Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = plastid-encoded polymerase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6635 KiB  
Article
A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis
by Tianming Tan, Shengnan Xu, Jiyun Liu, Min Ouyang and Jing Zhang
Plants 2025, 14(6), 921; https://doi.org/10.3390/plants14060921 - 15 Mar 2025
Viewed by 889
Abstract
Chloroplast development is a highly complex process, involving many regulatory mechanisms that remain poorly understood. This study reports a novel PPR protein, RFCD1 (Regulation Factor of Chloroplast Development 1). Fluorescence localization analysis reveals that the N-terminal 60 amino acids of RFCD1 fused with [...] Read more.
Chloroplast development is a highly complex process, involving many regulatory mechanisms that remain poorly understood. This study reports a novel PPR protein, RFCD1 (Regulation Factor of Chloroplast Development 1). Fluorescence localization analysis reveals that the N-terminal 60 amino acids of RFCD1 fused with GFP protein specifically direct the protein to the chloroplast. The knockout mutant of RFCD1 is embryo-lethal. RFCD1 RNA interference (RNAi) transgenic lines display chlorosis phenotypes and abnormal chloroplast development. Quantitative real-time PCR (qRT-PCR) showed that the expression levels of the plastid-encoded RNA polymerase (PEP) genes were significantly decreased in the RNAi lines. Furthermore, RNA blotting results and RNA-seq data showed that the processing of plastid rRNA was also affected in the RNAi lines. Taken together, these results indicate that RFCD1 might be involved in chloroplast gene expression and rRNA processing, which is essential for chloroplast development in Arabidopsis. Full article
Show Figures

Graphical abstract

27 pages, 9622 KiB  
Article
Overexpression of RPOTmp Being Targeted to Either Mitochondria or Chloroplasts in Arabidopsis Leads to Overall Transcriptome Changes and Faster Growth
by Igor V. Gorbenko, Vladislav I. Tarasenko, Elena Y. Garnik, Tatiana V. Yakovleva, Alexander I. Katyshev, Vadim I. Belkov, Yuriy L. Orlov, Yuri M. Konstantinov and Milana V. Koulintchenko
Int. J. Mol. Sci. 2024, 25(15), 8164; https://doi.org/10.3390/ijms25158164 - 26 Jul 2024
Viewed by 1547
Abstract
The transcription of Arabidopsis organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under [...] Read more.
The transcription of Arabidopsis organellar genes is performed by three nuclear-encoded RNA polymerases: RPOTm, RPOTmp, and RPOTp. The RPOTmp protein possesses ambiguous transit peptides, allowing participation in gene expression control in both mitochondria and chloroplasts, although its function in plastids is still under discussion. Here, we show that the overexpression of RPOTmp in Arabidopsis, targeted either to mitochondria or chloroplasts, disturbs the dormant seed state, and it causes the following effects: earlier germination, decreased ABA sensitivity, faster seedling growth, and earlier flowering. The germination of RPOTmp overexpressors is less sensitive to NaCl, while rpotmp knockout is highly vulnerable to salt stress. We found that mitochondrial dysfunction in the rpotmp mutant induces an unknown retrograde response pathway that bypasses AOX and ANAC017. Here, we show that RPOTmp transcribes the accD, clpP, and rpoB genes in plastids and up to 22 genes in mitochondria. Full article
Show Figures

