Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (735)

Search Parameters:
Keywords = plasmonic well

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 8669 KB  
Review
Recent Advancements in the SERS-Based Detection of E. coli
by Sarthak Saxena, Ankit Dodla, Shobha Shukla, Sumit Saxena and Bayden R. Wood
Sensors 2026, 26(2), 490; https://doi.org/10.3390/s26020490 - 12 Jan 2026
Abstract
Escherichia coli (E. coli) is a well-established indicator of faecal pollution and a potent pathogen linked to numerous gastrointestinal and systemic illnesses. Ensuring public safety requires rapid and sensitive detection methods capable of real-time, on-site deployment. Many conventional techniques are either [...] Read more.
Escherichia coli (E. coli) is a well-established indicator of faecal pollution and a potent pathogen linked to numerous gastrointestinal and systemic illnesses. Ensuring public safety requires rapid and sensitive detection methods capable of real-time, on-site deployment. Many conventional techniques are either laborious, time-intensive, costly, or require complex infrastructure, limiting their applicability in field settings. Raman spectroscopy offers label-free molecular fingerprinting; however, its inherently weak scattering signals restrict its effectiveness as a standalone technique. Surface-Enhanced Raman Spectroscopy (SERS) overcomes this limitation by exploiting plasmonic enhancement from nanostructured metallic substrates—most commonly gold, silver, copper, and aluminium. Despite the commercial availability of SERS-active substrates, challenges remain in achieving high reproducibility, long-term stability, and true field applicability, necessitating the development of integrated lab-on-chip platforms and portable, handheld Raman devices. This review critically examines recent advances in SERS-based E. coli detection across water and perishable food products with particular emphasis on the evolution of SERS substrate design, the incorporation of biosensing elements, and the integration of electrochemical and microfluidic systems. By contrasting conventional SERS approaches with next-generation biosensing strategies, this paper outlines pathways toward robust, real-time pathogen detection technologies suitable for both laboratory and field applications. Full article
Show Figures

Figure 1

13 pages, 2938 KB  
Article
Electronic and Optical Behaviors of Platinum (Pt) Nanoparticles and Correlations with Gamma Radiation Dose and Precursor Concentration
by Elham Gharibshahi, Elias Saion, Ahmadreza Ashraf, Leila Gharibshahi and Sina Ashraf
Nanomaterials 2026, 16(1), 63; https://doi.org/10.3390/nano16010063 - 1 Jan 2026
Viewed by 299
Abstract
The purpose of this research is to examine how the electro-optical behavior of platinum (Pt) nanoparticles prepared via the gamma radiolysis process is related to both the radiation dose and to the Pt precursor concentration. The Pt precursor used in these experiments has [...] Read more.
The purpose of this research is to examine how the electro-optical behavior of platinum (Pt) nanoparticles prepared via the gamma radiolysis process is related to both the radiation dose and to the Pt precursor concentration. The Pt precursor used in these experiments has been radiolytically degraded using a 60Co gamma source at dosages ranging from 80 kGy to 120 kGy. As well, varying the concentration of the Pt precursor from 5.0 × 10−4 M to 20.0 × 10−4 M was carried out as a systematic investigation. Spectrophotometric analysis utilizing UV–Visible spectroscopy and TEM provided the optical data and particle size information for the nanoparticles. The results indicate that increasing the radiation dosage results in smaller Pt nanoparticle sizes due to an increased rate of nucleation and that increasing the Pt precursor concentration leads to larger Pt nanoparticles due to an increase in ion recombination. Both the dose and concentration dependency of the optical absorption spectrum indicate a significant relationship between size and plasmon behavior. Also, the conduction band energy level, which was determined from the maximum of the UV–Visible absorption peak, is dependent on the particle size and shows a pronounced quantum confinement effect, with the conduction band energy increasing as the particle size decreases. Thus, these studies provide a definitive correlation of structure–property in Pt nanoparticles and confirm the capability of the gamma radiolytic synthesis process to be used for controlling the specific electronic and optical properties of Pt nanoparticles. Full article
(This article belongs to the Special Issue Radiation Technology in Nanomaterials)
Show Figures

