Recent Advancements in the SERS-Based Detection of E. coli
Highlights
- Overview of SERS for E. coli detection, including historical development, fundamental principles, and key factors influencing sensitivity, specificity, and reproducibility.
- Critical evaluation of SERS substrate design, covering fabrication strategies, nanoparticle materials, shapes, sizes, and excitation wavelength, and their impact on E. coli detection performance.
- Comprehensive survey of recent advances in SERS-based E. coli detection, providing a consolidated resource to help researchers select appropriate detection strategies for different applications.
- In-depth analysis of advanced and integrated SERS approaches for E. coli detection, highlighting current limitations and identifying research gaps to guide future developments.
Abstract
1. Introduction
2. History, Introduction, Important Factors in SERS-Based Research
2.1. History
2.2. SERS

2.3. Important Factors in SERS-Based Research
2.3.1. Nanoparticle Characteristics and Their Impact on Signals
2.3.2. Laser Characteristics
2.3.3. Substrate Characteristics
Colloidal Nanoparticles and Microstructure Surfaces
Porous Materials and Commercially Available Substrates
Flexible Substrates
3. Pathogens and Dominance of E. coli
4. E. coli Detection
5. Recent Advances in E. coli Detection
5.1. Microarrays
5.2. Microchips
5.3. Microfluidics
5.4. EC-SERS
5.5. Lateral Flow Devices
6. Detection Cost, Process Robustness, and Regulatory Acceptance
7. Comparison, Challenges, Future Aspects, and Commercial Developments in SERS-Based E. coli Detection
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, X.; Zhang, Y. Review of the Detection of Pathogenic Escherichia coli Based-Microchip Technology: Review of the Detection of Pathogenic Escherichia coli. Anal. Sci. 2024, 41, 225–236. [Google Scholar] [CrossRef]
- Alhadlaq, M.A.; Aljurayyad, O.I.; Almansour, A.; Al-Akeel, S.I.; Alzahrani, K.O.; Alsalman, S.A.; Yahya, R.; Al-Hindi, R.R.; Hakami, M.A.; Alshahrani, S.D.; et al. Overview of Pathogenic Escherichia coli, with a Focus on Shiga Toxin-Producing Serotypes, Global Outbreaks (1982–2024) and Food Safety Criteria. Gut Pathog. 2024, 16, 57. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and Health: A Progress Update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- WHO. Drinking-Water Facts. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water#:~:text=Microbiologically (accessed on 30 January 2022).
- Srivastava, K.R.; Awasthi, S.; Mishra, P.K.; Srivastava, P.K. Biosensors/Molecular Tools for Detection of Waterborne Pathogens; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Kundzewicz, Z.W.; Mata, L.J.; Arnell, N.W.; Döll, P.; Kabat, P.; Jiménez, B.; Miller, K.A.; Oki, T.; Sen, Z.; Shiklomanov, I.A. Freshwater Resources and Their Management. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working GroupII to the Fourth Assessment Report of the Intergovernmental Panel on Climate Chnange; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; Volume 1, pp. 173–210. [Google Scholar]
- Ogodo, A.C.; Agwaranze, D.I.; Daji, M.; Aso, R.E. Microbial Techniques and Methods: Basic Techniques and Microscopy. In Analytical Techniques in Biosciences; Academic Press: Cambridge, MA, USA, 2022; pp. 201–220. [Google Scholar] [CrossRef]
- Mina, I.A.P.; Costa, M.; Matos, A.; Calheiros, C.S.C.; Castro, P.M.L. Polishing Domestic Wastewater on a Subsurface Flow Constructed Wetland: Organic Matter Removal and Microbial Monitoring. Int. J. Phytoremediation 2011, 13, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.; Xie, L.; Ying, Y. Conventional and Emerging Detection Techniques for Pathogenic Bacteria in Food Science: A Review. Trends Food Sci. Technol. 2018, 81, 61–73. [Google Scholar] [CrossRef]
- Ramesh, G.; Paul, W.; Puthanveetil, V.; Raja, K.; Kaviyil, J.E. Raman Spectroscopy as a Novel Technique for the Identification of Pathogens in a Clinical Microbiology Laboratory. Spectrosc. Lett. 2022, 55, 546–551. [Google Scholar] [CrossRef]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef]
- Shipp, D.W.; Sinjab, F.; Notingher, I. Raman Spectroscopy: Techniques and Applications in the Life Sciences. Adv. Opt. Photonics 2017, 9, 315–428. [Google Scholar] [CrossRef]
- Schmitt, M.; Popp, J. Raman Spectroscopy at the Beginning of the Twenty-First Century. J. Raman Spectrosc. 2006, 37, 20–28. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, C.; Huang, J.; Wang, M.; Qi, W.; Wang, H.; He, Z. Specific and Quantitative Detection of Bacteria Based on Surface Cell Imprinted SERS Mapping Platform. Biosens. Bioelectron. 2022, 215, 114524. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kosuda, K.M.; Van Duyne, R.P.; Stair, P.C. Resonance Raman and Surface- and Tip-Enhanced Raman Spectroscopy Methods to Study Solid Catalysts and Heterogeneous Catalytic Reactions. Chem. Soc. Rev. 2010, 39, 4820–4844. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, M. Tip-Enhanced Raman Spectroscopy. Rev. Phys. 2022, 8, 100067. [Google Scholar] [CrossRef]
- Raman, C.V.; Krishnan, K.S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Sloan-Dennison, S.; Wallace, G.Q.; Hassanain, W.A.; Laing, S.; Faulds, K.; Graham, D. Advancing SERS as a Quantitative Technique: Challenges, Considerations, and Correlative Approaches to Aid Validation. Nano Converg. 2024, 111, 33. [Google Scholar] [CrossRef]
- Poonia, M.; Morder, C.J.; Schorr, H.C.; Schultz, Z.D. Raman and Surface-Enhanced Raman Scattering Detection in Flowing Solutions for Complex Mixture Analysis. Annu. Rev. Anal. Chem. 2024, 17, 411–432. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.E.J.; Charron, G.; Cortés, E.; Kneipp, J.; de la Chapelle, M.L.; Langer, J.; Procházka, M.; Tran, V.; Schlücker, S. Towards Reliable and Quantitative Surface-Enhanced Raman Scattering (SERS): From Key Parameters to Good Analytical Practice. Angew. Chem.-Int. Ed. 2020, 59, 5454–5462. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-Enhanced Raman Spectroscopy: Benefits, Trade-Offs and Future Developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef]