Graphical abstract

14 pages, 5826 KiB  
Article
Cytological, Physiological, and Transcriptomic Analyses of the Leaf Color Mutant Yellow Leaf 20 (yl20) in Eggplant (Solanum melongena L.)
by Bing Li, Jingjing Zhang, Peng Tian, Xiurui Gao, Xue Song, Xiuqing Pan and Yanrong Wu
Plants 2024, 13(6), 855; https://doi.org/10.3390/plants13060855 - 15 Mar 2024
Cited by 3 | Viewed by 1792
Abstract
Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis in plants. We discovered a novel eggplant (Solanum melongena L.) mutant yl20 (yellow leaf 20) that exhibits yellow leaves. In this study, we compared the leaves of the [...] Read more.
Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis in plants. We discovered a novel eggplant (Solanum melongena L.) mutant yl20 (yellow leaf 20) that exhibits yellow leaves. In this study, we compared the leaves of the mutant yl20 and wild type (WT) plants for cytological, physiological, and transcriptomic analyses. The results showed that the mutant yl20 exhibits abnormal chloroplast ultrastructure, reduced chlorophyll and carotenoid contents, and lower photosynthetic efficiency compared to the WT. Transcriptome data indicated 3267 and 478 differentially expressed genes (DEGs) between WT and yl20 lines in the cotyledon and euphylla stages, respectively, where most DEGs were downregulated in the yl20. Gene Ontology (GO) analysis revealed the “plastid-encoded plastid RNA polymerase complex” and the “chloroplast-related” terms were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the significantly enriched DEGs were involved in flavone and flavonol biosynthesis, porphyrin and chlorophyll metabolism, etc. We speculated that these DEGs involved in significant terms were closely related to the leaf color development of the mutant yl20. Our results provide a possible explanation for the altered phenotype of leaf color mutants in eggplant and lay a theoretical foundation for plant breeding. Full article
Show Figures

Figure 1

16 pages, 1885 KiB  
Article
Modified Crosstalk between Phytohormones in Arabidopsis Mutants for PEP-Associated Proteins
by Ivan A. Bychkov, Aleksandra A. Andreeva, Radomira Vankova, Jozef Lacek, Natalia V. Kudryakova and Victor V. Kusnetsov
Int. J. Mol. Sci. 2024, 25(3), 1586; https://doi.org/10.3390/ijms25031586 - 27 Jan 2024
Viewed by 1549
Abstract
Plastid-encoded RNA polymerase (PEP) forms a multisubunit complex in operating chloroplasts, where PEP subunits and a sigma factor are tightly associated with 12 additional nuclear-encoded proteins. Mutants with disrupted genes encoding PEP-associated proteins (PAPs) provide unique tools for deciphering mutual relationships among phytohormones. [...] Read more.
Plastid-encoded RNA polymerase (PEP) forms a multisubunit complex in operating chloroplasts, where PEP subunits and a sigma factor are tightly associated with 12 additional nuclear-encoded proteins. Mutants with disrupted genes encoding PEP-associated proteins (PAPs) provide unique tools for deciphering mutual relationships among phytohormones. A block of chloroplast biogenesis in Arabidopsis pap mutants specifying highly altered metabolism in white tissues induced dramatic fluctuations in the content of major phytohormones and their metabolic genes, whereas hormone signaling circuits mostly remained functional. Reprogramming of the expression of biosynthetic and metabolic genes contributed to a greatly increased content of salicylic acid (SA) and a concomitant decrease in 1-aminocyclopropane-1-carboxylic acid (ACC) and oxophytodienoic acid (OPDA), precursors of ethylene and jasmonic acid, respectively, in parallel to reduced levels of abscisic acid (ABA). The lack of differences in the free levels of indole-3-acetic acid (IAA) between the pap mutants and wild-type plants was accompanied by fluctuations in the contents of IAA precursors and conjugated forms as well as multilayered changes in the expression of IAA metabolic genes. Along with cytokinin (CK) overproduction, all of these compensatory changes aim to balance plant growth and defense systems to ensure viability under highly modulated conditions. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 4732 KiB  
Article
A Plastid RNA Polymerase-Associated Protein Is Involved in Early Chloroplast Development in Rice
by Shuang Song, Ying Wang, Xin Ding, Yunlu Tian, Zewan Wu, Hang Li, Qing Li, Yunpeng Wang, Shirong Zhou, Xiaoou Dong, Jianmin Wan and Linglong Liu
Agronomy 2023, 13(5), 1424; https://doi.org/10.3390/agronomy13051424 - 21 May 2023
Cited by 5 | Viewed by 2521
Abstract
Plastid-encoded RNA polymerase (PEP) regulates the expression of chloroplast genes involved in photosynthesis and chloroplast development in rice. The PEP-associated protein (PAP) PAP7/pTAC14 is essential for the formation of the PEP complex. However, the function of PAP7 in chloroplast development in rice remains [...] Read more.
Plastid-encoded RNA polymerase (PEP) regulates the expression of chloroplast genes involved in photosynthesis and chloroplast development in rice. The PEP-associated protein (PAP) PAP7/pTAC14 is essential for the formation of the PEP complex. However, the function of PAP7 in chloroplast development in rice remains unclear. In this study, we identified a mutant, w81, which displays a yellow-green leaf symptom before the four-leaf stage. The seedlings of the w81 mutant display reduced chlorophyll content, abnormal chloroplast structure, and elevated reactive oxygen species (ROS) level. After the four-leaf stage, plant leaves of the w81 mutant gradually turn green with increased chlorophyll content. Map-based cloning reveals that the PAP7 in the w81 mutant harbors a T to A single-base substitution. This mutation blocks the normal splicing of the fifth intron and generates 74 bp longer transcripts in the mutant. The OsPAP7 protein mainly localizes to the chloroplast and directly interacts with OsPAP5. Our results highlight that OsPAP7 regulates the expression of PEP-dependent chloroplast genes and plays a key role in chloroplast development in rice. Full article
(This article belongs to the Special Issue Discovery and Utilization of Germplasm Resources in Rice)
Show Figures

