A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis
Abstract
:1. Introduction
2. Results
2.1. RFCD1 Is Essential for Plant Growth
2.2. RFCD1 Encodes a PLS-Type Chloroplast PPR Protein
2.3. Deficiency of RFCD1 Causes Abnormal Chloroplast Development
2.4. Knockdown of RFCD1 Affects the Accumulation of Photosynthetic Proteins
2.5. RFCD1 Mutation Leads to an Altered Plastid Gene Expression
2.6. Transcriptome Analysis of RFCD1-RNAi-1 Seedlings
2.7. Accumulation of Chloroplast rRNAs Is Impaired in RNAi Lines
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Generation of RNAi Lines
4.3. Chlorophyll Content Measurement
4.4. Subcellular Localization of RFCD1-GFP Fusion and Visualization
4.5. Isolation of Cytosol, Nucleus, and Chloroplast
4.6. RNA Gel Blotting, RT-PCR, and Quantitative RT-PCR
4.7. Protein Isolation and Immunoblot Analysis
4.8. Transmission Electron Microscopy (TEM) Analysis
4.9. RNA-Seq and Data Analysis
4.10. Phylogenetic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cyt b6f | Cytochrome b6f complex |
GFP | Green fluorescent protein |
MS | Murashige and Skoog culture medium |
NEPs | Nuclear-encoded RNA polymerases |
PEP | Plastid-encoded RNA polymerase |
PPR | Pentatricopeptide repeat |
PS I | Photo System I |
PS II | Photo System II |
qRT-PCR | Quantitative real-time PCR |
RNAi | RNA interference |
RT-PCR | Reverse transcription PCR |
SDS-PAGE | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
TEM | Transmission electron microscope |
WT | Wild type |
References
- Sakamoto, W.; Miyagishima, S.Y.; Jarvis, P. Chloroplast biogenesis: Control of plastid development, protein import, division and inheritance. Arab. Book 2008, 6, e0110. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.; Liu, Z.; Rochaix, J.D.; Sun, X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. Front. Plant Sci. 2022, 13, 980237. [Google Scholar] [CrossRef]
- Hedtke, B.; Börner, T.; Weihe, A. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 1997, 277, 809–811. [Google Scholar] [CrossRef] [PubMed]
- Kindgren, P.; Strand, Å. Chloroplast transcription, untangling the Gordian Knot. New Phytol. 2015, 206, 889–891. [Google Scholar] [CrossRef]
- Pfalz, J.; Liere, K.; Kandlbinder, A.; Dietz, K.J.; Oelmüller, R. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 2005, 18, 176–197. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, L.; Lu, C. Chloroplast gene expression: Recent advances and perspectives. Plant Commun. 2023, 4, 100611. [Google Scholar] [CrossRef]
- Jung, H.S.; Chory, J. Signaling between chloroplasts and the nucleus: Can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiol. 2010, 152, 453–459. [Google Scholar] [CrossRef]
- Wang, T.; Wang, G.L.; Fang, Y.; Zhang, Y.; Peng, W.; Zhou, Y.; Zhang, A.; Yu, L.J.; Lu, C. Architecture of the spinach plastid-encoded RNA polymerase. Nat. Commun. 2024, 15, 9838. [Google Scholar] [CrossRef]
- Wu, X.X.; Mu, W.H.; Li, F.; Sun, S.Y.; Cui, C.J.; Kim, C.; Zhou, F.; Zhang, Y. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell 2024, 187, 1127–1144. [Google Scholar] [CrossRef]
- Do Prado, P.F.V.; Ahrens, F.M.; Liebers, M.; Ditz, N.; Braun, H.P.; Pfannschmidt, T.; Hillen, H.S. Structure of the multi-subunit chloroplast RNA polymerase. Mol. Cell 2024, 84, 910–925. [Google Scholar] [CrossRef]