- Vankeirsbilck, T.; Vercauteren, A.; Baeyens, W.; Van der Weken, G.; Verpoort, F.; Vergote, G.; Remon, J.P. Applications of Raman Spectroscopy in Pharmaceutical Analysis. TrAC Trends Anal. Chem. 2002, 21, 869–877. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, D.; Wang, H.; Lin, T.; Liu, W.; Wang, X.; Lu, W.; Liu, M.; Liu, W.; Zhang, Y.; et al. In Situ Collection and Rapid Detection of Pathogenic Bacteria Using a Flexible SERS Platform Combined with a Portable Raman Spectrometer. Int. J. Mol. Sci. 2022, 23, 7340. [Google Scholar] [CrossRef]
- Dogan, Ü.; Sucularlı, F.; Yildirim, E.; Cetin, D.; Suludere, Z.; Boyaci, I.H.; Tamer, U. Escherichia coli Enumeration in a Capillary-Driven Microfluidic Chip with SERS. Biosensors 2022, 12, 765. [Google Scholar] [CrossRef]
- Wang, W.; Rahman, A.; Huang, Q.; Vikesland, P.J. Surface-Enhanced Raman Spectroscopy Enabled Evaluation of Bacterial Inactivation. Water Res. 2022, 220, 118668. [Google Scholar] [CrossRef]
- Wei, W.; Haruna, S.A.; Zhao, Y.; Li, H.; Chen, Q. Surface-Enhanced Raman Scattering Biosensor-Based Sandwich-Type for Facile and Sensitive Detection of Staphylococcus Aureus. Sens. Actuators B Chem. 2022, 364, 131929. [Google Scholar] [CrossRef]
- Qi, X.; Ye, Y.; Wang, H.; Zhao, B.; Xu, L.; Zhang, Y.; Wang, X.; Zhou, N. An Ultrasensitive and Dual-Recognition SERS Biosensor Based on Fe3O4@Au-Teicoplanin and Aptamer Functionalized Au@Ag Nanoparticles for Detection of Staphylococcus Aureus. Talanta 2022, 250, 123648. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, H.; Li, H.; Chen, J.; Zhang, D.; Fu, L. Plasmonic Microneedle Arrays for Rapid Extraction, SERS Detection, and Inactivation of Bacteria. Chem. Eng. J. 2022, 442, 136140. [Google Scholar] [CrossRef]
- De Albuquerque, C.D.L.; Schultz, Z.D. Super-Resolution Surface-Enhanced Raman Scattering Imaging of Single Particles in Cells. Anal. Chem. 2020, 92, 9389–9398. [Google Scholar] [CrossRef] [PubMed]
- Barshutina, M.; Arsenin, A.; Volkov, V. SERS Analysis of Single Cells and Subcellular Components: A Review. Heliyon 2024, 10, e37396. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Nie, Y.; An, L.; Tang, Y.Q.; Xu, Z.; Wu, X.L. Improvement of Surface-Enhanced Raman Scattering Method for Single Bacterial Cell Analysis. Front. Bioeng. Biotechnol. 2020, 8, 573777. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.; Sheng, R.; Chen, Q. Evolving Trends in SERS-Based Techniques for Food Quality and Safety: A Review. Trends Food Sci. Technol. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Wen, R.; Han, Y.; Tang, X.; Zeng, W.; Zhang, S.; Wu, L. Advancing Food Safety with SERS: The Role of Noble Metal Nanomaterials in Detecting Food Contaminants. Trends Food Sci. Technol. 2025, 160, 104995. [Google Scholar] [CrossRef]
- Hassan, M.; Zhao, Y.; Zughaier, S.M. Recent Advances in Bacterial Detection Using Surface-Enhanced Raman Scattering. Biosensors 2024, 14, 375. [Google Scholar] [CrossRef]
- Das, R.S.; Agrawal, Y.K. Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Duyne, R.P. VAN Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Moskovits, M. Surface Roughness and the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals. J. Chem. Phys. 1978, 69, 4159–4161. [Google Scholar] [CrossRef]
- Philpott, M.R. Effect of Surface Plasmons on Transitions in Molecules. J. Chem. Phys. 1975, 62, 1812–1817. [Google Scholar] [CrossRef]
- Creighton, J.A.; Blatchford, C.G.; Albrecht, M.G. Plasma Resonance Enhancement of Raman Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of Size Comparable to the Excitation Wavelength. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1979, 75, 790–798. [Google Scholar] [CrossRef]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chem. Rev. 1999, 99, 2957–2975. [Google Scholar] [CrossRef] [PubMed]
- Dornhaus, R.; Long, M.B.; Benner, R.E.; Chang, R.K. Time Development of Sers from Pyridine, Pyrimidine, Pyrazine, and Cyanide Adsorbed on Ag Electrodes during an Oxidation-Reduction Cycle. Surf. Sci. 1980, 93, 240–262. [Google Scholar] [CrossRef]
- Zhao, L.B.; Huang, R.; Bai, M.X.; Wu, D.Y.; Tian, Z.Q. Effect of Aromatic Amine-Metal Interaction on Surface Vibrational Raman Spectroscopy of Adsorbed Molecules Investigated by Density Functional Theory. J. Phys. Chem. C 2011, 115, 4174–4183. [Google Scholar] [CrossRef]
- Yi, J.; You, E.M.; Hu, R.; Wu, D.Y.; Liu, G.K.; Yang, Z.L.; Zhang, H.; Gu, Y.; Wang, Y.H.; Wang, X.; et al. Surface-Enhanced Raman Spectroscopy: A Half-Century Historical Perspective. Chem. Soc. Rev. 2024, 54, 1453–1551. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Tian, Z.Q. Sixty Years of Electrochemical Optical Spectroscopy: A Retrospective. Chem. Soc. Rev. 2024, 53, 3579–3605. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef]
- Moldovan, R.; Vereshchagina, E.; Milenko, K.; Iacob, B.C.; Bodoki, A.E.; Falamas, A.; Tosa, N.; Muntean, C.M.; Farcău, C.; Bodoki, E. Review on Combining Surface-Enhanced Raman Spectroscopy and Electrochemistry for Analytical Applications. Anal. Chim. Acta 2022, 1209, 339250. [Google Scholar] [CrossRef]
- Langer, J.; de Aberasturi, D.J.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef]
- Smith, R.; Wright, K.L.; Ashton, L. Raman Spectroscopy: An Evolving Technique for Live Cell Studies. Analyst 2016, 141, 3590–3600. [Google Scholar] [CrossRef]
- John, N.; George, S. Raman Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Thomas, S., Thomas, R., Zachariah, A.K., Mishra, R.K., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 2, pp. 95–127. [Google Scholar]
- Kudelski, A. Analytical Applications of Raman Spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef]
- Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Duyne, R.P. Van Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–606. [Google Scholar] [CrossRef]
- Long, L.; Ju, W.; Yang, H.Y.; Li, Z. Dimensional Design for Surface-Enhanced Raman Spectroscopy. ACS Mater. Au 2022, 2, 552–575. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Chang, C. Diagnostic Applications of Raman Spectroscopy. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Huang, Y.; Jiang, C.; Jiang, Y.; Zhang, L.; He, J.; Ye, C.; He, M.; Zhu, Z.; Shi, X.; et al. A Portable SERS Sensing Platform for the Multiplex Identification and Quantification of Pesticide Residues on Plant Leaves†. J. Mater. Chem. C 2022, 10, 12966. [Google Scholar] [CrossRef]
- Gao, W.; Wang, T.; Zhu, C.; Sha, P.; Dong, P.; Wu, X. A ‘Sandwich’ Structure for Highly Sensitive Detection of TNT Based on Surface-Enhanced Raman Scattering. Talanta 2022, 236, 122824. [Google Scholar] [CrossRef]
