Innovation: The Case of Caldas, Colombia
by Carlos Humberto González Escobar, Juan Carlos Granobles Torres and Abel Osvaldo Villa Rodríguez
Sustainability 2024, 16(23), 10370; https://doi.org/10.3390/su162310370 - 27 Nov 2024
Cited by 1 | Viewed by 1646
Abstract
Stakeholders and their dynamics are often neglected in innovation system literature. The importance of the bioeconomy is growing due to its implications for addressing environmental challenges, shaping economic decisions, markets, and sustainable development. This paper analyses stakeholders’ dynamics for knowledge creation and innovation [...] Read more.
Stakeholders and their dynamics are often neglected in innovation system literature. The importance of the bioeconomy is growing due to its implications for addressing environmental challenges, shaping economic decisions, markets, and sustainable development. This paper analyses stakeholders’ dynamics for knowledge creation and innovation to transit from unsustainable practices to the sustainable use of biological resources—the bioeconomy. The originality of this paper is the creation of an analytical framework to characterise the interactions of stakeholders and how these interactions reshape innovation systems to create a new narrative and knowledge-base platform for innovation. Using a qualitative approach, data were collected through surveys between 2022 and 2024. We explored the dynamics of 29 stakeholders involved and collaborating in R&D activities from the biotechnology sector in Caldas, Colombia. Our findings show that dynamics towards the bioeconomy are occurring only at the discursive level. Stakeholders carry out research activities to generate income rather than for innovative purposes, overlooking informal interactions that create novel ideas that could translate into solutions, services, and products. We conclude that the bioeconomy transition needs a systemic disequilibrium with a new institutional infrastructure that enables stakeholders, including civil society, to create a structural change for embracing innovation dynamics. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

30 pages, 3863 KiB  
Review
By-Product Valorization as a Means for the Brewing Industry to Move toward a Circular Bioeconomy
by Paul-Loup Pasquet, Maud Villain-Gambier and Dominique Trébouet
Sustainability 2024, 16(8), 3472; https://doi.org/10.3390/su16083472 - 21 Apr 2024
Cited by 11 | Viewed by 6573
Abstract
Beer production consumes significant amounts of water, energy, and raw materials, and results in the production of various by-products, including wastewater, brewers’ spent grain, yeast and hop. To lower its environmental footprint, by-products may be reclaimed or valorized in agro-food, cosmetic, material, chemical [...] Read more.
Beer production consumes significant amounts of water, energy, and raw materials, and results in the production of various by-products, including wastewater, brewers’ spent grain, yeast and hop. To lower its environmental footprint, by-products may be reclaimed or valorized in agro-food, cosmetic, material, chemical industries, etc. According to most recent research, breweries have the potential to become biorefineries, as they can extract diverse valuable plant-based compounds such as carbohydrates, proteins, lipids, phenolic compounds, platform chemicals, and biopolymers. These biomolecules possess bioactive and physicochemical properties, which can be enhanced through recovery processes. Brewery by-products may be utilized in various industries within the bioeconomy frame. In agro-food systems, extracts can increase final products’ techno-functionalities. Such additives can also help in creating marketing labels such as clean-label healthy, which can further attract potential customers. Businesses can gain economic and socio-environmental benefits by implementing sustainable practices, which can also improve their corporate image. This article outlines recent advancements in the processing and valorization of brewery by-products, ultimately defining an up-to-date, sustainable strategy for clean beer production. Full article
(This article belongs to the Collection Recovery and Recycling from Waste Streams)
Show Figures