Figure 1

34 pages, 10361 KB  
Article
Numerical Study of Heat Transfer Intensification in a Chamber with Heat Generating by Irradiated Gold Nanorods: One-Way Multiphysics and Multiscale Approach
by Paweł Ziółkowski, Piotr Radomski, Aimad Koulali, Dominik Kreft, Jacek Barański and Dariusz Mikielewicz
Energies 2026, 19(1), 181; https://doi.org/10.3390/en19010181 - 29 Dec 2025
Viewed by 186
Abstract
This study evaluates energy conversion and heat transfer in a germicidal chamber employing gold nanorods (AuNRs) irradiated with an infrared laser (808 nm, 0.8 W) to generate heat via localized surface plasmon resonance. The investigation focused on the preliminary selection of chamber materials [...] Read more.
This study evaluates energy conversion and heat transfer in a germicidal chamber employing gold nanorods (AuNRs) irradiated with an infrared laser (808 nm, 0.8 W) to generate heat via localized surface plasmon resonance. The investigation focused on the preliminary selection of chamber materials and the geometry of the bottom surface supporting the AuNRs as the heat source in a photothermoablation application. A one-way multiphysics and multiscale approach was applied, integrating nanoscale heating phenomena with a macroscale fluid and heat flow. The validated 2D numerical model shows satisfactory agreement with experimental data and is suitable for further design analyses. Computational Fluid Dynamics (CFD) simulations were conducted to determine temperature and entropy distributions, mean and maximum temperatures, and Nusselt numbers, allowing the assessment of the energy conversion process under different configurations and AuNR dimensions. The results indicate that a configuration with a gradually descending stepped structure enhances interactions between nanoparticles and the fluid, increasing the internal energy and producing elevated temperatures. Under optimal conditions, a temperature rise of approximately 75 °C was achieved. These findings demonstrate that integrating material selection, surface geometry, and nanoparticle absorbance optimization can significantly improve the efficiency of bacterial inactivation in germicidal chambers. This study provides a framework for future investigations on fully three-dimensional multiscale and multiphysical modeling, as well as a targeted AuNR design to maximize the thermal performance. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer)
Show Figures

Figure 1

33 pages, 9239 KB  
Article
Ag-Pt/Al2O3-WOx Catalysts Supported on Cordierite Honeycomb for the Reduction of NO with C3H8, CO, and H2
by Naomi Nalleli González Hernández, José Luis Contreras Larios, Beatriz Zeifert Soares, Gustavo A. Fuentes, María Eugenia Hernández Terán, Ricardo López Medina, José Salmones Blasquez, Deyanira Angeles Beltrán, José Ortiz Landeros, Leticia Nuño Licona and Israel Pala Rosas
Catalysts 2026, 16(1), 11; https://doi.org/10.3390/catal16010011 - 23 Dec 2025
Viewed by 396
Abstract
Selective catalytic reduction (SCR) of NO using various reducing agents is a critical area of research for mitigating environmental pollution. In this study, the influence of active phase loading was investigated in four bimetallic Pt-Ag/Al2O3-WOx catalysts, one monometallic [...] Read more.
Selective catalytic reduction (SCR) of NO using various reducing agents is a critical area of research for mitigating environmental pollution. In this study, the influence of active phase loading was investigated in four bimetallic Pt-Ag/Al2O3-WOx catalysts, one monometallic Ag/Al2O3-WOx catalyst, and one Pt-Ag/Al2O3-WOx catalyst subjected to high-severity air-SO2 pretreatment. All catalysts were supported on cordierite monoliths, and their performance in NO SCR was evaluated using H2, C3H8, and CO as reducing agents. An increase in the active phase loading (Pt-Ag/Al2O3) from 10.7 wt% to 17.4 wt% resulted in higher conversions of NO, C3H8, and H2, as well as improved N2 selectivity. However, CO conversion decreased as the active phase loading increased, which was attributed to competitive reduction by H2, since both reactions occur within the same temperature range (100–200 °C). The presence of N2O below 6 ppm was observed in some catalysts. Furthermore, higher active phase loadings led to increased carbon deposition; the Ag/Al2O3-WOx catalyst exhibited the highest carbon content (5 wt%). The deposited carbon was identified as ordered graphitic carbon. In the Pt-Ag catalysts, the presence of Ag+ and Agⁿδ+ species, as well as the Ag° plasmon, was identified by UV-Vis spectroscopy. STEM analysis showed Ag-Pt crystallites with an average size of 24 nm, which may have contributed to the higher NO conversion observed at 350 °C and the improved N2 selectivity at 100 °C in the Pt-Ag bimetal catalysts, compared to the activity of the Ag/Al2O3-WOx catalyst. Full article
Show Figures