- Dowek, A.; Voisin, F.; Le, L.; Tan, C.; Mallet, J.M.; Carn, F.; Caudron, E. Self-Assembly of Gold Nanoparticles by Chitosan for Improved Epinephrine Detection Using a Portable Surface Enhanced Raman Scattering Device. Talanta 2023, 251, 123752. [Google Scholar] [CrossRef]
- Bickerstaff-Westbrook, E.; Tukova, A.; Lyu, N.; Shen, C.; Rodger, A.; Wang, Y. Advancing SERS Label-Free Detection of Bacteria: Sensing in Liquid vs Drop-Cast. Mater. Today Sustain. 2024, 27, 100912. [Google Scholar] [CrossRef]
- Machado, T.M.; Peixoto, L.P.F.; Andrade, G.F.S.; Silva, M.A.P. Copper Nanoparticles–Containing Tellurite Glasses: An Efficient SERS Substrate. Mater. Chem. Phys. 2022, 278, 125597. [Google Scholar] [CrossRef]
- Markina, N.E.; Ustinov, S.N.; Zakharevich, A.M.; Markin, A.V. Copper Nanoparticles for SERS-Based Determination of Some Cephalosporin Antibiotics in Spiked Human Urine. Anal. Chim. Acta 2020, 1138, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Sharma, B.; Cardinal, M.F.; Ross, M.B.; Zrimsek, A.B.; Bykov, S.V.; Punihaole, D.; Asher, S.A.; Schatz, G.C.; Van Duyne, R.P. Aluminum Film-Over-Nanosphere Substrates for Deep-UV Surface-Enhanced Resonance Raman Spectroscopy. Nano Lett. 2016, 16, 7968–7973. [Google Scholar] [CrossRef]
- Cui, L.; Wang, A.; Wu, D.Y.; Ren, B.; Tian, Z.Q. Shaping and Shelling Pt and Pd Nanoparticles for Ultraviolet Laser Excited Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2008, 112, 17618–17624. [Google Scholar] [CrossRef]
- Cui, L.; Mahajan, S.; Cole, R.M.; Soares, B.; Bartlett, P.N.; Baumberg, J.J.; Hayward, I.P.; Ren, B.; Russell, A.E.; Tian, Z.Q. UV SERS at Well Ordered Pd Sphere Segment Void (SSV) Nanostructures. Phys. Chem. Chem. Phys. 2009, 11, 1023–1026. [Google Scholar] [CrossRef]
- Solís, D.M.; Taboada, J.M.; Obelleiro, F.; Liz-Marzán, L.M.; García De Abajo, F.J. Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. ACS Photonics 2017, 4, 329–337. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.C.; Hu, S.; Yan, S.; Ren, B. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. [Google Scholar] [CrossRef]
- Arbuz, A.; Sultangaziyev, A.; Rapikov, A.; Kunushpayeva, Z.; Bukasov, R. How Gap Distance between Gold Nanoparticles in Dimers and Trimers on Metallic and Non-Metallic SERS Substrates Can Impact Signal Enhancement. Nanoscale Adv. 2021, 4, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Tian, C.; Ren, Z.; Yang, J.; Chen, Y.; Sun, L.; Li, Z.; Wu, A.; Yin, J.; Fu, H. LSPR-Dependent SERS Performance of Silver Nanoplates with Highly Stable and Broad Tunable LSPRs Prepared through an Improved Seed-Mediated Strategy. Phys. Chem. Chem. Phys. 2013, 15, 21034–21042. [Google Scholar] [CrossRef]
- Starowicz, Z.; Wojnarowska-Nowak, R.; Ozga, P.; Sheregii, E.M. The Tuning of the Plasmon Resonance of the Metal Nanoparticles in Terms of the SERS Effect. Colloid Polym. Sci. 2018, 296, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Bjerneld, E.J.; Käll, M.; Börjesson, L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999, 83, 4357. [Google Scholar] [CrossRef]
- Li, K.; Stockman, M.I.; Bergman, D.J. Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens. Phys. Rev. Lett. 2003, 91, 227402. [Google Scholar] [CrossRef]
- Yao, L.; Chen, Y.; Wang, R.; Yan, C.; Xu, J.; Yao, B.; Cheng, J.; Chen, W. Rapid and Sensitive Detection of Hg2+ with a SERS-Enhanced Lateral Flow Strip. Analyst 2022, 147, 4337. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, C.; Li, K.; Jiang, Z. Surface Enhancement of Raman Scattering of Nanoparticles AuNPs, AuNRs and Au@AgNPs Prepared by Microfluidics. Microchem. J. 2025, 213, 113831. [Google Scholar] [CrossRef]
- Ma, X.; Xu, S.; Li, L.; Wang, Z. A Novel SERS Method for the Detection of Staphylococcus Aureus without Immobilization Based on Au@Ag NPs/Slide Substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121757. [Google Scholar] [CrossRef]
- Pinheiro, P.C.; Daniel-da-Silva, A.L.; Nogueira, H.I.S.; Trindade, T. Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. Eur. J. Inorg. Chem. 2018, 2018, 3443–3461. [Google Scholar] [CrossRef]
- Anema, J.R.; Li, J.F.; Yang, Z.L.; Ren, B.; Tian, Z.Q. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Expanding the Versatility of Surface-Enhanced Raman Scattering. Annu. Rev. Anal. Chem. 2011, 4, 129–150. [Google Scholar] [CrossRef]
- Fateixa, S.; Nogueira, H.I.S.; Trindade, T. Hybrid Nanostructures for SERS: Materials Development and Chemical Detection. Phys. Chem. Chem. Phys. 2015, 17, 21046–21071. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Lee, Y.H.; Pedireddy, S.; Zhang, Q.; Liu, T.; Ling, X.Y. Graphene Oxide and Shape-Controlled Silver Nanoparticle Hybrids for Ultrasensitive Single-Particle Surface-Enhanced Raman Scattering (SERS) Sensing. Nanoscale 2014, 6, 4843–4851. [Google Scholar] [CrossRef]
- Israelsen, N.D.; Hanson, C.; Vargis, E. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction. Sci. World J. 2015, 2015, 124582. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-Enhanced Raman Spectroscopy: A Brief Retrospective. J. Raman Spectrosc. 2005, 36, 485–496. [Google Scholar] [CrossRef]
- Stamplecoskie, K.G.; Scaiano, J.C.; Tiwari, V.S.; Anis, H. Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2011, 115, 1403–1409. [Google Scholar] [CrossRef]
- Hong, S.; Li, X. Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions. J. Nanomater. 2013, 2013, 790323. [Google Scholar] [CrossRef]
- Kenmotsu, S.; Hirasawa, M.; Tamadate, T.; Matsumoto, C.; Osone, S.; Inomata, Y.; Seto, T. Surface-Enhanced Raman Scattering on Size-Classified Silver Nanoparticles Generated by Laser Ablation. ACS Omega 2024, 9, 37716–37723. [Google Scholar] [CrossRef]
- Yockell-Lelièvre, H.; Lussier, F.; Masson, J.F. Influence of the Particle Shape and Density of Self-Assembled Gold Nanoparticle Sensors on LSPR and SERS. J. Phys. Chem. C 2015, 119, 28577–28585. [Google Scholar] [CrossRef]
- Driskell, J.D.; Lipert, R.J.; Porter, M.D. Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates: Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering. J. Phys. Chem. B 2006, 110, 17444–17451. [Google Scholar] [CrossRef]