Figure 1

15 pages, 2425 KiB  
Article
A Transcriptomic Analysis of Tobacco Leaf with the Functional Loss of the Plastid rpoB Operon Caused by TALEN-Mediated Double-Strand Breakage
by Yu-Chang Liu, Chih-Hao Huang and Ching-Chun Chang
Plants 2022, 11(21), 2860; https://doi.org/10.3390/plants11212860 - 26 Oct 2022
Cited by 6 | Viewed by 2094
Abstract
At least two sets of RNA polymerase (RNAP), nucleus (NEP)- and plastid (PEP)-encoded polymerases, recognizing distinct promoters exist in the plastids of land plants. Most plastid genes are regulated by multiple promoters with different strengths in their response to developmental stages and environmental [...] Read more.
At least two sets of RNA polymerase (RNAP), nucleus (NEP)- and plastid (PEP)-encoded polymerases, recognizing distinct promoters exist in the plastids of land plants. Most plastid genes are regulated by multiple promoters with different strengths in their response to developmental stages and environmental cues. Recently, we applied chloroplast-targeted transcription activator-like effector nuclease (cpTALEN) technology to site-specifically cause double-strand DNA breaks in the rpoB gene of tobacco, which encodes the β-subunit of PEP. The repair of damaged chloroplast DNA (cpDNA) through microhomology-mediated recombination caused the functional loss of the rpoB operon and resulted in the heterotrophic growth of an albino plant. We conducted a genome-wide analysis of the steady state of gene expression in the leaf tissue of PEP-deficient tobacco by RNA-Seq and compared it with that of wild-type plants. The expression of NEP genes was up-regulated in PEP-deficient tobacco; in particular, the level of RpoT3 transcripts encoding the specifically plastid-targeted NEP was significantly increased. Alongside most housekeeping genes, NEP also plays an important role in the regulation of gene expression involved in photosynthesis. In contrast, alongside the photosynthesis-related genes, PEP also plays an important role in the regulation of gene expression involved in some housekeeping functions. Furthermore, the mitochondrial DNA copy number and the level of most mitochondrial protein-coding transcripts were slightly increased in PEP-deficient tobacco. The disruption of PEP function not only affected plastid gene expression, but also nuclear and mitochondrial gene expression. This study demonstrated the intercompartmental retrograde signaling in the regulation of gene expression. Full article
(This article belongs to the Special Issue Molecular Biology of Chloroplast: Structure, Function and Development)
Show Figures

