An Innovative, Green Cascade Protocol for Grape Stalk Valorization with Process Intensification Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Feedstock Treatment and Characterization
2.3. Biomass Delignification under UAE
2.4. Liquid Fraction Characterization
2.4.1. Antioxidant Activity
2.4.2. Polyphenols Analysis
2.5. Characterization of Isolated Lignins
2.6. Microwave (MW)-Assisted Production of Levulinic Acid (LevA)
2.7. Characterization of LevA
2.8. Statistical Analysis
3. Results and Discussion
3.1. Delignification Step via Ultrasound-Assisted Extraction (UAE)
3.2. Cascade Protocol for Grape Stalk Valorization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salgado-Ramos, M.; Martí-Quijal, F.J.; Huertas-Alonso, A.J.; Sánchez-Verdú, M.P.; Barba, F.J.; Moreno, A. Almond Hull Biomass: Preliminary Characterization and Development of Two Alternative Valorisation Routes by Applying Innovative and Sustainable Technologies. Ind. Crops Prod. 2022, 179, 114697. [Google Scholar] [CrossRef]
- Lorente, A.; Remón, J.; Salgado, M.; Huertas-Alonso, A.J.; Sánchez-Verdú, P.; Moreno, A.; Clark, J.H. Sustainable Production of Solid Biofuels and Biomaterials by Microwave-Assisted, Hydrothermal Carbonization (MA-HTC) of Brewers’ Spent Grain (BSG). ACS Sustain. Chem. Eng. 2020, 8, 18982–18991. [Google Scholar] [CrossRef]
- Tabasso, S.; Mariatti, F.; Grillo, G.; Boffa, L.; Tibaldi, P.S.; Cravotto, G. Sustainable Microwave-Assisted Aerobic Oxidation of Tomato Plant Waste into Bioaromatics and Organic Acids. Ind. Eng. Chem. Res. 2019, 58, 8578–8584. [Google Scholar] [CrossRef]
- Antonic, B.; Dordevic, D.; Jancikova, S.; Holeckova, D.; Tremlova, B.; Kulawik, P. Effect of Grape Seed Flour on the Antioxidant Profile, Textural and Sensory Properties of Waffles. Processes 2021, 9, 131. [Google Scholar] [CrossRef]
- Barbanera, M.; Cardarelli, A.; Carota, E.; Castellini, M.; Giannoni, T.; Ubertini, S. Valorisation of Winery and Distillery By-Products by Hydrothermal Carbonization. Sci. Rep. 2021, 11, 23973. [Google Scholar] [CrossRef] [PubMed]
- Portilla Rivera, O.M.; Saavedra Leos, M.D.; Solis, V.E.; Domínguez, J.M. Recent Trends on the Valorisation of Winemaking Industry Wastes. Curr. Opin. Green Sustain. Chem. 2021, 27, 100415. [Google Scholar] [CrossRef]
- Zhu, Z.; Hao, M.; Zhang, N. Influence of Contents of Chemical Compositions on the Mechanical Property of Sisal Fibers and Sisal Fibers Reinforced PLA Composites. J. Nat. Fibers 2020, 17, 101–112. [Google Scholar] [CrossRef]
- The International Organization of Vine and Wine (OIV). Statistical Report on World Vitiviniculture; International Organization of Vine and Wine: Paris, France, 2021. [Google Scholar]
- Atatoprak, T.; Amorim, M.M.; Ribeiro, T.; Pintado, M.; Madureira, A.R. Grape Stalk Valorisation for Fermentation Purposes. Food Chem. Mol. Sci. 2022, 4, 100067. [Google Scholar] [CrossRef]