- Cushing, S.K.; Wu, N. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion. J. Phys. Chem. Lett. 2016, 7, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Wang, A.; Wu, N. Plasmonic Silver and Gold Nanoparticles: Shape- and Structure-Modulated Plasmonic Functionality for Point-of-Caring Sensing, Bio-Imaging and Medical Therapy. Chem. Soc. Rev. 2024, 53, 2932–2971. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217. [Google Scholar] [CrossRef]
- Stosch, R.; Yaghobian, F.; Weimann, T.; Brown, R.J.C.; Milton, M.J.T.; Guttler, B. Lithographical Gap-Size Engineered Nanoarrays for Surface-Enhanced Raman Probing Ofbiomarkers. Nanotechnology 2011, 22, 105303. [Google Scholar] [CrossRef]
- Galarreta, B.C.; Harté, E.; Marquestaut, N.; Norton, P.R.; Lagugné-Labarthet, F. Plasmonic Properties of Fischer’s Patterns: Polarization Effects. Phys. Chem. Chem. Phys. 2010, 12, 6810–6816. [Google Scholar] [CrossRef] [PubMed]
- Millstone, J.E.; Park, S.; Shuford, K.L.; Qin, L.; Schatz, G.C.; Mirkin, C.A. Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms. J. Am. Chem. Soc. 2005, 127, 5312–5313. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, C.; Waterhouse, G.I.N.; Qiao, X.; Xu, Z. Ultra-Sensitive Detection of Streptomycin in Foods Using a Novel SERS Switch Sensor Fabricated by AuNRs Array and DNA Hydrogel Embedded with DNAzyme. Food Chem. 2022, 393, 133413. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Burov, A.M.; Zakharevich, A.M.; Khlebtsov, N.G. SERS and Indicator Paper Sensing of Hydrogen Peroxide Using Au@Ag Nanorods. Sensors 2022, 22, 3202. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Xie, J.; Wang, Z.; Zhang, Y. Transparent and Flexible AuNSs/PDMS-Based SERS Substrates for in-Situ Detection of Pesticide Residues. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120542. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; He, P.; Zareef, M.; Li, H.; Chen, Q. Simultaneous Determination of Benzimidazole Fungicides in Food Using Signal Optimized Label-Free HAu/Ag NS-SERS Sensor. Food Chem. 2022, 397, 133755. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, S.; Su, J.; Li, S.; Lv, X.; Chen, J.; Lai, Y.; Zhan, J. Identification of Trace Polystyrene Nanoplastics Down to 50 Nm by the Hyphenated Method of Filtration and Surface-Enhanced Raman Spectroscopy Based on Silver Nanowire Membranes. Environ. Sci. Technol. 2022, 56, 10818–10828. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lei, F.; Gong, M.; Zhou, X.; Zhao, X.; Li, Z.; Zhang, C.; Man, B.; Yu, J. In-Situ Raman Monitoring of Trace Antibiotics in Different Harsh Water Environments. Energy Environ. Mater. 2024, 7, e12517. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, J.; Zhang, Y.; Zhao, Z.; Gu, C.; Chen, D.; Zhou, J.; Jiang, T. Surfactant−free Synthesis of Flower−like Au NPs/Au Island Hybrid Substrate for Quantitative SERS Detection of Pesticide Residues on Fruit. J. Alloys Compd. 2022, 918, 165706. [Google Scholar] [CrossRef]
- Li, H.; Hassan, M.M.; He, Z.; Haruna, S.A.; Chen, Q.; Ding, Z. A Sensitive Silver Nanoflower-Based SERS Sensor Coupled Novel Chemometric Models for Simultaneous Detection of Chlorpyrifos and Carbendazim in Food. LWT 2022, 167, 113804. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, W.C.; Koh, E.H.; Ansah, I.B.; Yang, J.Y.; Mun, C.W.; Lee, S.; Kim, D.H.; Jung, H.S.; Park, S.G. Organometallic Hotspot Engineering for Ultrasensitive EC-SERS Detection of Pathogenic Bacteria-Derived DNAs. Biosens. Bioelectron. 2022, 210, 114325. [Google Scholar] [CrossRef]
- Nihal, S.; Guppy-Coles, K.; Gholami, M.D.; Punyadeera, C.; Izake, E.L. Towards Label-Free Detection of Viral Disease Agents through Their Cell Surface Proteins: Rapid Screening SARS-CoV-2 in Biological Specimens. SLAS Discov. 2022, 27, 331–336. [Google Scholar] [CrossRef]
- Gu, Y.; Cao, D.; Mao, Y.; Ge, S.; Li, Z.; Gu, Y.; Sun, Y.; Li, L.; Cao, X. A SERS Microfluidic Chip Based on HpDNA-Functioned Au-Ag Nanobowl Array for Efficient Simultaneous Detection of Non-Small Cell Lung Cancer-Related MicroRNAs. Microchem. J. 2022, 182, 107836. [Google Scholar] [CrossRef]
- Duan, N.; Yao, T.; Li, C.; Wang, Z.; Wu, S. Surface-Enhanced Raman Spectroscopy Relying on Bimetallic Au–Ag Nanourchins for the Detection of the Food Allergen β-Lactoglobulin. Talanta 2022, 245, 123445. [Google Scholar] [CrossRef]
- Ashok Kumar, E.; Wang, T.J.; Chi, H.A.; Chang, Y.H. Hydrothermal and Photoreduction Synthesis of Nanostructured α-Fe2O3/Ag Urchins for Sensitive SERS Detection of Environmental Samples. Appl. Surf. Sci. 2022, 604, 154448. [Google Scholar] [CrossRef]
- Zhou, S.; Guo, X.; Huang, H.; Huang, X.; Zhou, X.; Zhang, Z.; Sun, G.; Cai, H.; Zhou, H.; Sun, P. Triple-Function Au−Ag-Stuffed Nanopancakes for SERS Detection, Discrimination, and Inactivation of Multiple Bacteria. Anal. Chem. 2022, 94, 5785–5796. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Wang, Z.P.; Zhang, R.; Zhang, Z.; He, Y. A SERS Aptasensor Based on Porous Au-NC Nanoballoons for Staphylococcus Aureus Detection. Anal. Chim. Acta 2022, 1190, 339175. [Google Scholar] [CrossRef]
- Li, J.; Khalenkow, D.; Volodkin, D.; Lapanje, A.; Skirtach, A.G.; Parakhonskiy, B.V. Surface Enhanced Raman Scattering (SERS)-Active Bacterial Detection by Layer-by-Layer (LbL) Assembly All-Nanoparticle Microcapsules. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129547. [Google Scholar] [CrossRef]
- Antoine, D.; Mohammadi, M.; Vitt, M.; Marie Dickie, J.; Sultana Jyoti, S.; Tilbury, M.A.; Johnson, P.A.; Wawrousek, K.E.; Gerard Wall, J. Rapid, Point-of-Care ScFv-SERS Assay for Femtogram Level Detection of SARS-CoV-2. ACS Sens. 2022, 7, 866–873. [Google Scholar] [CrossRef]
- Rodríguez-Lorenzo, L.; Álvarez-Puebla, R.A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L.M.; De Abajo, F.J.G. Zeptomol Detection through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618. [Google Scholar] [CrossRef]
- Aizpurua, J.; Bryant, G.W.; Richter, L.J.; García De Abajo, F.J.; Kelley, B.K.; Mallouk, T. Optical Properties of Coupled Metallic Nanorods for Field-Enhanced Spectroscopy. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 71, 235420. [Google Scholar] [CrossRef]