- Vergara-Cruces, Á.; Pramanick, I.; Pearce, D.; Vogirala, V.K.; Byrne, M.J.; Low, J.K.K.; Webster, M.W. Structure of the plant plastid-encoded RNA polymerase. Cell 2024, 187, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Pfalz, J.; Pfannschmidt, T. Essential nucleoid proteins in early chloroplast development. Trends Plant Sci. 2013, 18, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Yoo, C.Y.; Pasoreck, E.K.; Wang, H.; Cao, J.; Blaha, G.M.; Weigel, D.; Chen, M. Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling. Nat. Commun. 2019, 10, 2629. [Google Scholar] [CrossRef]
- Yang, E.J.; Yoo, C.Y.; Liu, J.; Wang, H.; Cao, J.; Li, F.-W.; Pryer, K.M.; Sun, T.-P.; Weigel, D.; Zhou, P.; et al. NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches. Nat. Commun. 2019, 10, 2630. [Google Scholar] [CrossRef]
- Willige, B.C.; Yoo, C.Y.; Saldierna Guzmán, J.P. What is going on inside of phytochrome B photobodies? Plant Cell 2024, 36, 2065–2085. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Subramanian, A.R. The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast). J. Biol. Chem. 2000, 275, 28466–28482. [Google Scholar] [CrossRef]
- Stoppel, R.; Meurer, J. The cutting crew—Ribonucleases are key players in the control of plastid gene expression. J. Exp. Bot. 2012, 63, 1663–1673. [Google Scholar] [CrossRef]
- Manavski, N.; Vicente, A.; Chi, W.; Meurer, J. The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods. Genes 2021, 12, 1121. [Google Scholar] [CrossRef]
- Schmid, L.M.; Manavski, N.; Chi, W.; Meurer, J. Chloroplast Ribosome Biogenesis Factors. Plant Cell Physiol. 2024, 65, 516–536. [Google Scholar] [CrossRef]
- Zoschke, R.; Bock, R. Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation. Plant Cell 2018, 30, 745–770. [Google Scholar] [CrossRef]
- Small, I.D.; Peeters, N. The PPR motif—A TPR-related motif prevalent in plant organellar proteins. Trends Biochem. Sci. 2000, 25, 46–47. [Google Scholar] [CrossRef]
- Barkan, A.; Small, I. Pentatricopeptide repeat proteins in plants. Annu. Rev. Plant Biol. 2014, 65, 415–442. [Google Scholar] [CrossRef]
- Stern, D.B.; Goldschmidt-Clermont, M.; Hanson, M.R. Chloroplast RNA metabolism. Annu. Rev. Plant Biol. 2010, 61, 125–155. [Google Scholar] [CrossRef]
- Schmitz-Linneweber, C.; Small, I. Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Biochem. Sci. 2008, 13, 663–670. [Google Scholar] [CrossRef]
- Shikanai, T.; Fujii, S. Function of PPR proteins in plastid gene expression. RNA Biol. 2013, 10, 1446–1456. [Google Scholar] [CrossRef]
- Hsieh, W.Y.; Liao, J.C.; Hsieh, M.H. Dysfunctional mitochondria regulate the size of root apical meristem and leaf development in Arabidopsis. Plant Signal Behav. 2015, 10, e1071002. [Google Scholar] [CrossRef]
- Lu, Y.; Li, C.; Wang, H.; Chen, H.; Berg, H.; Xia, Y. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis. Plant J. 2011, 67, 13–25. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Zhong, S.; Gu, H.; He, S.; Qu, L.J. Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. J. Genet. Genom. 2018, 45, 155–168. [Google Scholar] [CrossRef]
- Wang, X.; An, Y.; Xu, P.; Xiao, J. Functioning of PPR Proteins in Organelle RNA Metabolism and Chloroplast Biogenesis. Front Plant Sci. 2021, 12, 627501. [Google Scholar] [CrossRef]