Figure 1

16 pages, 2237 KiB  
Article
Three-Dimensional Envelope and Subunit Interactions of the Plastid-Encoded RNA Polymerase from Sinapis alba
by Rémi Ruedas, Soumiya Sankari Muthukumar, Sylvie Kieffer-Jaquinod, François-Xavier Gillet, Daphna Fenel, Grégory Effantin, Thomas Pfannschmidt, Yohann Couté, Robert Blanvillain and David Cobessi
Int. J. Mol. Sci. 2022, 23(17), 9922; https://doi.org/10.3390/ijms23179922 - 31 Aug 2022
Cited by 10 | Viewed by 4033
Abstract
RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins [...] Read more.
RNA polymerases (RNAPs) are found in all living organisms. In the chloroplasts, the plastid-encoded RNA polymerase (PEP) is a prokaryotic-type multimeric RNAP involved in the selective transcription of the plastid genome. One of its active states requires the assembly of nuclear-encoded PEP-Associated Proteins (PAPs) on the catalytic core, producing a complex of more than 900 kDa, regarded as essential for chloroplast biogenesis. In this study, sequence alignments of the catalytic core subunits across various chloroplasts of the green lineage and prokaryotes combined with structural data show that variations are observed at the surface of the core, whereas internal amino acids associated with the catalytic activity are conserved. A purification procedure compatible with a structural analysis was used to enrich the native PEP from Sinapis alba chloroplasts. A mass spectrometry (MS)-based proteomic analysis revealed the core components, the PAPs and additional proteins, such as FLN2 and pTAC18. MS coupled with crosslinking (XL-MS) provided the initial structural information in the form of protein clusters, highlighting the relative position of some subunits with the surfaces of their interactions. Using negative stain electron microscopy, the PEP three-dimensional envelope was calculated. Particles classification shows that the protrusions are very well-conserved, offering a framework for the future positioning of all the PAPs. Overall, the results show that PEP-associated proteins are firmly and specifically associated with the catalytic core, giving to the plastid transcriptional complex a singular structure compared to other RNAPs. Full article
(This article belongs to the Special Issue Chloroplast 3.0)
Show Figures

Figure 1

19 pages, 3722 KiB  
Article
Comparative Study of Starch Phosphorylase Genes and Encoded Proteins in Various Monocots and Dicots with Emphasis on Maize
by Guowu Yu, Noman Shoaib, Ying Xie, Lun Liu, Nishbah Mughal, Yangping Li, Huanhuan Huang, Na Zhang, Junjie Zhang, Yinghong Liu, Yufeng Hu, Hanmei Liu and Yubi Huang
Int. J. Mol. Sci. 2022, 23(9), 4518; https://doi.org/10.3390/ijms23094518 - 20 Apr 2022
Cited by 11 | Viewed by 2770
Abstract
Starch phosphorylase (PHO) is a multimeric enzyme with two distinct isoforms: plastidial starch phosphorylase (PHO1) and cytosolic starch phosphorylase (PHO2). PHO1 specifically resides in the plastid, while PHO2 is found in the cytosol. Both play a critical role in the synthesis and degradation [...] Read more.
Starch phosphorylase (PHO) is a multimeric enzyme with two distinct isoforms: plastidial starch phosphorylase (PHO1) and cytosolic starch phosphorylase (PHO2). PHO1 specifically resides in the plastid, while PHO2 is found in the cytosol. Both play a critical role in the synthesis and degradation of starch. This study aimed to report the detailed structure, function, and evolution of genes encoding PHO1 and PHO2 and their protein ligand-binding sites in eight monocots and four dicots. “True” orthologs of PHO1 and PHO2 of Oryza sativa were identified, and the structure of the enzyme at the protein level was studied. The genes controlling PHO2 were found to be more conserved than those controlling PHO1; the variations were mainly due to the variable sequence and length of introns. Cis-regulatory elements in the promoter region of both genes were identified, and the expression pattern was analyzed. The real-time quantitative polymerase chain reaction indicated that PHO2 was expressed in all tissues with a uniform pattern of transcripts, and the expression pattern of PHO1 indicates that it probably contributes to the starch biosynthesis during seed development in Zea mays. Under abscisic acid (ABA) treatment, PHO1 was found to be downregulated in Arabidopsis and Hordeum vulgare. However, we found that ABA could up-regulate the expression of both PHO1 and PHO2 within 12 h in Zea mays. In all monocots and dicots, the 3D structures were highly similar, and the ligand-binding sites were common yet fluctuating in the position of aa residues. Full article
(This article belongs to the Special Issue Molecular Genetics and Plant Breeding 2.0)
Show Figures