Figure 1

15 pages, 4165 KiB  
Article
Metabolic and Bioprocess Engineering of Clostridium tyrobutyricum for Butyl Butyrate Production on Xylose and Shrimp Shell Waste
by Hao Wang, Yingli Chen, Zhihan Yang, Haijun Deng, Yiran Liu, Ping Wei, Zhengming Zhu and Ling Jiang
Foods 2024, 13(7), 1009; https://doi.org/10.3390/foods13071009 - 26 Mar 2024
Cited by 4 | Viewed by 2257
Abstract
Microbial conversion of agri-food waste to valuable compounds offers a sustainable route to develop the bioeconomy and contribute to sustainable biorefinery. Clostridium tyrobutyricum displays a series of native traits suitable for high productivity conversion of agri-food waste, which make it a promising host [...] Read more.
Microbial conversion of agri-food waste to valuable compounds offers a sustainable route to develop the bioeconomy and contribute to sustainable biorefinery. Clostridium tyrobutyricum displays a series of native traits suitable for high productivity conversion of agri-food waste, which make it a promising host for the production of various compounds, such as the short-chain fatty acids and their derivative esters products. In this study, a butanol synthetic pathway was constructed in C. tyrobutyricum, and then efficient butyl butyrate production through in situ esterification was achieved by the supplementation of lipase into the fermentation. The butyryl-CoA/acyl-CoA transferase (cat1) was overexpressed to balance the ratio between precursors butyrate and butanol. Then, a suitable fermentation medium for butyl butyrate production was obtained with xylose as the sole carbon source and shrimp shell waste as the sole nitrogen source. Ultimately, 5.9 g/L of butyl butyrate with a selectivity of 100%, and a productivity of 0.03 g/L·h was achieved under xylose and shrimp shell waste with batch fermentation in a 5 L bioreactor. Transcriptome analyses exhibited an increase in the expression of genes related to the xylose metabolism, nitrogen metabolism, and amino acid metabolism and transport, which reveal the mechanism for the synergistic utilization of xylose and shrimp shell waste. This study presents a novel approach for utilizing xylose and shrimp shell waste to produce butyl butyrate by using an anaerobic fermentative platform based on C. tyrobutyricum. This innovative fermentation medium could save the cost of nitrogen sources (~97%) and open up possibilities for converting agri-food waste into other high-value products. Full article
Show Figures

Figure 1

46 pages, 1892 KiB  
Review
Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview
by Alessandro Blasi, Alessandra Verardi, Catia Giovanna Lopresto, Sarah Siciliano and Paola Sangiorgio
Recycling 2023, 8(4), 61; https://doi.org/10.3390/recycling8040061 - 20 Jul 2023
Cited by 141 | Viewed by 18707
Abstract
The sustainable management of lignocellulosic agricultural waste has gained significant attention due to its potential for the production of valuable products. This paper provides an extensive overview of the valorization strategies employed to convert lignocellulosic agricultural waste into economically and environmentally valuable products. [...] Read more.
The sustainable management of lignocellulosic agricultural waste has gained significant attention due to its potential for the production of valuable products. This paper provides an extensive overview of the valorization strategies employed to convert lignocellulosic agricultural waste into economically and environmentally valuable products. The manuscript examines the conversion routes employed for the production of valuable products from lignocellulosic agricultural waste. These include the production of biofuels, such as bioethanol and biodiesel, via biochemical and thermochemical processes. Additionally, the synthesis of platform chemicals, such as furfural, levulinic acid, and xylose, is explored, which serve as building blocks for the manufacturing of polymers, resins, and other high-value chemicals. Moreover, this overview highlights the potential of lignocellulosic agricultural waste in generating bio-based materials, including bio-based composites, bio-based plastics, and bio-based adsorbents. The utilization of lignocellulosic waste as feedstock for the production of enzymes, organic acids, and bioactive compounds is also discussed. The challenges and opportunities associated with lignocellulosic agricultural waste valorization are addressed, encompassing technological, economic, and environmental aspects. Overall, this paper provides a comprehensive overview of the valorization potential of lignocellulosic agricultural waste, highlighting its significance in transitioning towards a sustainable and circular bioeconomy. The insights presented here aim to inspire further research and development in the field of lignocellulosic waste valorization, fostering innovative approaches and promoting the utilization of this abundant resource for the production of valuable products. Full article
Show Figures

Figure 1

17 pages, 1993 KiB  
Article
Promoting Sustainable Fruit and Vegetable Biowaste Management and Industrial Symbiosis through an Innovative Web Platform
by Ioannis Varvaringos, Eva Skourtanioti, Georgios Letsos, Evgenia Rizoudi, Ektoras Makras, Margarita Panagiotopoulou, Sofia Papadaki and Katerina Valta
Waste 2023, 1(2), 532-548; https://doi.org/10.3390/waste1020032 - 5 Jun 2023
Cited by 1 | Viewed by 3324
Abstract
Sustainable bioeconomy is a promising pathway towards the transition to a circular and climate-neutral economy. The valorization of biowaste is a key player in this direction. This paper presents the design and development of the AgriPLaCE Platform, which aims to promote synergies that [...] Read more.
Sustainable bioeconomy is a promising pathway towards the transition to a circular and climate-neutral economy. The valorization of biowaste is a key player in this direction. This paper presents the design and development of the AgriPLaCE Platform, which aims to promote synergies that enable the utilization of biowaste from the fruit and vegetable supply chain. The platform consists of the AgriPLaCE Waste Management Database, which provides users with an extended list of potential utilization methods for various types of fruit and vegetable biowaste streams, and the AgriPLaCE Synergies Tool, which facilitates synergies between different actors involved in the biowaste-to-resource value chain from agricultural waste production to waste treatment and new valuable products’ exploitation. Initially, the conceptual design of both tools took place based on analysis of user needs and services alongside the system architecture. Following this, the AgriPLaCE Platform was developed with the implementation of all the necessary subsystems. The results of the platform’s implementation demonstrated its potential to generate multiple collaborations and synergies while users can also deepen their knowledge about alternative and emerging treatment technologies and valuable products from a wide range of fruit and vegetable biowaste streams. Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization)
Show Figures