- Murray, W.A.; Suckling, J.R.; Barnes, W.L. Overlayers on Silver Nanotriangles: Field Confinement and Spectral Position of Localized Surface Plasmon Resonances. Nano Lett. 2006, 6, 1772–1777. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Etchegoin, P.G. Rigorous Justification of the |E|4 Enhancement Factor in Surface Enhanced Raman Spectroscopy. Chem. Phys. Lett. 2006, 423, 63–66. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Xu, Y.; Xue, X.; Chen, X.; Chui, H.C. The Wavelength-Dependent SERS Template Based on a Nanopillar Array. Materials 2022, 15, 7446. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Yi, H.; Li, H.; Lei, Z.; Yang, T. Reproducible Ultrahigh SERS Enhancement in Single Deterministic Hotspots Using Nanosphere-Plane Antennas Under Radially Polarized Excitation. Sci. Rep. 2016, 6, 33218. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang Lim, S.; Puretzky, A.A.; Riehn, R.; Hallen, H.D. Near-Field Enhanced Ultraviolet Resonance Raman Spectroscopy Using Aluminum Bow-Tie Nano-Antenna. Appl. Phys. Lett. 2012, 101, 113116. [Google Scholar] [CrossRef]
- Ding, T.; Sigle, D.O.; Herrmann, L.O.; Wolverson, D.; Baumberg, J.J. Nanoimprint Lithography of Al Nanovoids for Deep-UV SERS. ACS Appl. Mater. Interfaces 2014, 6, 17358–17363. [Google Scholar] [CrossRef]
- Lin, X.F.; Ren, B.; Yang, Z.L.; Liu, G.K.; Tian, Z.Q. Surface-Enhanced Raman Spectroscopy with Ultraviolet Excitation. J. Raman Spectrosc. 2005, 36, 606–612. [Google Scholar] [CrossRef]
- Álvarez-Puebla, R.A. Effects of the Excitation Wavelength on the SERS Spectrum. J. Phys. Chem. Lett. 2012, 3, 857–866. [Google Scholar] [CrossRef]
- Bock, S.; Choi, Y.S.; Kim, M.; Yun, Y.; Pham, X.H.; Kim, J.; Seong, B.; Kim, W.; Jo, A.; Ham, K.M.; et al. Highly Sensitive Near-Infrared SERS Nanoprobes for in Vivo Imaging Using Gold-Assembled Silica Nanoparticles with Controllable Nanogaps. J. Nanobiotechnol. 2022, 20, 1–12. [Google Scholar] [CrossRef]
- Kang, J.W.; So, P.T.C.; Dasari, R.R.; Lim, D.K. High Resolution Live Cell Raman Imaging Using Subcellular Organelle-Targeting SERS-Sensitive Gold Nanoparticles with Highly Narrow Intra-Nanogap. Nano Lett. 2015, 15, 1766–1772. [Google Scholar] [CrossRef]
- Baffou, G.; Quidant, R.; Girard, C. Heat Generation in Plasmonic Nanostructures: Influence of Morphology. Appl. Phys. Lett. 2009, 94, 153109. [Google Scholar] [CrossRef]
- King, M.D.; Khadka, S.; Craig, G.A.; Mason, M.D. Effect of Local Heating on the SERS Efficiency of Optically Trapped Prismatic Nanoparticles. J. Phys. Chem. C 2008, 112, 11751–11757. [Google Scholar] [CrossRef]
- Kanehira, Y.; Tapio, K.; Wegner, G.; Kogikoski, S.; Rüstig, S.; Prietzel, C.; Busch, K.; Bald, I. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas. ACS Nano 2023, 17, 21227–21239. [Google Scholar] [CrossRef] [PubMed]
- Yeo, B.S.; Schmid, T.; Zhang, W.; Zenobi, R. A Strategy to Prevent Signal Losses, Analyte Decomposition, and Fluctuating Carbon Contamination Bands in Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2008, 62, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Cialla, D.; März, A.; Böhme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J. Surface-Enhanced Raman Spectroscopy (SERS): Progress and Trends. Anal. Bioanal. Chem. 2012, 403, 27–54. [Google Scholar] [CrossRef]
- Takeyasu, N.; Kagawa, R.; Sakata, K.; Kaneta, T. Laser Power Threshold of Chemical Transformation on Highly Uniform Plasmonic and Catalytic Nanosurface. J. Phys. Chem. C 2016, 120, 12163–12169. [Google Scholar] [CrossRef]
- Michaels, A.M.; Jiang, J.; Brus, L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B 2000, 104, 11965–11971. [Google Scholar] [CrossRef]
- Wei, H.; Hao, F.; Huang, Y.; Wang, W.; Nordlander, P.; Xu, H. Polarization Dependence of Surface-Enhanced Raman Scattering in Gold Nanoparticle-Nanowire Systems. Nano Lett. 2008, 8, 2497–2502. [Google Scholar] [CrossRef] [PubMed]
- Sawai, Y.; Takimoto, B.; Nabika, H.; Ajito, K.; Murakoshi, K. Observation of a Small Number of Molecules at a Metal Nanogap Arrayed on a Solid Surface Using Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2007, 129, 1658–1662. [Google Scholar] [CrossRef]
- McLellan, J.M.; Li, Z.Y.; Siekkinen, A.R.; Xia, Y. The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization. Nano Lett. 2007, 7, 1013–1017. [Google Scholar] [CrossRef]
- Šubr, M.; Petr, M.; Kylián, O.; Štěpánek, J.; Veis, M.; Procházka, M. Anisotropic Optical Response of Silver Nanorod Arrays: Surface Enhanced Raman Scattering Polarization and Angular Dependences Confronted with Ellipsometric Parameters. Sci. Rep. 2017, 7, 4293. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, K.; Lu, Y.; Wu, H.; Li, Y.; Zhou, Q. Insight into the Working Wavelength of Hotspot Effects Generated by Popular Nanostructures. Nanotechnol. Rev. 2019, 8, 24–34. [Google Scholar] [CrossRef]
- Kim, S.; Ansah, I.B.; Park, J.S.; Dang, H.; Choi, N.; Lee, W.C.; Lee, S.H.; Jung, H.S.; Kim, D.H.; Yoo, S.M.; et al. Early and Direct Detection of Bacterial Signaling Molecules through One-Pot Au Electrodeposition onto Paper-Based 3D SERS Substrates. Sens. Actuators B Chem. 2022, 358, 131504. [Google Scholar] [CrossRef]
- Das, S.; Saxena, K.; Goswami, L.P.; Gayathri, J.; Mehta, D.S. Mesoporous Ag–TiO2 Based Nanocage like Structure as Sensitive and Recyclable Low-Cost SERS Substrate for Biosensing Applications. Opt. Mater. 2022, 125, 111994. [Google Scholar] [CrossRef]
- Liu, E.; Han, L.; Fan, X.; Yang, Z.; Jia, Z.; Shi, S.; Huang, Y.; Cai, L.; Yuan, X. New Rapid Detection Method of Total Chlorogenic Acids in Plants Using SERS Based on Reusable Cu2O–Ag Substrate. Talanta 2022, 247, 123552. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Ali, S.; Xu, Y.; Ouyang, Q.; Wang, Z.; Chen, Q. SERS-Based Au@Ag NPs Solid-Phase Substrate Combined with Chemometrics for Rapid Discrimination of Multiple Foodborne Pathogens. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 270, 120814. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Wang, C.; Zheng, S.; Jiang, B.; Li, J.; Pang, Y.; Wang, C.; Hao, R.; Xiao, R. Ultrasensitive Multichannel Immunochromatographic Assay for Rapid Detection of Foodborne Bacteria Based on Two-Dimensional Film-like SERS Labels. J. Hazard. Mater. 2022, 437, 129347. [Google Scholar] [CrossRef]
- Asgari, S.; Dhital, R.; Aghvami, S.A.; Mustapha, A.; Zhang, Y.; Lin, M. Separation and Detection of E. coli O157:H7 Using a SERS-Based Microfluidic Immunosensor. Microchim. Acta 2022, 189, 3. [Google Scholar] [CrossRef]
- Deb, M.; Hunter, R.; Taha, M.; Abdelbary, H.; Anis, H. Rapid Detection of Bacteria Using Gold Nanoparticles in SERS with Three Different Capping Agents: Thioglucose, Polyvinylpyrrolidone, and Citrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 280, 121533. [Google Scholar] [CrossRef]