Figure 1

14 pages, 31784 KiB  
Article
PAP8/pTAC6 Is Part of a Nuclear Protein Complex and Displays RNA Recognition Motifs of Viral Origin
by Louise Chambon, François-Xavier Gillet, Maha Chieb, David Cobessi, Thomas Pfannschmidt and Robert Blanvillain
Int. J. Mol. Sci. 2022, 23(6), 3059; https://doi.org/10.3390/ijms23063059 - 11 Mar 2022
Cited by 8 | Viewed by 3594
Abstract
Chloroplast biogenesis depends on a complex transcriptional program involving coordinated expression of plastid and nuclear genes. In particular, photosynthesis-associated plastid genes are expressed by the plastid-encoded polymerase (PEP) that undergoes a structural rearrangement during chloroplast formation. The prokaryotic-type core enzyme is rebuilt into [...] Read more.
Chloroplast biogenesis depends on a complex transcriptional program involving coordinated expression of plastid and nuclear genes. In particular, photosynthesis-associated plastid genes are expressed by the plastid-encoded polymerase (PEP) that undergoes a structural rearrangement during chloroplast formation. The prokaryotic-type core enzyme is rebuilt into a larger complex by the addition of nuclear-encoded PEP-associated proteins (PAP1 to PAP12). Among the PAPs, some have been detected in the nucleus (PAP5 and PAP8), where they could serve a nuclear function required for efficient chloroplast biogenesis. Here, we detected PAP8 in a large nuclear subcomplex that may include other subunits of the plastid-encoded RNA polymerase. We have made use of PAP8 recombinant proteins in Arabidopsis thaliana to decouple its nucleus- and chloroplast-associated functions and found hypomorphic mutants pointing at essential amino acids. While the origin of the PAP8 gene remained elusive, we have found in its sequence a micro-homologous domain located within a large structural homology with a rhinoviral RNA-dependent RNA polymerase, highlighting potential RNA recognition motifs in PAP8. PAP8 in vitro RNA binding activity suggests that this domain is functional. Hence, we propose that the acquisition of PAPs may have occurred during evolution by different routes, including lateral gene transfer. Full article
(This article belongs to the Special Issue Chloroplast 3.0)
Show Figures