Figure 1

16 pages, 2183 KiB  
Article
Techno-Economic Assessment of an Olive Mill Wastewater (OMWW) Biorefinery in the Context of Circular Bioeconomy
by Yannis Mouzakitis and Emmanuel D. Adamides
Eng 2022, 3(4), 488-503; https://doi.org/10.3390/eng3040035 - 18 Nov 2022
Cited by 11 | Viewed by 3267
Abstract
The concept of biorefinery constitutes a significant contributing factor to the emerging transition toward a sustainable bioeconomy. In such a context, replacing oil and petrochemicals by biomass may involve several feedstocks, platforms, processes, technologies, as well as final products. This paper concentrates on [...] Read more.
The concept of biorefinery constitutes a significant contributing factor to the emerging transition toward a sustainable bioeconomy. In such a context, replacing oil and petrochemicals by biomass may involve several feedstocks, platforms, processes, technologies, as well as final products. This paper concentrates on the complex process of transferring the concept of biorefinery from laboratory to industry, and sheds light on the techno-economic and complexity management dimensions involved in this endeavor. Toward this end, adopting a systems perspective, the paper presents a structured and comprehensive framework, comprising the definition of the transformation process, business model development, techno-economic assessment, as well as strategic positioning and viability assessment, which may be employed to facilitate the engineering at large and launch a biorefining venture in a circular bioeconomy context. The framework is applied in the context of a biorefinery plant in a specific region in southern Greece, which is based on the valorization of olive mill wastewater (a ‘strong’ and quite common industrial waste in the Mediterranean basin), and produces biopolymers (PHAs) and bioenergy (H2). Full article
(This article belongs to the Special Issue Advanced Bioengineering Approaches for Biopolymers and Composites)
Show Figures

Figure 1

29 pages, 1724 KiB  
Review
Modeling the Succinic Acid Bioprocess: A Review
by Itziar A. Escanciano, Mateusz Wojtusik, Jesús Esteban, Miguel Ladero and Victoria E. Santos
Fermentation 2022, 8(8), 368; https://doi.org/10.3390/fermentation8080368 - 31 Jul 2022
Cited by 13 | Viewed by 7916
Abstract
Succinic acid has attracted much interest as a key platform chemical that can be obtained in high titers from biomass through sustainable fermentation processes, thus boosting the bioeconomy as a critical production strategy for the future. After several years of development of the [...] Read more.
Succinic acid has attracted much interest as a key platform chemical that can be obtained in high titers from biomass through sustainable fermentation processes, thus boosting the bioeconomy as a critical production strategy for the future. After several years of development of the production of succinic acid, many studies on lab or pilot scale production have been reported. The relevant experimental data reveal underlying physical and chemical dynamic phenomena. To take advantage of this vast, but disperse, kinetic information, a number of mathematical kinetic models of the unstructured non-segregated type have been proposed in the first place. These relatively simple models feature critical aspects of interest for the design, control, optimization and operation of this key bioprocess. This review includes a detailed description of the phenomena involved in the bioprocesses and how they reflect on the most important and recent models based on macroscopic and metabolic chemical kinetics, and in some cases even coupling mass transport. Full article
(This article belongs to the Special Issue Organic Waste Valorization into Added-Value Products)
Show Figures