- Verdini, F.; Calcio Gaudino, E.; Grillo, G.; Tabasso, S.; Cravotto, G. Cellulose Recovery from Agri-Food Residues by Effective Cavitational Treatments. Appl. Sci. 2021, 11, 4693. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Cravotto, G.; Manzoli, M.; Tabasso, S. Sono and Mechanochemical Technologies in the Catalytic Conversion of Biomass. Chem. Soc. Rev. 2021, 50, 1785–1812. [Google Scholar] [CrossRef]
- Wu, Z.; Ferreira, D.F.; Crudo, D.; Bosco, V.; Stevanato, L.; Costale, A.; Cravotto, G. Plant and Biomass Extraction and Valorisation under Hydrodynamic Cavitation. Processes 2019, 7, 965. [Google Scholar] [CrossRef] [Green Version]
- Grillo, G.; Boffa, L.; Talarico, S.; Solarino, R.; Binello, A.; Cavaglià, G.; Bensaid, S.; Telysheva, G.; Cravotto, G. Batch and Flow Ultrasound-assisted Extraction of Grape Stalks: Process Intensification Design up to a Multi-kilo Scale. Antioxidants 2020, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Lauberte, L.; Telysheva, G.; Cravotto, G.; Andersone, A.; Janceva, S.; Dizhbite, T.; Arshanitsa, A.; Jurkjane, V.; Vevere, L.; Grillo, G.; et al. Lignin—Derived Antioxidants as Value-Added Products Obtained under Cavitation Treatments of the Wheat Straw Processing for Sugar Production. J. Clean. Prod. 2021, 303, 126369. [Google Scholar] [CrossRef]
- al Khawli, F.; Martí-Quijal, F.J.; Pallarés, N.; Barba, F.J.; Ferrer, E. Ultrasound Extraction Mediated Recovery of Nutrients and Antioxidant Bioactive Compounds from Phaeodactylum Tricornutum Microalgae. Appl. Sci. 2021, 11, 1701. [Google Scholar] [CrossRef]
- Lucas-Torres, C.; Lorente, A.; Cabañas, B.; Moreno, A. Microwave Heating for the Catalytic Conversion of Melon Rind Waste into Biofuel Precursors. J. Clean. Prod. 2016, 138, 59–69. [Google Scholar] [CrossRef]
- de la Hoz, A.; Díaz-Ortiz, À.; Moreno, A. Microwaves in Organic Synthesis. Thermal and Non-Thermal Microwave Effects. Chem. Soc. Rev. 2005, 34, 164–178. [Google Scholar] [CrossRef]
- Cravotto, G.; Carnaroglio, D. (Eds.) Microwave Chemistry; De Gruyter: Berlin, Germany, 2017; ISBN 9783110479935. [Google Scholar]
- Mariatti, F.; Gunjević, V.; Boffa, L.; Cravotto, G. Process Intensification Technologies for the Recovery of Valuable Compounds from Cocoa By-Products. Innov. Food Sci. Emerg. Technol. 2021, 68, 102601. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Tabasso, S.; Grillo, G.; Cravotto, G.; Dreyer, T.; Schories, G.; Altenberg, S.; Jashina, L.; Telysheva, G. Wheat Straw Lignin Extraction with Bio-Based Solvents Using Enabling Technologies. Comptes Rendus Chim. 2018, 21, 563–571. [Google Scholar] [CrossRef]
- Salgado-Ramos, M.; Mariatti, F.; Tabasso, S.; Prado Sánchez-Verdú, M.; Moreno, A.; Cravotto, G. Sustainable and non-conventional protocols for the three-way valorisation of lignin from grape stalks. Chem. Eng. Process. Process Intensif. 2022, 178, 109027. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Y.; Song, C.; Liu, S.; Li, X.; Long, J. Intensified Levulinic Acid/Ester Production from Cassava by One-Pot Cascade Prehydrolysis and Delignification. Appl. Energy 2017, 204, 1094–1100. [Google Scholar] [CrossRef]