Figure 1

17 pages, 5257 KiB  
Article
Plastid Deficient 1 Is Essential for the Accumulation of Plastid-Encoded RNA Polymerase Core Subunit β and Chloroplast Development in Arabidopsis
by Zhipan Yang, Mingxin Liu, Shunhua Ding, Yi Zhang, Huixia Yang, Xiaogang Wen, Wei Chi, Congming Lu and Qingtao Lu
Int. J. Mol. Sci. 2021, 22(24), 13648; https://doi.org/10.3390/ijms222413648 - 20 Dec 2021
Cited by 4 | Viewed by 2865
Abstract
Plastid-encoded RNA polymerase (PEP)-dependent transcription is an essential process for chloroplast development and plant growth. It is a complex event that is regulated by numerous nuclear-encoded proteins. In order to elucidate the complex regulation mechanism of PEP activity, identification and characterization of PEP [...] Read more.
Plastid-encoded RNA polymerase (PEP)-dependent transcription is an essential process for chloroplast development and plant growth. It is a complex event that is regulated by numerous nuclear-encoded proteins. In order to elucidate the complex regulation mechanism of PEP activity, identification and characterization of PEP activity regulation factors are needed. Here, we characterize Plastid Deficient 1 (PD1) as a novel regulator for PEP-dependent gene expression and chloroplast development in Arabidopsis. The PD1 gene encodes a protein that is conserved in photoautotrophic organisms. The Arabidopsis pd1 mutant showed albino and seedling-lethal phenotypes. The plastid development in the pd1 mutant was arrested. The PD1 protein localized in the chloroplasts, and it colocalized with nucleoid protein TRXz. RT-quantitative real-time PCR, northern blot, and run-on analyses indicated that the PEP-dependent transcription in the pd1 mutant was dramatically impaired, whereas the nuclear-encoded RNA polymerase-dependent transcription was up-regulated. The yeast two-hybrid assays and coimmunoprecipitation experiments showed that the PD1 protein interacts with PEP core subunit β (PEP-β), which has been verified to be essential for chloroplast development. The immunoblot analysis indicated that the accumulation of PEP-β was barely detected in the pd1 mutant, whereas the accumulation of the other essential components of the PEP complex, such as core subunits α and β′, were not affected in the pd1 mutant. These observations suggested that the PD1 protein is essential for the accumulation of PEP-β and chloroplast development in Arabidopsis, potentially by direct interaction with PEP-β. Full article
(This article belongs to the Special Issue Chloroplast and Stress Signaling)
Show Figures

Figure 1

20 pages, 15223 KiB  
Article
A Core Module of Nuclear Genes Regulated by Biogenic Retrograde Signals from Plastids
by Björn Grübler, Carolina Cozzi and Thomas Pfannschmidt
Plants 2021, 10(2), 296; https://doi.org/10.3390/plants10020296 - 4 Feb 2021
Cited by 7 | Viewed by 3418
Abstract
Chloroplast biogenesis during seedling development of angiosperms is a rapid and highly dynamic process that parallels the light-dependent photomorphogenic programme. Pre-treatments of dark-grown seedlings with lincomyin or norflurazon prevent chloroplast biogenesis upon illumination yielding albino seedlings. A comparable phenotype was found for the [...] Read more.
Chloroplast biogenesis during seedling development of angiosperms is a rapid and highly dynamic process that parallels the light-dependent photomorphogenic programme. Pre-treatments of dark-grown seedlings with lincomyin or norflurazon prevent chloroplast biogenesis upon illumination yielding albino seedlings. A comparable phenotype was found for the Arabidopsis mutant plastid-encoded polymerase associated protein 7 (pap7) being defective in the prokaryotic-type plastid RNA polymerase. In all three cases the defect in plastid function has a severe impact on the expression of nuclear genes representing the influence of retrograde signaling pathway(s) from the plastid. We performed a meta-analysis of recently published genome-wide expression studies that investigated the impact of the aforementioned chemical and genetic blocking of chloroplast biogenesis on nuclear gene expression profiles. We identified a core module of 152 genes being affected in all three conditions. These genes were classified according to their function and analyzed with respect to their implication in retrograde signaling and chloroplast biogenesis. Our study uncovers novel genes regulated by retrograde biogenic signals and suggests the action of a common signaling pathway that is used by signals originating from plastid transcription, translation and oxidative stress. Full article
(This article belongs to the Special Issue Genetics, Genomics and Biotechnology of Plant Cytoplasmic Organelles)
Show Figures