- Joe Princy, S.S.; Joe Sherin, J.F.; Vijayakumar, C.; Hentry, C.; Bindhu, M.R.; Alarjani, K.M.; Alghamidi, N.S.; Hussein, D.S. Detection of Heavy Metals, SERS and Antibacterial Activity of Polyvinylpyrolidone Modified Plasmonic Nanoparticles. Environ. Res. 2022, 210, 112883. [Google Scholar] [CrossRef]
- Neng, J.; Liao, C.; Wang, Y.; Wang, Y.; Yang, K. Rapid and Sensitive Detection of Pentachloronitrobenzene by Surface-Enhanced Raman Spectroscopy Combined with Molecularly Imprinted Polymers. Biosensors 2022, 12, 52. [Google Scholar] [CrossRef]
- Chu, C.-Y.; Lin, P.-Y.; Li, J.-S.; Kirankumar, R.; Tsai, C.-Y.; Chen, N.-F.; Wen, Z.-H.; Hsieh, S.A.; Chu, C.-Y.; Lin, P.-Y.; et al. A Novel SERS Substrate Based on Discarded Oyster Shells for Rapid Detection of Organophosphorus Pesticide. Coatings 2022, 12, 506. [Google Scholar] [CrossRef]
- Paloly, A.R.; Anju, K.S.; Bushiri, M.J. High Sensitive and Reusable SERS Substrate Based on Ag/SnO 2 Nanocone Arrayed Thin Film. Plasmonics 2022, 17, 2187–2196. [Google Scholar] [CrossRef]
- Parvathiraja, C.; Shailajha, S.; Shanavas, S.; Gurung, J. Biosynthesis of Silver Nanoparticles by Cyperus Pangorei and Its Potential in Structural, Optical and Catalytic Dye Degradation. Appl. Nanosci. 2021, 11, 477–491. [Google Scholar] [CrossRef]
- Safir, F.; Vu, N.; Tadesse, L.F.; Firouzi, K.; Banaei, N.; Jeffrey, S.S.; Saleh, A.A.E.; Khuri-Yakub, B.T.; Dionne, J.A. Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood. Nano Lett. 2023, 23, 2065–2073. [Google Scholar] [CrossRef]
- Colniță, A.; Marconi, D.; Dina, N.E.; Brezeștean, I.; Bogdan, D.; Turcu, I. 3D Silver Metallized Nanotrenches Fabricated by Nanoimprint Lithography as Flexible SERS Detection Platform. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 276, 121232. [Google Scholar] [CrossRef]
- Peng, Y.; Cui, L.; Jiang, S.; Wang, H.; Yu, B.; Qian, L. Fabrication of High-Performance Microfluidic SERS Substrates by Metal-Assisted Chemical Etching of Silicon Scratches. Surf. Topogr. Metrol. Prop. 2022, 10, 035008. [Google Scholar] [CrossRef]
- Zuo, H.; Sun, Y.; Huang, M.; Marie Fowler, S.; Liu, J.; Zhang, Y.; Mao, Y. Classification and Identification of Foodborne Bacteria in Beef by Utilising Surface-Enhanced Raman Spectroscopy Coupled with Chemometric Methods. Foods 2024, 13, 3688. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.; Trehan, R.; Watson, C.; Senyo, S. Increasing Silicone Mold Longevity: A Review of Surface Modification Techniques for PDMS-PDMS Double Casting. Soft Mater. 2021, 19, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Jaitpal, S.; Chavva, S.R.; Mabbott, S. 3D Printed SERS-Active Thin-Film Substrates Used to Quantify Levels of the Genotoxic Isothiazolinone. ACS Omega 2022, 7, 2850–2860. [Google Scholar] [CrossRef]
- Repetto, D.; Giordano, M.C.; Foti, A.; Gucciardi, P.G.; Mennucci, C.; Buatier de Mongeot, F. SERS Amplification by Ultra-Dense Plasmonic Arrays on Self-Organized PDMS Templates. Appl. Surf. Sci. 2018, 446, 83–91. [Google Scholar] [CrossRef]
- Lin, D.; Yu, C.; Ku, C.; Chung, C. Design, Fabrication, and Applications of SERS Substrates for Food Safety Detection: Review. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef]
- Yang, M.C.; Hardiansyah, A.; Cheng, Y.W.; Liao, H.L.; Wang, K.S.; Randy, A.; Harito, C.; Chen, J.S.; Jeng, R.J.; Liu, T.Y. Reduced Graphene Oxide Nanosheets Decorated with Core-Shell of Fe3O4-Au Nanoparticles for Rapid SERS Detection and Hyperthermia Treatment of Bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 281, 121578. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, C.; Li, J.; Wang, W.; Yu, Q.; Wang, C.; Wang, S. Graphene Oxide-Based Three-Dimensional Au Nanofilm with High-Density and Controllable Hotspots: A Powerful Film-Type SERS Tag for Immunochromatographic Analysis of Multiple Mycotoxins in Complex Samples. Chem. Eng. J. 2022, 448, 137760. [Google Scholar] [CrossRef]
- Sarma, D.; Biswas, S.; Hatiboruah, D.; Chamuah, N.; Nath, P. 100 GSM Paper as an SERS Substrate for Trace Detection of Pharmaceutical Drugs in an Aqueous Medium. J. Phys. D Appl. Phys. 2022, 55, 385102. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Zhang, S.; Deng, L. An Ultrasensitive Fluorescence Detection Template of Pathogenic Bacteria Based on Dual Catalytic Hairpin DNA Walker@Gold Nanoparticles Enzyme-Free Amplification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 277, 121259. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, G.; Zhang, X.; Gong, H.; Jiang, L.; Sun, G.; Li, Y.; Liu, G.; Li, Y.; Yang, S.; et al. Dual-Functional Ultrathin Wearable 3D Particle-in-Cavity SF-AAO-Au SERS Sensors for Effective Sweat Glucose and Lab-on-Glove Pesticide Detection. Sens. Actuators B Chem. 2022, 359, 131512. [Google Scholar] [CrossRef]
- Fairbrother, R.W. The classification of bacteria. In A Text-Book of Bacteriology; Butterworth-Heinemann: Oxford, UK, 2014; pp. 144–150. [Google Scholar] [CrossRef]
- Otto, C. Surface-Enhanced Raman Spectroscopy of DNA Bases. J. Raman Spectrosc. 1986, 17, 289–298. [Google Scholar] [CrossRef]
- Koglin, E.; Séquaris, J.M.; Valenta, P. Surface Enhanced Raman Spectroscopy of Nucleic Acid Bases on Ag Electrodes. J. Mol. Struct. 1982, 79, 185–189. [Google Scholar] [CrossRef]
- Pettinger, B.; Wtzel, H. Surface Enhanced Raman Spectroscopy of Pyridine on Ag Electrodes. Surface Complex Formation. Chem. Phys. Lett. 1981, 78, 398–403. [Google Scholar] [CrossRef]
- Nabiev, I.R.; Efremov, R.G.; Chumanov, G.D. Surface-Enhanced Raman Spectroscopy of Biopolymers: Membrane Proteins, Bacteriorhodopsin and Rhodopsin Adsorbed on Silver Electrodes and Silver Hydrosols. Biofizika 1986, 31, 724–734. [Google Scholar]
- Nabiev, I.R.; Efremov, R.G.; Chumanov, G.D. Surface-Enhanced Raman Scattering and Its Application to the Study of Biological Molecules. Sov. Phys.-Uspekhi 1988, 31, 241–262. [Google Scholar] [CrossRef]
- Weldon, M.K.; Zhelyaskov, V.R.; Morris, M.D. Surface-Enhanced Raman Spectroscopy of Lipids on Silver Microprobes. Appl. Spectrosc. 1998, 52, 265–269. [Google Scholar] [CrossRef]
- Chumanov, G.D.; Efremov, R.G.; Nabiev, I.R. Surface-Enhanced Raman Spectroscopy of Biomolecules. J. Raman Spectrosc. 1990, 21, 43–48. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Atkinson, B.; Good, T.; Cote, G.L. Surface-Enhanced Raman Spectroscopy for the Detection of Pathogenic DNA and Protein in Foods. Opt. Diagn. Sens. Biomed. III 2003, 4965, 111. [Google Scholar] [CrossRef]