- Rapado, P.; Faba, L.; Ordóñez, S. Influence of Delignification and Reaction Conditions in the Aqueous Phase Transformation of Lignocellulosic Biomass to Platform Molecules. Bioresour. Technol. 2021, 321, 124500. [Google Scholar] [CrossRef] [PubMed]
- Satira, A.; Paone, E.; Bressi, V.; Iannazzo, D.; Marra, F.; Calabrò, P.S.; Mauriello, F.; Espro, C. Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. Appl. Sci. 2021, 11, 10983. [Google Scholar] [CrossRef]
- Tabasso, S.; Montoneri, E.; Carnaroglio, D.; Caporaso, M.; Cravotto, G. Microwave-Assisted Flash Conversion of Non-Edible Polysaccharides and Post-Harvest Tomato Plant Waste to Levulinic Acid. Green Chem. 2014, 16, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Harahap, A.F.P.; Rahman, A.A.; Sadrina, I.N.; Gozan, M. Optimization of Pretreatment Conditions for Microwave-Assisted Alkaline Delignification of Empty Fruit Bunch by Response Surface Methodology. Optimization 2019, 10, 1479. [Google Scholar] [CrossRef] [Green Version]
- Gazliya, N.; Gazliya, N.; Aparna, K. Microwave-Assisted Alkaline Delignification of Banana Peduncle. J. Nat. Fibers 2021, 18, 664–673. [Google Scholar] [CrossRef]
- Satlewal, A.; Agrawal, R.; Bhagia, S.; Sangoro, J.; Ragauskas, A.J. Natural Deep Eutectic Solvents for Lignocellulosic Biomass Pretreatment: Recent Developments, Challenges and Novel Opportunities. Biotechnol. Adv. 2018, 36, 2032–2050. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Melro, E.; Magalhães, S.; Alves, L.; Craveiro, R.; Filipe, A.; Valente, A.J.M.; Martins, G.; Antunes, F.E.; Romano, A. New Deep Eutectic Solvent Assisted Extraction of Highly Pure Lignin from Maritime Pine Sawdust (Pinus Pinaster Ait.). Int. J. Biol. Macromol. 2021, 177, 294–305. [Google Scholar] [CrossRef]
- Grillo, G.; Gaudino, E.C.; Rosa, R.; Leonelli, C.; Timonina, A.; Grygiškis, S.; Tabasso, S.; Cravotto, G. Green Deep Eutectic Solvents for Microwave-Assisted Biomass Delignification and Valorisation. Molecules 2021, 26, 798. [Google Scholar] [CrossRef]
- Maugeri, Z.; Domínguez De María, P. Novel Choline-Chloride-Based Deep-Eutectic-Solvents with Renewable Hydrogen Bond Donors: Levulinic Acid and Sugar-Based Polyols. RSC Adv. 2012, 2, 421–425. [Google Scholar] [CrossRef]
- Ong, V.Z.; Wu, T.Y.; Chu, K.K.L.; Sun, W.Y.; Shak, K.P.Y. A Combined Pretreatment with Ultrasound-Assisted Alkaline Solution and Aqueous Deep Eutectic Solvent for Enhancing Delignification and Enzymatic Hydrolysis from Oil Palm Fronds. Ind. Crops Prod. 2021, 160, 112974. [Google Scholar] [CrossRef]
- Utekar, P.G.; Kininge, M.M.; Gogate, P.R. Intensification of Delignification and Enzymatic Hydrolysis of Orange Peel Waste Using Ultrasound for Enhanced Fermentable Sugar Production. Chem. Eng. Process. Process Intensif 2021, 168, 108556. [Google Scholar] [CrossRef]
- Yachmenev, V.; Condon, B.; Klasson, T.; Lambert, A. Acceleration of the Enzymatic Hydrolysis of Corn Stover and Sugar Cane Bagasse Celluloses by Low Intensity Uniform Ultrasound. J. Biobased Mater. Bioenergy 2009, 3, 25–31. [Google Scholar] [CrossRef]