Figure 1

21 pages, 13312 KB  
Article
Precision-Engineered Dermatan Sulfate-Mimetic Glycopolymers for Multi-Targeted SARS-CoV-2 Inhibition
by Lihao Wang, Lei Gao, Chendong Yang, Mengfei Yin, Jiqin Sun, Luyao Yang, Chanjuan Liu, Simon F. R. Hinkley, Guangli Yu and Chao Cai
Mar. Drugs 2025, 23(12), 486; https://doi.org/10.3390/md23120486 - 18 Dec 2025
Viewed by 551
Abstract
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, continues to pose major global health challenges despite extensive vaccination efforts. Variant escape, waning immunity, and reduced vaccine efficacy in immunocompromised populations underscore the urgent need for complementary antiviral therapeutics. Here, we report the design, synthesis, [...] Read more.
The ongoing COVID-19 pandemic, caused by SARS-CoV-2, continues to pose major global health challenges despite extensive vaccination efforts. Variant escape, waning immunity, and reduced vaccine efficacy in immunocompromised populations underscore the urgent need for complementary antiviral therapeutics. Here, we report the design, synthesis, and biological evaluation of precision-engineered dermatan sulfate (DS)-mimetic glycopolymers as multi-targeted inhibitors of SARS-CoV-2. Guided by molecular docking and virtual screening, sulfation at the C2 and C4 positions of iduronic acid was identified as critical for binding to the viral spike protein and inhibiting host and viral enzymes, including heparanase (HPSE) and main protease (Mpro). Chemically synthesized DS disaccharides were covalently grafted onto polymer scaffolds via a post-modification strategy, yielding glycopolymers with well-defined assembly that form uniform nanoparticles under physiological conditions. Surface plasmon resonance and pseudovirus assays revealed strong binding to the viral spike protein (KD ≈ 177 nM), potent viral neutralization, and minimal cytotoxicity. Cellular uptake studies further demonstrated efficient internalization of nanoparticles and intracellular inhibition of HPSE and Mpro. These results establish a modular, non-anticoagulant, and glycosaminoglycan-mimetic platform for the development of broad-spectrum antiviral agents to complement vaccination and enhance preparedness against emerging coronavirus variants. Full article
Show Figures

Figure 1

17 pages, 1970 KB  
Article
Tunable Structural Color in Au-Based One-Dimensional Hyperbolic Metamaterials
by Ricardo Téllez-Limón, René I. Rodríguez-Beltrán, Fernando López-Rayón, Mauricio Gómez-Robles, Katie Figueroa-Guardiola, Jesús E. Chávez-Padua, Victor Coello and Rafael Salas-Montiel
Nanomaterials 2025, 15(24), 1898; https://doi.org/10.3390/nano15241898 - 17 Dec 2025
Viewed by 335
Abstract
Structural coloration arising from nanoscale light–matter interactions has emerged as a key research area in nanophotonics. Among the various materials investigated, noble metals—particularly gold—play a central role due to their well-defined plasmonic response and chemical stability, but their structural coloring typically requires complex [...] Read more.
Structural coloration arising from nanoscale light–matter interactions has emerged as a key research area in nanophotonics. Among the various materials investigated, noble metals—particularly gold—play a central role due to their well-defined plasmonic response and chemical stability, but their structural coloring typically requires complex and highly engineered nanostructures. However, modern photonic technologies demand scalable approaches to produce structural colors that can be finely tuned. In this contribution, we experimentally and numerically demonstrate the fine tunability of structural color in gold-based one-dimensional hyperbolic metamaterials (1D-HMMs) by varying their structural parameters: number of layers (N), period (T), and filling fraction (p). Our results show that variations in N lead to changes in luminance with minimal shifts in chromaticity, while variations in T introduce moderate color shifts without affecting luminance. In contrast, changes in p produce the largest modifications in chromaticity, though the trend is non-monotonic and less predictable. These findings highlight the potential of 1D-HMMs for achieving finely controlled gold-based coloration for advanced photonic technologies. Full article
Show Figures