- Sun, T.; Bentolila, S.; Hanson, M.R. The Unexpected Diversity of Plant Organelle RNA Editosomes. Trends Plant Sci. 2016, 21, 962–973. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, Y.; Yap, A.; Chateigner-Boutin, A.L.; Delannoy, E.; Hammani, K.; Small, I.; Huang, J. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J. 2009, 58, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Zehrmann, A.; Verbitskiy, D.; Härtel, B.; Brennicke, A.; Takenaka, M. PPR proteins network as site-specific RNA editing factors in plant organelles. RNA Biol. 2011, 8, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Beick, S.; Schmitz-Linneweber, C.; Williams-Carrier, R.; Jensen, B.; Barkan, A. The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol Cell Biol. 2008, 28, 5337–5347. [Google Scholar] [CrossRef] [PubMed]
- Lurin, C.; Andrés, C.; Aubourg, S.; Bellaoui, M.; Bitton, F.; Bruyère, C.; Caboche, M.; Debast, C.; Gualberto, J.; Hoffmann, B.; et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 2004, 16, 2089–2103. [Google Scholar] [CrossRef]
- Hajdukiewicz, P.T.; Allison, L.A.; Maliga, P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 1997, 16, 4041–4048. [Google Scholar] [CrossRef]
- Hocine, S.; Singer, R.H.; Grünwald, D. RNA processing and export. Cold Spring Harb Perspect Biol. 2010, 2, a000752. [Google Scholar] [CrossRef]
- Wu, W.; Liu, S.; Ruwe, H.; Zhang, D.; Melonek, J.; Zhu, Y.; Hu, X.; Gusewski, S.; Yin, P.; Small, I.D.; et al. SOT1, a pentatricopeptide repeat protein with a small MutS-related domain, is required for correct processing of plastid 23S-4.5S rRNA precursors in Arabidopsis thaliana. Plant J. 2016, 85, 607–621. [Google Scholar] [CrossRef]
- Breeze, E.; Mullineaux, P.M. The passage of H2O2 from chloroplasts to their associated nucleus during retrograde signalling: Reflections on the role of the nuclear envelope. Plants 2022, 11, 552. [Google Scholar] [CrossRef]
- Fortunato, S.; Lasorella, C.; Tadini, L.; Jeran, N.; Vita, F.; Pesaresi, P.; de Pinto, M.C. GUN1 involvement in the redox changes occurring during biogenic retrograde signaling. Plant Sci. 2022, 320, 111265. [Google Scholar] [CrossRef]
- Meinke, D.W. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol. 2020, 226, 306–325. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, J.; Rong, L.; Feng, Y.; Wang, Q.; Song, Q.; Zhang, L.; Ouyang, M. ECD1 functions as an RNA-editing trans-factor of rps14–149 in plastids and is required for early chloroplast development in seedlings. J. Exp. Bot. 2018, 69, 3037–3051. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; An, Y.; Qi, Z.; Xiao, J. PPR protein Early Chloroplast Development 2 is essential for chloroplast development at the early stage of Arabidopsis development. Plant Sci. 2021, 308, 110908. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Lin, Q.; Zhou, C.; Liu, X.; Miao, R.; Ma, T.; Chen, Y.; Mou, C.; Jing, R.; Feng, M.; et al. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development. J. Integr. Plant Biol. 2023, 65, 1687–1702. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.; Singh, V.; Tripathi, B.N. Components and processes involved in retrograde signaling from chloroplast to nucleus. Physiol Plant. 2023, 175, e13987. [Google Scholar] [CrossRef]
- Du, L.; Zhang, J.; Qu, S.; Zhao, Y.; Su, B.; Lv, X.; Li, R.; Wan, Y.; Xiao, J. The pentratricopeptide repeat protein Pigment-Defective Mutant2 is involved in the regulation of chloroplast development and chloroplast gene expression in Arabidopsis. Plant Cell Physiol. 2017, 58, 747–759. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, J.; Li, Y.; Su, B.; Xu, H.; Shan, X.; Song, C.; Xie, J.; Li, R. PDM3, a pentatricopeptide repeat-containing protein, affects chloroplast development. J. Exp. Bot. 2017, 68, 5615–5627. [Google Scholar] [CrossRef]