- Gogate, P.R.; Sutkar, V.S.; Pandit, A.B. Sonochemical Reactors: Important Design and Scale up Considerations with a Special Emphasis on Heterogeneous Systems. Chem. Eng. J. 2011, 166, 1066–1082. [Google Scholar] [CrossRef]
- Huber, V.; Muller, L.; Hio, J.; Degot, P.; Touraud, D.; Kunz, W. Improvement of the Solubilization and Extraction of Curcumin in an Edible Ternary Solvent Mixture. Molecules 2021, 26, 7702. [Google Scholar] [CrossRef] [PubMed]
- Spiridon, I. Extraction of Lignin and Therapeutic Applications of Lignin-Derived Compounds. A Review. Environ. Chem. Lett. 2020, 18, 771–785. [Google Scholar] [CrossRef]
- Lorente, A.; Remón, J.; Budarin, V.L.; Sánchez-Verdú, P.; Moreno, A.; Clark, J.H. Analysis and Optimisation of a Novel “Bio-Brewery” Approach: Production of Bio-Fuels and Bio-Chemicals by Microwave-Assisted, Hydrothermal Liquefaction of Brewers’ Spent Grains. Energy Convers. Manag. 2019, 185, 410–430. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Lin, F.; Zhang, H.; Xiao, R. Structural Elucidation of Industrial Bioethanol Residual Lignin from Corn Stalk: A Potential Source of Vinyl Phenolics. Fuel Process. Technol. 2018, 169, 50–57. [Google Scholar] [CrossRef]
- Subhedar, P.B.; Gogate, P.R. Alkaline and Ultrasound Assisted Alkaline Pretreatment for Intensification of Delignification Process from Sustainable Raw-Material. Ultrason. Sonochem. 2014, 21, 216–225. [Google Scholar] [CrossRef]
- Sevilla, M.; Maciá-Agulló, J.A.; Fuertes, A.B. Hydrothermal Carbonization of Biomass as a Route for the Sequestration of CO2: Chemical and Structural Properties of the Carbonized Products. Biomass Bioenergy 2011, 35, 3152–3159. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Chen, B.; Zhu, L. Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures. Environ. Sci. Technol. 2014, 48, 3411–3419. [Google Scholar] [CrossRef]
- Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K. Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chem. Rev. 2018, 118, 614–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazimudheen, G.; Sekhar, N.C.; Sunny, A.; Kallingal, A.; Hasanath, B. Physiochemical Characterization and Thermal Kinetics of Lignin Recovered from Sustainable Agrowaste for Bioenergy Applications. Int. J. Hydrog. Energy 2021, 46, 4798–4807. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.; Jiang, J.; Xu, H.; Zhang, N.; Xie, J.; Wei, M. Isolation and Characterization of Bacillus Sp. Capable of Degradating Alkali Lignin. Front. Energy Res. 2021, 9, 807286. [Google Scholar] [CrossRef]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin− Ciocalteu Reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikucka, W.; Zielinska, M.; Bulkowska, K.; Witonska, I. Recovery of Polyphenols from Distillery Stillage by Microwave-Assisted, Ultrasound-Assisted and Conventional Solid–Liquid Extraction. Sci. Rep. 2022, 12, 3232. [Google Scholar] [CrossRef] [PubMed]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The Effects of Ultrasound Assisted Extraction on Yield, Antioxidant, Anticancer and Antimicrobial Activity of Polyphenol Extracts: A Review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Santhakumari, S.; Jayakumar, R.; Logalakshmi, R.; Prabhu, N.M.; Abdul Nazar, A.K.; Karutha Pandian, S.; Veera Ravi, A. In Vitro and in Vivo Effect of 2,6-Di-Tert-Butyl-4-Methylphenol as an Antibiofilm Agent against Quorum Sensing Mediated Biofilm Formation of Vibrio Spp. Int. J. Food Microbiol. 