Graphical abstract

31 pages, 1574 KB  
Review
Nanoparticle-Based Assays for Antioxidant Capacity Determination
by Jolanta Flieger, Natalia Żuk, Ewelina Grabias-Blicharz, Piotr Puźniak and Wojciech Flieger
Antioxidants 2025, 14(12), 1506; https://doi.org/10.3390/antiox14121506 - 15 Dec 2025
Viewed by 571
Abstract
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation [...] Read more.
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation of other molecules during processing and storage. There are many classical methods for assessing antioxidant capacity/activity, which are based on mechanisms such as hydrogen atom transfer (HAT), single electron transfer (SET), electron transfer with proton conjugation (HAT/SET mixed mode assays) or the chelation of selected transition metal ions (e.g., Fe2+ or Cu1+). The antioxidant capacity (AOxC) index value can be expressed in terms of standard AOs (e.g., Trolox or ascorbic acid) equivalents, enabling different products to be compared. However, there is currently no standardized method for measuring AOxC. Nanoparticle sensors offer a new approach to assessing antioxidant status and can be used to analyze environmental samples, plant extracts, foodstuffs, dietary supplements and clinical samples. This review summarizes the available information on nanoparticle sensors as tools for assessing antioxidant status. Particular attention has been paid to nanoparticles (with a size of less than 100 nm), including silver (AgNPs), gold (AuNPs), cerium oxide (CeONPs) and other metal oxide nanoparticles, as well as nanozymes. Nanozymes belong to an advanced class of nanomaterials that mimic natural enzymes due to their catalytic properties and constitute a novel signal transduction strategy in colorimetric and absorption sensors based on the localized surface plasmon resonance (LSPR) band. Other potential AOxC sensors include quantum dots (QDs, <10 nm), which are particularly useful for the sensitive detection of specific antioxidants (e.g., GSH, AA and baicalein) and can achieve very good limits of detection (LOD). QDs and metallic nanoparticles (MNPs) operate on different principles to evaluate AOxC. MNPs rely on optical changes resulting from LSPR, which are monitored as changes in color or absorbance during synthesis, growth or aggregation. QDs, on the other hand, primarily utilize changes in fluorescence. This review aims to demonstrate that, thanks to its simplicity, speed, small sample volumes and relatively inexpensive instrumentation, nanoparticle-based AOxC assessment is a useful alternative to classical approaches and can be tailored to the desired aim and analytes. Full article
Show Figures