- Jiang, D.; Tang, R.; Shi, Y.; Ke, X.; Wang, Y.; Che, Y.; Luan, S.; Hou, X. Arabidopsis Seedling Lethal 1 interacting with plastid-encoded RNA polymerase complex proteins is essential for chloroplast development. Front. Plant Sci. 2020, 11, 602782. [Google Scholar] [CrossRef]
- Lee, K.; Park, S.J.; Han, J.H.; Jeon, Y.; Pai, H.S.; Kang, H. A chloroplast-targeted pentatricopeptide repeat protein PPR287 is crucial for chloroplast function and Arabidopsis development. BMC Plant Biol. 2019, 19, 244. [Google Scholar] [CrossRef]
- Huang, C.K.; Shen, Y.L.; Huang, L.F.; Wu, S.J.; Yeh, C.H.; Lu, C.A. The DEAD-Box RNA Helicase AtRH7/PRH75 participates in pre-rRNA processing, plant development and cold tolerance in Arabidopsis. Plant Cell Physiol. 2016, 57, 174–191. [Google Scholar] [CrossRef]
- Bartholmes, C.; Nutt, P.; Theissen, G. Germline transformation of Shepherd’s purse (Capsella bursa-pastoris) by the ‘floral dip’ method as a tool for evolutionary and developmental biology. Gene 2008, 409, 11–19. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.M.; Li, R.J.; Hu, Z.Y.; Liu, J.; Deng, L.B.; Lu, S.Y.; Hua, W. Cosuppression of RBCS3B in Arabidopsis leads to severe photoinhibition caused by ROS accumulation. Plant Cell Rep. 2014, 33, 1091–1108. [Google Scholar] [CrossRef] [PubMed]
- Mathur, J.; Koncz, C. PEG-mediated protoplast transformation with naked DNA. Methods Mol Biol. 1998, 82, 267–276. [Google Scholar]
- Cheng, Y.T.; Germain, H.; Wiermer, M.; Bi, D.; Xu, F.; García, A.V.; Wirthmueller, L.; Després, C.; Parker, J.E.; Zhang, Y.; et al. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators in Arabidopsis. Plant Cell. 2009, 21, 2503–2516. [Google Scholar] [CrossRef]
- Chateigner-Boutin, A.L.; Ramos-Vega, M.; Guevara-García, A.; Andrés, C.; de la Luz Gutiérrez-Nava, M.; Cantero, A.; Delannoy, E.; Jiménez, L.F.; Lurin, C.; Small, I.; et al. CLB19, a pentatricopeptide repeat protein required for editing of rpoA and clpP chloroplast transcripts. Plant J. 2008, 56, 590–602. [Google Scholar] [CrossRef]
- Larkin, R. Extraction of total protein from Arabidopsis. Cold Spring Harb. Protoc. 2007, 2007, pdb-prot4680. [Google Scholar] [CrossRef]
- Mage, R.G.; Lanning, D.; Knight, K.L. B cell and antibody repertoire development in rabbits: The requirement of gut-associated lymphoid tissues. Dev. Comp. Immunol. 2006, 30, 137–153. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, T.; Xu, S.; Liu, J.; Ouyang, M.; Zhang, J. A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis. Plants 2025, 14, 921. https://doi.org/10.3390/plants14060921
Tan T, Xu S, Liu J, Ouyang M, Zhang J. A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis. Plants. 2025; 14(6):921. https://doi.org/10.3390/plants14060921
Chicago/Turabian StyleTan, Tianming, Shengnan Xu, Jiyun Liu, Min Ouyang, and Jing Zhang. 2025. "A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis" Plants 14, no. 6: 921. https://doi.org/10.3390/plants14060921
APA StyleTan, T., Xu, S., Liu, J., Ouyang, M., & Zhang, J. (2025). A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis. Plants, 14(6), 921. https://doi.org/10.3390/plants14060921