2018, 281, 60–71. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Álvarez, A.; Cachero, S.; González-Sánchez, C.; Montejo-Bernardo, J.; Pizarro, C.; Bueno, J.L. Novel method for holocellulose analysis of non-woody biomass wastes. Carbohydr. Polym. 2018, 189, 250–256. [Google Scholar] [CrossRef]
- Genevini, P.; Adani, F.; Villa, C. Rice hull degradation by co-composting with dairy cattle slurry. Soil Sci. Plant Nutr. 1997, 43, 135–147. [Google Scholar] [CrossRef] [Green Version]
NaDESs | HBA a | HBD b | HBA/HBD Molar Ratio |
---|---|---|---|
ChLA | ChCl | Lactic acid (LA) | 1:10 |
ChLAGly | ChCl | Lactic acid (LA) + glycerol (Gly) | 1:1:1 |
ChLevA | ChCl | Levulinic acid (LevA) | 1:2 |
Liquid Fraction Samples | DPPH IC50 (Related to Co *) | TPC (mg GAE/g DM) ** | |
---|---|---|---|
1 | NaOH (10%), 60 min | 0.2616 ± 0.0015 d,e | 5.7873 ± 0.0569 |
2 | NaOH (10%), 120 min | 0.4305 ± 0.0018 c | 5.3693 ± 0.0170 |
3 | ChLA, 60 min | 0.5848 ± 0.0089 b | n.d. *** |
4 | ChLA, 120 min | 0.3195 ± 0.0059 d | n.d. |
5 | ChLAGly, 60 min | 0.4490 ± 0.0063 c | n.d. |
6 | ChLAGly, 120 min | 0.1819 ± 0.0022 e,f | n.d. |
7 | ChLevA, 60 min | 1.1867 ± 0.0258 a | n.d. |
8 | ChLevA, 120 min | 0.6650 ± 0.0244 b | n.d. |
9 | Ascorbic acid (standard) | 0.0869 ± 0.0010 g | - |
10 | Trolox (standard) | 0.1081 ± 0.0005 f,g | - |
Biomass | LevA Molar Yield (%) | LevA Ponderal Yield (%) | Conversion (%) a | ||
---|---|---|---|---|---|
1 | This work | ChLevA Delignified GS | 85.1 | 60.9 | 68.5 |
2 | Untreated GS | 68.6 | 49.1 | 79.0 | |
3 | Reference [25] | PHTP b | n.d. c | 63.0 | 78.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salgado-Ramos, M.; Tabasso, S.; Calcio Gaudino, E.; Moreno, A.; Mariatti, F.; Cravotto, G. An Innovative, Green Cascade Protocol for Grape Stalk Valorization with Process Intensification Technologies. Appl. Sci. 2022, 12, 7417. https://doi.org/10.3390/app12157417
Salgado-Ramos M, Tabasso S, Calcio Gaudino E, Moreno A, Mariatti F, Cravotto G. An Innovative, Green Cascade Protocol for Grape Stalk Valorization with Process Intensification Technologies. Applied Sciences. 2022; 12(15):7417. https://doi.org/10.3390/app12157417
Chicago/Turabian StyleSalgado-Ramos, Manuel, Silvia Tabasso, Emanuela Calcio Gaudino, Andrés Moreno, Francesco Mariatti, and Giancarlo Cravotto. 2022. "An Innovative, Green Cascade Protocol for Grape Stalk Valorization with Process Intensification Technologies" Applied Sciences 12, no. 15: 7417. https://doi.org/10.3390/app12157417
APA StyleSalgado-Ramos, M., Tabasso, S., Calcio Gaudino, E., Moreno, A., Mariatti, F., & Cravotto, G. (2022). An Innovative, Green Cascade Protocol for Grape Stalk Valorization with Process Intensification Technologies. Applied Sciences, 12(15), 7417. https://doi.org/10.3390/app12157417