Figure 1

14 pages, 2204 KB  
Article
Quantitative Detection of Salmonella Typhimurium in Ground Chicken Using a Surface Plasmon Resonance (SPR) Biosensor
by Sandhya Thapa and Fur-Chi Chen
Biosensors 2025, 15(12), 814; https://doi.org/10.3390/bios15120814 - 15 Dec 2025
Viewed by 357
Abstract
Regulatory agencies worldwide have implemented stringent measures to monitor and reduce Salmonella contamination in poultry products. Rapid quantitative detection methods enable producers to identify contamination early, implement corrective actions, and enhance food safety. This study aimed to develop and optimize a surface plasmon [...] Read more.
Regulatory agencies worldwide have implemented stringent measures to monitor and reduce Salmonella contamination in poultry products. Rapid quantitative detection methods enable producers to identify contamination early, implement corrective actions, and enhance food safety. This study aimed to develop and optimize a surface plasmon resonance (SPR) biosensor for the quantitative detection of Salmonella Typhimurium in ground chicken. The sensor surface was functionalized with a well-characterized monoclonal antibody specific to Salmonella flagellin, and an SPR workflow was established for quantitative analysis. Ground chicken samples were inoculated with four S. Typhimurium strains at contamination levels ranging from −0.5 to 3.5 Log CFU/g and enriched at 42 °C for 10 or 12 h prior to SPR analysis. Contamination levels were confirmed using the Most Probable Number (MPN) method. Linear regression analysis indicated that optimal quantification was achieved after 10 h of enrichment (R2 ≥ 0.86), whereas extended enrichment (12 h) did not improve performance. The limit of quantification (LOQ) was below 1 CFU/g. A strong positive correlation (R2 ≥ 0.85) was observed between SPR and MPN results, demonstrating consistency between the two methods. These findings highlight SPR as a rapid, reliable, and cost-effective alternative to conventional methods for Salmonella quantification. By delivering accurate results within a single day, SPR enhances testing efficiency and supports the production of safer poultry products, thereby reducing public health risks associated with Salmonella contamination. Full article
Show Figures

Figure 1

27 pages, 10809 KB  
Article
A Focus on Thermal Durability and Oxidation Resistance and Morphology of Polymer Capped Copper Particles Through a Synthesis-Driven, Precursor-Influenced Approach
by A. R. Indhu, Manickam Minakshi, R. Sivasubramanian and Gnanaprakash Dharmalingam
Nanomaterials 2025, 15(24), 1852; https://doi.org/10.3390/nano15241852 - 10 Dec 2025
Viewed by 518
Abstract
Copper is a promising alternative to conventional plasmonic materials, though its practical use is hindered by a strong tendency to oxidize. Through systematic analysis of its vibrational, optical, morphological, structural, and surface potential properties, we confirmed the stability of copper (Cu) particles and [...] Read more.
Copper is a promising alternative to conventional plasmonic materials, though its practical use is hindered by a strong tendency to oxidize. Through systematic analysis of its vibrational, optical, morphological, structural, and surface potential properties, we confirmed the stability of copper (Cu) particles and highlighted the role of functional groups in modulating their oxidation susceptibility. Oxidation kinetics at 150 °C, in the presence of antioxidants and capping agents, as well as long-term colloidal stability, appear closely tied to the degradation of these stabilizers, which correlates with particle aggregation. Notably, precursor chemistry significantly affects oxidation behavior. Varying concentrations of polyvinylpyrrolidone (PVP) demonstrate a positive correlation with particle size control and thermal stability, indicating that PVP enhances oxidation resistance under the tested conditions. Our findings underscore most importantly the metallic phase’s stability after exposure to air at a temperature of 150 °C, drawing attention to a possible precursor and capping agent combination that can result in oxidation-stable Cu particles, positioning them as cost-effective candidates for replacing more expensive plasmonic metals across diverse applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