- Xiao, Y.J.; Wang, T.; Wang, X.Q.; Gao, X.X. Surface-Enhanced near-Infrared Raman Spectroscopy of Nicotinamide Adenine Dinucleotides on a Gold Electrode. J. Electroanal. Chem. 1997, 433, 49–56. [Google Scholar] [CrossRef]
- Niaura, G.; Gaigalas, A.K.; Vilker, V.L. Non-Resonant SERS Study of the Adsorption of Cytochrome c on a Silver Electrode. J. Electroanal. Chem. 1996, 416, 167–178. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, H.; Haisch, C.; Niessner, R.; Ying, Y. Reproducible E. coli Detection Based on Label-Free SERS and Mapping. Talanta 2016, 146, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; You, G.; Wang, S. A Novel SERS Method for Detecting E. coli Based on an Aptamer-Functionalized Au-Ag@Si Triangular Pyramid Substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 322, 124850. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.A.; Pellegrino, P.M.; Gillespie, J.B. Near-Infrared Surface-Enhanced-Raman-Scattering-Mediated Detection of Single Optically Trapped Bacterial Spores. Appl. Spectrosc. 2003, 57, 1340–1345. [Google Scholar] [CrossRef] [PubMed]
- Zeiri, L.; Efrima, S. Surface-Enhanced Raman Spectroscopy of Bacteria: The Effect of Excitation Wavelength and Chemical Modification of the Colloidal Milieu. J. Raman Spectrosc. 2005, 36, 667–675. [Google Scholar] [CrossRef]
- Zeiri, L.; Bronk, B.V.; Shabtai, Y.; Eichler, J.; Efrima, S. Surface-Enhanced Raman Spectroscopy as a Tool for Probing Specific Biochemical Components in Bacteria. Appl. Spectrosc. 2004, 58, 33–40. [Google Scholar] [CrossRef]
- Sengupta, A.; Laucks, M.L.; James Davis, E. Surface-Enhanced Raman Spectroscopy of Bacteria and Pollen. Appl. Spectrosc. 2005, 59, 1016–1023. [Google Scholar] [CrossRef]
- Tabussam, T.; Shehnaz, H.; Majeed, M.I.; Nawaz, H.; Alghamdi, A.A.; Iqbal, M.A.; Shahid, M.; Shahid, U.; Umer, R.; Rehman, M.T.; et al. Surface-Enhanced Raman Spectroscopy for Studying the Interaction of Organometallic Compound Bis(1,3-Dihexylimidazole-2-Yl) Silver(i) Hexafluorophosphate (v) with the Biofilm of Escherichia coli. RSC Adv. 2024, 14, 7112–7123. [Google Scholar] [CrossRef]
- Almohammed, S.; Nolan, T.; Martin, N.; Meijer, W.G.; Rodriguez, B.J.; Rice, J.H. Ultrasensitive Detection of E. coli Using Bioinspired Based Platform. Anal. Methods 2024, 17, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Das, S.; Thapa, P.; Meenakshi, M.; Kumar, A.; Nagpal, P.; Dubey, S.K.; Perumal, V.; Mehta, D.S. Surface Plasmon Enhanced Auto-Fluorescence and Raman Spectroscopy for Low-Level Detection of Biological Pathogens. Methods Appl. Fluoresc. 2025, 13, 015004. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Yadav, A.K.; NaziaTarannum, N. Fabrication of Aluminum Foil Integrated Pegylated Gold Nanoparticle Surface-Enhanced Raman Scattering Substrate for the Detection and Classification of Uropathogenic Bacteria. ACS Appl. Bio Mater. 2024, 7, 6127–6137. [Google Scholar] [CrossRef] [PubMed]
- Jayan, H.; Sun, D.W.; Pu, H.; Wei, Q. Surface-Enhanced Raman Spectroscopy Combined with Stable Isotope Probing to Assess the Metabolic Activity of Escherichia coli Cells in Chicken Carcass Wash Water. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 280, 121549. [Google Scholar] [CrossRef]
- Jia, N.; Xiong, Y.; Wang, Y.; Lu, S.; Zhang, R.; Kang, Y.; Du, Y. A Novel Surface-Enhanced Raman Scattering Method for Detecting Fish Pathogenic Bacteria with Fe3O4 @PEI Nanocomposite and Concentrated Au@Ag. J. Raman Spectrosc. 2022, 53, 211–221. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wang, P.; Fan, L.; Shi, Y. Highly Sensitive Multiplex Detection of Foodborne Pathogens Using a SERS Immunosensor Combined with Novel Covalent Organic Frameworks Based Biologic Interference-Free Raman Tags. Talanta 2022, 243, 123369. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Dai, S.; Dou, M.; Jiao, S.; Yang, J.; Li, W.; Su, Y.; Li, Q.; Li, J. High-Throughput, Highly Sensitive and Rapid SERS Detection of Escherichia coli O157:H7 Using Aptamer-Modified Au@macroporous Silica Magnetic Photonic Microsphere Array. Food Chem. 2023, 424, 136433. [Google Scholar] [CrossRef]
- Liu, W.; Tang, J.W.; Mou, J.Y.; Lyu, J.W.; Di, Y.W.; Liao, Y.L.; Luo, Y.F.; Li, Z.K.; Wu, X.; Wang, L. Rapid Discrimination of Shigella Spp. and Escherichia coli via Label-Free Surface Enhanced Raman Spectroscopy Coupled with Machine Learning Algorithms. Front. Microbiol. 2023, 14, 1101357. [Google Scholar] [CrossRef]
- Mushtaq, A.; Nawaz, H.; Irfan Majeed, M.; Rashid, N.; Tahir, M.; Zaman Nawaz, M.; Shahzad, K.; Dastgir, G.; Zaki Abdul Bari, R.; ul Haq, A.; et al. Surface-Enhanced Raman Spectroscopy (SERS) for Monitoring Colistin-Resistant and Susceptible E. coli Strains. Spectrochim. Acta PartA Mol. Biomol. Spectrosc. 2022, 278, 121315. [Google Scholar] [CrossRef]
- Gukowsky, J.C.; Yang, T.; He, L. Assessment of Three SERS Approaches for Studying E. coli O157:H7 Susceptibility to Ampicillin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 264, 120239. [Google Scholar] [CrossRef]
- Wen, P.; Yang, F.; Zhao, H.; Li, S.; Xu, Y.; Chen, L. Microcavity Array-Based Digital SERS Chip for Rapid and Accurate Label-Free Quantitative Detection of Live Bacteria. ACS Sens. 2024, 9, 6167–6173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jiang, L.; Pan, W.; Li, D.; Duan, M.; Zhou, Y.; Chen, L. V2CTx-Au Nanostructures for Rapid Surface-Enhanced Raman Scattering Detection of Bacteria and Synergistic Photothermal/Photodynamic Therapy. ACS Appl. Nano Mater. 2024, 7, 14673–14683. [Google Scholar] [CrossRef]
- Allen, D.M.; Einarsson, G.G.; Tunney, M.M.; Bell, S.E.J. Characterization of Bacteria Using Surface-Enhanced Raman Spectroscopy (SERS): Influence of Microbiological Factors on the SERS Spectra. Anal. Chem. 2022, 94, 9327–9335. [Google Scholar] [CrossRef]
- Juang, R.S.; Chen, W.T.; Cheng, Y.W.; Wang, K.S.; Jeng, R.J.; Zeng, Z.L.; Liu, S.H.; Liu, T.Y. Fabrication of in Situ Magnetic Capturing and Raman Enhancing Nanoplatelets for Detection of Bacteria and Biomolecules. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129189. [Google Scholar] [CrossRef]