Figure 1

13 pages, 1167 KiB  
Article
An Innovative, Green Cascade Protocol for Grape Stalk Valorization with Process Intensification Technologies
by Manuel Salgado-Ramos, Silvia Tabasso, Emanuela Calcio Gaudino, Andrés Moreno, Francesco Mariatti and Giancarlo Cravotto
Appl. Sci. 2022, 12(15), 7417; https://doi.org/10.3390/app12157417 - 23 Jul 2022
Cited by 17 | Viewed by 2884
Abstract
Valorization of agri-food residues to produce bio-based platform chemicals will enhance the transition to the bio-economy era. To this end, a sustainable process has been developed for the overall valorization of grape stalks (GS) according to a circular approach, starting from the [...] Read more.
Valorization of agri-food residues to produce bio-based platform chemicals will enhance the transition to the bio-economy era. To this end, a sustainable process has been developed for the overall valorization of grape stalks (GS) according to a circular approach, starting from the lignin fraction to further deal with the cellulose-rich residue. This non-conventional protocol fully adheres to green chemistry principles, exploiting the so-called enabling technologies—mainly ultrasound and microwaves—for energy-saving innovative processes. Firstly, ultrasound-assisted extraction (UAE, 40 kHz, 200 W) demonstrated to be an excellent technique for GS delignification combined with natural deep eutectic solvents (NaDESs). Delignification enables isolation of the pertinent lignin framework and the potential to obtain a polyphenol-rich liquid fraction, focusing on the valorization of GS as source of bioactive compounds (BACs). Among the NaDESs employed, the combination of choline chloride (ChCl) and levulinic acid (LevA) (ChLevA) presented noteworthy results, enabling a delignification higher than 70%. LevA is one of the top-value biobased platform chemicals. In this work, a flash microwave (MW)-assisted process was subsequently applied to the cellulose-rich fraction remained after delignification, yielding 85% LevA. The regeneration of this starting compound to produce ChLevA can lead to a further biomass delignification cycle, thus developing a new cascade protocol for a full valorization of GS. Full article
Show Figures

Figure 1

13 pages, 2763 KiB  
Article
Towards the Physiological Understanding of Yarrowia lipolytica Growth and Lipase Production Using Waste Cooking Oils
by Mattia Colacicco, Cosetta Ciliberti, Gennaro Agrimi, Antonino Biundo and Isabella Pisano
Energies 2022, 15(14), 5217; https://doi.org/10.3390/en15145217 - 19 Jul 2022
Cited by 15 | Viewed by 2914
Abstract
The yeast Yarrowia lipolytica is an industrially relevant microorganism, which is able to convert low-value wastes into different high-value, bio-based products, such as enzymes, lipids, and other important metabolites. Waste cooking oil (WCO) represents one of the main streams generated in the food [...] Read more.
The yeast Yarrowia lipolytica is an industrially relevant microorganism, which is able to convert low-value wastes into different high-value, bio-based products, such as enzymes, lipids, and other important metabolites. Waste cooking oil (WCO) represents one of the main streams generated in the food supply chain, especially from the domestic sector. The need to avoid its incorrect disposal makes this waste a resource for developing bioprocesses in the perspective of a circular bioeconomy. To this end, the strain Y. lipolytica W29 was used as a platform for the simultaneous production of intracellular lipids and extracellular lipases. Three different minimal media conditions with different pH controls were utilized in a small-scale (50 mL final volume) screening strategy, and the best condition was tested for an up-scaling procedure in higher volumes (800 mL) by selecting the best-performing possibility. The tested media were constituted by YNB media with high nitrogen restriction (1 g L−1 (NH4)2SO4) and different carbon sources (3% w v−1 glucose and 10% v v−1 WCO) with different levels of pH controls. Lipase production and SCO content were analyzed. A direct correlation was found between decreasing FFA availability in the media and increasing SCO levels and lipase activity. The simultaneous production of extracellular lipase (1.164 ± 0.025 U mL−1) and intracellular single-cell oil accumulation by Y. lipolytica W29 growing on WCO demonstrates the potential and the industrial relevance of this biorefinery model. Full article
(This article belongs to the Special Issue Bioenergy and Biobased Technologies to Support a Green Transition)
Show Figures

Figure 1

23 pages, 726 KiB  
Review
State of the Art on the Microbial Production of Industrially Relevant Organic Acids
by Raffaella Desirè Di Lorenzo, Immacolata Serra, Danilo Porro and Paola Branduardi
Catalysts 2022, 12(2), 234; https://doi.org/10.3390/catal12020234 - 19 Feb 2022
Cited by 21 | Viewed by 7199
Abstract
The industrial relevance of organic acids is high; because of their chemical properties, they can be used as building blocks as well as single-molecule agents with a huge annual market. Organic acid chemical platforms can derive from fossil sources by petrochemical refining processes, [...] Read more.
The industrial relevance of organic acids is high; because of their chemical properties, they can be used as building blocks as well as single-molecule agents with a huge annual market. Organic acid chemical platforms can derive from fossil sources by petrochemical refining processes, but most of them also represent natural metabolites produced by many cells. They are the products, by-products or co-products of many primary metabolic processes of microbial cells. Thanks to the potential of microbial cell factories and to the development of industrial biotechnology, from the last decades of the previous century, the microbial-based production of these molecules has started to approach the market. This was possible because of a joint effort of microbial biotechnologists and biochemical and process engineers that boosted natural production up to the titer, yield and productivity needed to be industrially competitive. More recently, the possibility to utilize renewable residual biomasses as feedstock not only for biofuels, but also for organic acids production is further augmenting the sustainability of their production, in a logic of circular bioeconomy. In this review, we briefly present the latest updates regarding the production of some industrially relevant organic acids (citric fumaric, itaconic, lactic and succinic acid), discussing the challenges and possible future developments of successful production. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Scheme 1