22 pages, 4228 KB  
Article
Integrated Transcriptomic, Proteomic, and Network Pharmacology Analyses Unravel Key Therapeutic Mechanisms of Xuebijing Injection for Severe Acute Pancreatitis
by Linbo Yao, Xinmin Yang, Mei Yuan, Shiyu Liu, Qiqi Wang, Yongzi Wu, Wenjuan Luo, Xueying Wu, Wenhao Cai, Lan Li, Ziqi Lin, Juqin Yang, Tingting Liu, Robert Sutton, Peter Szatmary, Tao Jin, Qing Xia and Wei Huang
Pharmaceuticals 2025, 18(12), 1866; https://doi.org/10.3390/ph18121866 - 7 Dec 2025
Viewed by 477
Abstract
Background: Xuebijing Injection (XBJ), a plant-derived traditional Chinese medicine administered as an injection, is widely used in clinical practice to treat various acute critical illnesses including severe acute pancreatitis (SAP). The mechanisms by which XBJ alleviates SAP remain elusive. Methods: Active components of [...] Read more.
Background: Xuebijing Injection (XBJ), a plant-derived traditional Chinese medicine administered as an injection, is widely used in clinical practice to treat various acute critical illnesses including severe acute pancreatitis (SAP). The mechanisms by which XBJ alleviates SAP remain elusive. Methods: Active components of XBJ were identified using UPLC-QTOF/MS. A mouse SAP model was established by intraperitoneal injections of cerulein (50 μg/kg/h × 7) followed by lipopolysaccharide (10 mg/kg). XBJ of 2.5, 5, and 10 mL/kg was co-administered twice after induction of SAP. The protective effects of XBJ on pancreatic acinar cells were further investigated in vitro. An integrated analysis of transcriptomic data from human and mouse blood, as well as mouse lung, combined with network pharmacology were employed to delineate the therapeutic mechanisms of XBJ on SAP, followed by pancreatic immunoblotting and proteomics validation. Results: Component analysis revealed 9 active ingredients of XBJ. XBJ at 10 mL/kg had the best effect and consistently decreased pancreatic, lung, and circulatory pro-inflammatory indices. XBJ dose-dependently reduced necrotic cell death activation. Transcriptomics, proteomics and network pharmacology analyses identified 14 key targets, with IL-17-related signaling pathways being the most significant. Experimental validation further confirmed that XBJ significantly reduced serum levels of key IL-17-related inflammatory cytokines (such as IL-17, IL-1β, IL-6, and TNF-α) and downregulated the mRNA expression of related inflammatory factors in pancreatic tissue. Virtual docking and surface plasmon resonance demonstrate that hydroxysafflor yellow A had the highest binding affinity with MMP-9, MAPK14, and LCN2. Crucially, subsequent pancreatic immunoblotting and proteomics analyses did not confirm significant direct modulation of these targets at the protein level within pancreatic tissue. Conclusions: XBJ attenuates SAP severity by quelling pro-inflammatory mediators, an effect chiefly attributed to modulating systemic IL-17–related signaling rather than direct pancreatic intervention. Full article
(This article belongs to the Special Issue New and Emerging Treatment Strategies for Gastrointestinal Diseases)
Show Figures

Graphical abstract

36 pages, 4430 KB  
Review
Emerging Trends in Optical Fiber Biosensing for Non-Invasive Biomedical Analysis
by Sajjad Mortazavi, Somayeh Makouei, Karim Abbasian and Sebelan Danishvar
Photonics 2025, 12(12), 1202; https://doi.org/10.3390/photonics12121202 - 5 Dec 2025
Cited by 1 | Viewed by 676
Abstract
Optical fiber biosensors have evolved into powerful tools for non-invasive biomedical analysis. While foundational principles are well-established, recent years have marked a paradigm shift, driven by advancements in nanomaterials, fabrication techniques, and data processing. This review provides a focused overview of these emerging [...] Read more.
Optical fiber biosensors have evolved into powerful tools for non-invasive biomedical analysis. While foundational principles are well-established, recent years have marked a paradigm shift, driven by advancements in nanomaterials, fabrication techniques, and data processing. This review provides a focused overview of these emerging trends, critically analyzing the innovations that distinguish the current generation of optical fiber biosensors from their predecessors. We begin with a concise summary of fundamental sensing principles, including Surface Plasmon Resonance (SPR) and Fiber Bragg Gratings (FBGs), before delving into the latest breakthroughs. Key areas of focus include integrating novel 2D materials and nanostructures to dramatically enhance sensitivity and advancing synergy with Lab-on-a-Chip (LOC) platforms. A significant portion of this review is dedicated to the rapid expansion of clinical applications, particularly in early cancer detection, infectious disease diagnostics, and continuous glucose monitoring. We highlight the pivotal trend towards wearable and in vivo sensors and explore the transformative role of artificial intelligence (AI) and machine learning (ML) in processing complex sensor data to improve diagnostic accuracy. Finally, we address the persistent challenges—biocompatibility, long-term stability, and scalable manufacturing—that must be overcome for widespread clinical adoption and commercialization, offering a forward-looking perspective on the future of this dynamic field. Full article
Show Figures