Figure 1

13 pages, 1209 KiB  
Opinion
GUN1 and Plastid RNA Metabolism: Learning from Genetics
by Luca Tadini, Nicolaj Jeran and Paolo Pesaresi
Cells 2020, 9(10), 2307; https://doi.org/10.3390/cells9102307 - 16 Oct 2020
Cited by 11 | Viewed by 4186
Abstract
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and [...] Read more.
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing. Full article
(This article belongs to the Special Issue RNA Biology in Plant Organelles)
Show Figures

Figure 1

17 pages, 1677 KiB  
Article
Arabidopsis Plastid-RNA Polymerase RPOTp Is Involved in Abiotic Stress Tolerance
by Abel Lidón-Soto, Eva Núñez-Delegido, Iván Pastor-Martínez, Pedro Robles and Víctor Quesada
Plants 2020, 9(7), 834; https://doi.org/10.3390/plants9070834 - 2 Jul 2020
Cited by 5 | Viewed by 3814
Abstract
Plastid gene expression (PGE) must adequately respond to changes in both development and environmental cues. The transcriptional machinery of plastids in land plants is far more complex than that of prokaryotes. Two types of DNA-dependent RNA polymerases transcribe the plastid genome: a multimeric [...] Read more.
Plastid gene expression (PGE) must adequately respond to changes in both development and environmental cues. The transcriptional machinery of plastids in land plants is far more complex than that of prokaryotes. Two types of DNA-dependent RNA polymerases transcribe the plastid genome: a multimeric plastid-encoded polymerase (PEP), and a monomeric nuclear-encoded polymerase (NEP). A single NEP in monocots (RPOTp, RNA polymerase of the T3/T7 phage-type) and two NEPs in dicots (plastid-targeted RPOTp, and plastid- and mitochondrial-targeted RPOTmp) have been hitherto identified. To unravel the role of PGE in plant responses to abiotic stress, we investigated if Arabidopsis RPOTp could function in plant salt tolerance. To this end, we studied the sensitivity of T-DNA mutants scabra3-2 (sca3-2) and sca3-3, defective in the RPOTp gene, to salinity, osmotic stress and the phytohormone abscisic acid (ABA) required for plants to adapt to abiotic stress. sca3 mutants were hypersensitive to NaCl, mannitol and ABA during germination and seedling establishment. Later in development, sca3 plants displayed reduced sensitivity to salt stress. A gene ontology (GO) analysis of the nuclear genes differentially expressed in the sca3-2 mutant (301) revealed that many significantly enriched GO terms were related to chloroplast function, and also to the response to several abiotic stresses. By quantitative RT-PCR (qRT-PCR), we found that genes LHCB1 (LIGHT-HARVESTING CHLOROPHYLL a/b-BINDING1) and AOX1A (ALTERNATIVE OXIDASE 1A) were respectively down- and up-regulated in the Columbia-0 (Col-0) salt-stressed plants, which suggests the activation of plastid and mitochondria-to-nucleus retrograde signaling. The transcript levels of genes RPOTp, RPOTmp and RPOTm significantly increased in these salt-stressed seedlings, but this enhanced expression did not lead to the up-regulation of the plastid genes solely transcribed by NEP. Similar to salinity, carotenoid inhibitor norflurazon (NF) also enhanced the RPOTp transcript levels in Col-0 seedlings. This shows that besides salinity, inhibition of chloroplast biogenesis also induces RPOTp expression. Unlike salt and NF, the NEP genes were significantly down-regulated in the Col-0 seedlings grown in ABA-supplemented media. Together, our findings demonstrate that RPOTp functions in abiotic stress tolerance, and RPOTp is likely regulated positively by plastid-to-nucleus retrograde signaling, which is triggered when chloroplast functionality is perturbed by environmental stresses, e.g., salinity or NF. This suggests the existence of a compensatory mechanism, elicited by impaired chloroplast function. To our knowledge, this is the first study to suggest the role of a nuclear-encoded plastid-RNA polymerase in salt stress tolerance in plants. Full article
(This article belongs to the Special Issue Salinity Stress in Plants and Molecular Responses)
Show Figures