22 pages, 1200 KiB  
Article
Smart and Sustainable Bioeconomy Platform: A New Approach towards Sustainability
by Gaspare D’Amico, Katarzyna Szopik-Depczyńska, Riccardo Beltramo, Idiano D’Adamo and Giuseppe Ioppolo
Sustainability 2022, 14(1), 466; https://doi.org/10.3390/su14010466 - 2 Jan 2022
Cited by 28 | Viewed by 15910
Abstract
The smart and sustainable bioeconomy represents a comprehensive perspective, in which economic, social, environmental, and technological dimensions are considered simultaneously in the planning, monitoring, evaluating, and redefining of processes and operations. In this context of profound transformation driven by rapid urbanization and digitalization, [...] Read more.
The smart and sustainable bioeconomy represents a comprehensive perspective, in which economic, social, environmental, and technological dimensions are considered simultaneously in the planning, monitoring, evaluating, and redefining of processes and operations. In this context of profound transformation driven by rapid urbanization and digitalization, participatory and interactive strategies and practices have become fundamental to support policymakers, entrepreneurs, and citizens in the transition towards a smart and sustainable bioeconomy. This approach is applied by numerous countries around the world in order to redefine their strategy of sustainable and technology-assisted development. Specifically, real-time monitoring stations, sensors, Internet of Things (IoT), smart grids, GPS tracking systems, and Blockchain aim to develop and strengthen the quality and efficiency of the circularity of economic, social, and environmental resources. In this sense, this study proposes a systematic review of the literature of smart and sustainable bioeconomy strategies and practices implemented worldwide in order to develop a platform capable of integrating holistically the following phases: (1) planning and stakeholder management; (2) identification of social, economic, environmental, and technological dimensions; and (3) goals. The results of this analysis emphasise an innovative and under-treated perspective, further stimulating knowledge in the theoretical and managerial debate on the smart and sustainable aspects of the bioeconomy, which mainly concern the following: (a) the proactive involvement of stakeholders in planning; (b) the improvement of efficiency and quality of economic, social, environmental, and technological flows; and (c) the reinforcement of the integration between smartness and sustainability. Full article
(This article belongs to the Special Issue Sustainable Circular Bioeconomy)
Show Figures

Figure 1

12 pages, 1899 KiB  
Article
Sustaining Biomaterials in Bioeconomy: Roles of Education and Learning in Mekong River Basin
by Thaworn Onpraphai, Attachai Jintrawet, Bounthanh Keoboualapha, Suprapat Khuenjai, Ruijia Guo, Jing Wang and Jun Fan
Forests 2021, 12(12), 1670; https://doi.org/10.3390/f12121670 - 30 Nov 2021
Cited by 6 | Viewed by 2613
Abstract
The demands to improve the livelihood of small farmers require a systemic shift from fossil fuel-based and destructive approaches to sustainable renewable raw materials and non-destructive approaches. This should be accompanied by a fundamental reorganization of education and learning policies to create new [...] Read more.
The demands to improve the livelihood of small farmers require a systemic shift from fossil fuel-based and destructive approaches to sustainable renewable raw materials and non-destructive approaches. This should be accompanied by a fundamental reorganization of education and learning policies to create new bio-oriented value chains for biomaterials, food, wood, and energy, as well as in large parts of the health, manufacturing, and service industries. In the long run, the successful implementation of bio-oriented production depends on the systemic linking of both first- and second-hand learning in communities in rural as well as urban settings. The purpose of this paper is to present a concept for the co-design of a new curriculum to better equip new graduates with the ability to support the effort of the sustainable production of biomaterials that are non-destructive to the environment. To sustain biomaterials and enhance non-destructive ways of thinking, learning needs a community of practice in both online and onsite platforms—allowing students to better understand and support cascade use. Therefore, the use of by-products and recycling products after use will increase in importance. A community of practice, and institutions, must create education and learning platforms for improved actions regarding biomaterials across generations and experiences, which will subsequently be integrated into the circular value chains of the bioeconomy. The first- and second-hand learning to sustain these value chains depends on higher education and learning institutions with both legal mandates and systems approaches. Full article
Show Figures

Figure 1

Back to TopTop