Figure 1

27 pages, 19129 KB  
Article
Green Synthesis of AgNPs from Celtis africana: Biological and Catalytic Insights
by Amna N. Khan
Nanomaterials 2025, 15(23), 1821; https://doi.org/10.3390/nano15231821 - 1 Dec 2025
Viewed by 421
Abstract
Celtis africana, a rare plant native to southwestern Saudi Arabia, was explored for the first time as a source for the green synthesis of silver nanoparticles (AgNPs). Catechol-bearing phenolic amides in the aqueous leaf extract acted as both reducing and capping agents, enabling [...] Read more.
Celtis africana, a rare plant native to southwestern Saudi Arabia, was explored for the first time as a source for the green synthesis of silver nanoparticles (AgNPs). Catechol-bearing phenolic amides in the aqueous leaf extract acted as both reducing and capping agents, enabling eco-friendly AgNP fabrication. The synthesized AgNPs were characterized using SEM, TEM, XRD, UV-Vis, and FTIR, revealing predominantly spherical nanoparticles with an average size of 9.28 ± 0.11 nm, a face-centered cubic crystalline structure, and a pronounced surface plasmon resonance at 424 nm. HPLC analysis confirmed the presence of caffeoyltryamine in the extract, while UV-Vis and FTIR indicated its attachment to the AgNP surface. The AgNPs exhibited broad-spectrum antimicrobial activity against Gram-positive bacteria (S. aureus, MRSA and E. faecalis) and Gram-negative bacteria (E. coli, K. pneumoniae, S. typhimurium, and P. aeruginosa), as well as pathogenic fungi such as C. albicans, C. glabrata, C. parapsilosis, and C. krusei with performance comparable to or exceeding that of AgNPs from Artemisia vulgaris, Moringa oleifera, and Nigella sativa. The MIC and MBC values for S. aureus, MRSA, E. coli, and S. typhimurium were consistently 6.25 µg/mL and 25 µg/mL, respectively, reflecting strong inhibitory and bactericidal effects at low concentrations. MTT assays demonstrated selective cytotoxicity, showing higher viability in normal human skin fibroblasts (HSF) than in MCF-7 breast cancer cells. The AgNPs also displayed strong antioxidant activity (IC50 = 5.41 µg/mL, DPPH assay) and efficient catalytic reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with rate constants of 0.0165 s−1 and 0.0047 s−1, respectively, exceeding most reported values. These findings identify Celtis africana as a promising source for eco-friendly AgNPs with strong antimicrobial, antioxidant, and catalytic properties for broad biological and environmental applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

16 pages, 2615 KB  
Article
A Novel High-Performance 2-to-4 Decoder Design Utilizing a Plasmonic Well and Suspended Graphene Nanoribbon
by Mohammad Javad Maleki and Mohammad Soroosh
Crystals 2025, 15(11), 988; https://doi.org/10.3390/cryst15110988 - 15 Nov 2025
Viewed by 450
Abstract
This paper presents a compact and high-performance 2-to-4 optical decoder based on a plasmonic well structure incorporating suspended graphene nanoribbons. By exploiting the tunable graphene’s chemical potential, the propagation and confinement of surface plasmon polaritons are dynamically controlled, enabling efficient routing of optical [...] Read more.
This paper presents a compact and high-performance 2-to-4 optical decoder based on a plasmonic well structure incorporating suspended graphene nanoribbons. By exploiting the tunable graphene’s chemical potential, the propagation and confinement of surface plasmon polaritons are dynamically controlled, enabling efficient routing of optical signals toward the output ports. Finite-difference time-domain simulations are employed to analyze the influence of channel geometry and graphene chemical potential on surface plasmon polariton propagation, refractive index, and transmission loss. The designed structure, featuring a 30 nm wide and 10 nm high plasmonic well, achieves a low propagation loss of 0.188 dB/µm and a high figure of merit of 1950 at 40 THz. The designed decoder exhibits a contrast ratio of 36.93 dB and crosstalk suppression of −36.93 dB, while occupying a remarkably small area (0.05 µm2), demonstrating superior optical performance and compactness compared to previously reported designs. These results confirm the potential of the proposed plasmonic well-based decoder as a fundamental component for next-generation nanoscale optical and plasmonic computing systems. Full article
(This article belongs to the Special Issue Recent Advances in Graphene and Other Two-Dimensional Materials)
Show Figures