Graphical abstract

25 pages, 1559 KiB  
Review
Barley’s Second Spring as a Model Organism for Chloroplast Research
by Lisa Rotasperti, Francesca Sansoni, Chiara Mizzotti, Luca Tadini and Paolo Pesaresi
Plants 2020, 9(7), 803; https://doi.org/10.3390/plants9070803 - 27 Jun 2020
Cited by 14 | Viewed by 5662
Abstract
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the [...] Read more.
Barley (Hordeum vulgare) has been widely used as a model crop for studying molecular and physiological processes such as chloroplast development and photosynthesis. During the second half of the 20th century, mutants such as albostrians led to the discovery of the nuclear-encoded, plastid-localized RNA polymerase and the retrograde (chloroplast-to-nucleus) signalling communication pathway, while chlorina-f2 and xantha mutants helped to shed light on the chlorophyll biosynthetic pathway, on the light-harvesting proteins and on the organization of the photosynthetic apparatus. However, during the last 30 years, a large fraction of chloroplast research has switched to the more “user-friendly” model species Arabidopsis thaliana, the first plant species whose genome was sequenced and published at the end of 2000. Despite its many advantages, Arabidopsis has some important limitations compared to barley, including the lack of a real canopy and the absence of the proplastid-to-chloroplast developmental gradient across the leaf blade. These features, together with the availability of large collections of natural genetic diversity and mutant populations for barley, a complete genome assembly and protocols for genetic transformation and gene editing, have relaunched barley as an ideal model species for chloroplast research. In this review, we provide an update on the genomics tools now available for barley, and review the biotechnological strategies reported to increase photosynthesis efficiency in model species, which deserve to be validated in barley. Full article
Show Figures

Graphical abstract

14 pages, 1566 KiB  
Article
UMP Kinase Regulates Chloroplast Development and Cold Response in Rice
by Qing Dong, Ying-Xin Zhang, Quan Zhou, Qun-En Liu, Dai-Bo Chen, Hong Wang, Shi-Hua Cheng, Li-Yong Cao and Xi-Hong Shen
Int. J. Mol. Sci. 2019, 20(9), 2107; https://doi.org/10.3390/ijms20092107 - 29 Apr 2019
Cited by 16 | Viewed by 4083
Abstract
Pyrimidine nucleotides are important metabolites that are building blocks of nucleic acids, which participate in various aspects of plant development. Only a few genes involved in pyrimidine metabolism have been identified in rice and the majority of their functions remain unclear. In this [...] Read more.
Pyrimidine nucleotides are important metabolites that are building blocks of nucleic acids, which participate in various aspects of plant development. Only a few genes involved in pyrimidine metabolism have been identified in rice and the majority of their functions remain unclear. In this study, we used a map-based cloning strategy to isolate a UMPK gene in rice, encoding the UMP kinase that phosphorylates UMP to form UDP, from a recessive mutant with pale-green leaves. In the mutant, UDP content always decreased, while UTP content fluctuated with the development of leaves. Mutation of UMPK reduced chlorophyll contents and decreased photosynthetic capacity. In the mutant, transcription of plastid-encoded RNA polymerase-dependent genes, including psaA, psbB, psbC and petB, was significantly reduced, whereas transcription of nuclear-encoded RNA polymerase-dependent genes, including rpoA, rpoB, rpoC1, and rpl23, was elevated. The expression of UMPK was significantly induced by various stresses, including cold, heat, and drought. Increased sensitivity to cold stress was observed in the mutant, based on the survival rate and malondialdehyde content. High accumulation of hydrogen peroxide was found in the mutant, which was enhanced by cold treatment. Our results indicate that the UMP kinase gene plays important roles in regulating chloroplast development and stress response in rice. Full article
(This article belongs to the Special Issue Chloroplast 2.0)
Show Figures

Figure 1

Back to TopTop