Graphical abstract

17 pages, 2576 KB  
Article
Plasmon Dispersion in Two-Dimensional Systems with Non-Coulomb Interaction
by Levente Máthé, Ilinca Lianu, Adrian Calborean and Ioan Grosu
Crystals 2025, 15(11), 985; https://doi.org/10.3390/cryst15110985 - 15 Nov 2025
Viewed by 605
Abstract
We theoretically study plasmon dispersion within the random-phase approximation in two-dimensional systems, including undoped and doped monolayer graphene at zero and finite temperatures, and hole- and electron-doped monolayer XSe (X=In,Ga) and disordered two-dimensional electron gas at [...] Read more.
We theoretically study plasmon dispersion within the random-phase approximation in two-dimensional systems, including undoped and doped monolayer graphene at zero and finite temperatures, and hole- and electron-doped monolayer XSe (X=In,Ga) and disordered two-dimensional electron gas at zero temperature, in the presence of a non-Coulomb interaction of the form rη. Our findings show that the parameter η, which characterizes the non-Coulombic nature of the interaction, strongly affects the dependence of the plasmon frequency on the wave vector in the long-wavelength limit. Furthermore, the carrier density dependence of the plasmon frequency is unaffected by the parameter η in this regime. For η=1, corresponding to the Coulomb case, the well-known results are fully recovered for all systems studied here. Full article
(This article belongs to the Special Issue Research on Electrolytes and Energy Storage Materials (2nd Edition))
Show Figures

Figure 1

10 pages, 3281 KB  
Article
Multi-Peak Narrowband Perfect Absorber Based on the Strong Coupling Between Fabry–Perot Mode and SPP Waveguide Mode
by Yusheng Zhai, Weiji He and Qian Chen
Photonics 2025, 12(11), 1131; https://doi.org/10.3390/photonics12111131 - 15 Nov 2025
Viewed by 413
Abstract
Plasmonic- or metamaterial-based multi-narrowband perfect absorbers hold significant potential applications in filtering, photodetection, and spectroscopic sensing. However, it is rather challenging to realize multi-peak and narrowband absorption simultaneously only using plasmonic metallic materials due to the single or dual resonance and large optical [...] Read more.
Plasmonic- or metamaterial-based multi-narrowband perfect absorbers hold significant potential applications in filtering, photodetection, and spectroscopic sensing. However, it is rather challenging to realize multi-peak and narrowband absorption simultaneously only using plasmonic metallic materials due to the single or dual resonance and large optical losses in the metallic nanostructure. Here, we numerically demonstrate a new multi-narrowband perfect absorber based on the strong coupling between the Fabry–Perot cavity modes and the surface plasmon polariton waveguide modes in a nanostructure consisting of periodic Ag grating and Ag film separated by a SiO2 waveguide layer. Six absorption peaks, an ultranarrow absorption resonance with FWHM as narrow as 8 nm, and an absorption peak amplitude surpassing 95% have been achieved. Furthermore, the optical properties of the designed nanostructures can be precisely tuned by modulating the grating period, slit width, height, as well as the thickness and refractive index of the waveguide layer. This approach establishes a versatile platform for designing high performance multi-narrowband absorbers, with promising applications in optical filters, nonlinear optics, and biosensors. Full article
Show Figures

Figure 1

Back to TopTop