- Shi, B.; Jiang, L.; Ma, R.; Zhao, W.; Zheng, Y.; Pan, W.; Liu, M.; Jin, S.; Zhou, Y. Ti3C2Tx-AuNP Based Paper Substrates for Label-Free SERS Detection of Bacteria and Multimodal Antibacterials. RSC Adv. 2024, 14, 18739–18749. [Google Scholar] [CrossRef]
- Zhang, P.; Fu, Y.; Zhao, H.; Liu, X.; Wu, X.; Lin, T.; Wang, H.; Song, L.; Fang, Y.; Lu, W.; et al. Dynamic Insights into Increasing Antibiotic Resistance in Staphylococcus Aureus by Label-Free SERS Using a Portable Raman Spectrometer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 273, 121070. [Google Scholar] [CrossRef]
- Arslan, A.H.; Ciloglu, F.U.; Yilmaz, U.; Simsek, E.; Aydin, O. Discrimination of Waterborne Pathogens, Cryptosporidium Parvum Oocysts and Bacteria Using Surface-Enhanced Raman Spectroscopy Coupled with Principal Component Analysis and Hierarchical Clustering. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120475. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Liu, S.; Zhou, S.; Wang, D.; Gong, Z.; Fan, M. Label-Free Surface-Enhanced Raman Scattering-Based Microbial Whole-Cell Biosensor for Acute Toxicity Assessment in Water. ACS ES T Water 2024, 4, 2204–2211. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Wang, C.-H.; Chang, W.-R.; Li, J.-W.; Hsu, M.-F.; Sun, Y.-S.; Liu, T.-Y.; Chiu, C.-W. Hydrophilic−Hydrophobic Nanohybrids of AuNP-Immobilized Two-Dimensional Nanomica Platelets as Flexible Substrates for High-Efficiency and High-Selectivity Surface-Enhanced Raman Scattering Microbe Detection. ACS Appl. Bio Mater. 2022, 5, 1073–1083. [Google Scholar] [CrossRef]
- Prakash, O.; Abhijith, T.; Nagpal, P.; Perumal, V.; Karak, S.; Singh, U.B.; Ghosh, S. Highly Sensitive Label-Free Biomolecular Detection Using Au-WS2 Nanohybrid Based SERS Substrates. Nanoscale Adv. 2024, 6, 5978–5987. [Google Scholar] [CrossRef]
- Gukowsky, J.C.; He, L. Development of a Portable SERS Method for Testing the Antibiotic Sensitivity of Foodborne Bacteria. J. Microbiol. Methods 2022, 198, 106496. [Google Scholar] [CrossRef]
- Ye, Y.; Qi, X.; Wang, H.; Zhao, B.; Xu, L.; Zhang, Y.; Wang, X.; Zhou, N. A Surface-Enhanced Raman Scattering Aptasensor for Escherichia coli Detection Based on High-Performance 3D Substrate and Hot Spot Effect. Anal. Chim. Acta 2022, 1221, 340141. [Google Scholar] [CrossRef]
- Gukowsky, J.C.; He, L. Investigating the Origins of Bacterial SERS Responses to Antibiotics Observed in the Extracellular Matrix Liquid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 282, 121680. [Google Scholar] [CrossRef]
- Wang, M.; Diao, H.; Dou, C.; Wu, Z.; Ruan, L.; Wang, Z.; Wang, Z.; Ye, W.; Duan, J.; Li, Y. Label-Free Detection of Pathogenic Microorganism Using Ag NPs@PDMS Sponge SERS Substrate and Machine Learning. Sens. Actuators B Chem. 2024, 413, 135811. [Google Scholar] [CrossRef]
- Rippa, M.; Sagnelli, D.; Vestri, A.; Marchesano, V.; Munari, B.; Carnicelli, D.; Varrone, E.; Brigotti, M.; Tozzoli, R.; Montalbano, M.; et al. Plasmonic Metasurfaces for Specific SERS Detection of Shiga Toxins. ACS Appl. Mater. Interfaces 2022, 14, 4969–4979. [Google Scholar] [CrossRef]
- Hameed, S.M.; Ali, N.H.; Rostaminia, A.; Abed, S.H.; Khojasteh, H.; Kadhim, S.A.; Aspoukeh, P.; Eskandari, V. Development and Evaluation of Surface-Enhanced Raman Spectroscopy (SERS) Filter Paper Substrates Coated with Antibacterial Silver Nanoparticles for the Identification of Trace Escherichia coli. Chem. Afr. 2024, 7, 4541–4553. [Google Scholar] [CrossRef]
- Rahman, A.; Kang, S.; Wang, W.; Huang, Q.; Kim, I.; Vikesland, P.J. Lectin-Modified Bacterial Cellulose Nanocrystals Decorated with Au Nanoparticles for Selective Detection of Bacteria Using Surface-Enhanced Raman Scattering Coupled with Machine Learning. ACS Appl. Nano Mater. 2022, 5, 259–268. [Google Scholar] [CrossRef]
- Tahir, M.; Majeed, M.I.; Anwar, M.A.; Nawaz, H.; Mushtaq, Z. Surface-Enhanced Raman Spectroscopy for Evaluation of Antibacterial Activity of the N-Heterocyclic Carbene Selenium Complex and Its Ligand Against Pathogenic Bacterial Strains Using Multivariate Data Analysis Techniques. Anal. Lett. 2024, 57, 3131–3148. [Google Scholar] [CrossRef]
- Palonpon, A.F.; Sodeoka, M.; Fujita, K. Molecular Imaging of Live Cells by Raman Microscopy. Curr. Opin. Chem. Biol. 2013, 17, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Shahid, U.; Rashid, N.; Javed, M.R.; Majeed, M.I.; Mohsin, M.; Nawaz, H.; Seemab, R.; Zohaib, M.; Alam, M.; Alshammari, A.; et al. Surface-Enhanced Raman Spectroscopy for the Rapid Identification of Fosfomycin Resistant and Sensitive Strains of E. coli. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125517. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, Z.; Almutairi, L.A.; Ali, M.Y.; Alrefaee, S.H.; Fahmy, M.A.; Shokralla, E.A.; Alharbe, L.G.; Ali, A.; Ashfaq, A.; Abd-Elwahed, A.R. Enhanced Surface Functionalization of 2D Molybdenum/Tin Chalcogenide Nanostructures for Effective SERS Detection of Escherichia coli. RSC Adv. 2024, 14, 35021–35034. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Saxena, K.; Tinguely, J.C.; Pal, A.; Wickramasinghe, N.L.; Khezri, A.; Dubey, V.; Ahmad, A.; Perumal, V.; Ahmad, R.; et al. SERS Nanowire Chip and Machine Learning-Enabled Classification of Wild-Type and Antibiotic-Resistant Bacteria at Species and Strain Levels. ACS Appl. Mater. Interfaces 2023, 15, 24047–24058. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Cano, H.; Olvera, L.I.; Méndez-Aguilar, E.M.; España-Sánchez, B.L.; Arriaga, L.G.; Oza, G.; Herrera-Celis, J. Surface Functionalization and Escherichia coli Detection Using Surface-Enhanced Raman Spectroscopy Driven by Functional Organic Polymer/Gold Nanofilm-Based Microfluidic Chip. Biosensors 2023, 13, 994. [Google Scholar] [CrossRef]
- Haq, A.U.; Majeed, M.I.; Nawaz, H.; Rashid, N.; Javed, M.R.; Iqbal, M.A.; Raza, A.; Zahra, S.T.; Meraj, L.; Perveen, A.; et al. Surface-Enhanced Raman Spectroscopy for Monitoring Antibacterial Activity of Imidazole Derivative (1-Benzyl-3-(Sec-butyl)-1H-Imidazole-3-Ium Bromide) against Bacillus Subtilis and Escherichia coli. Photodiagnosis Photodyn. Ther. 2023, 42, 103533. [Google Scholar] [CrossRef]
- Abuhelwa, M.; Singh, A.; Liu, J.; Almalaysha, M.; Carlson, A.V.; Trout, K.E.; Morey, A.; Kinzel, E.; Channaiah, L.H.; Almasri, M. Fiber Optics-Based Surface Enhanced Raman Spectroscopy Sensors for Rapid Multiplex Detection of Foodborne Pathogens in Raw Poultry. Microsyst. Nanoeng. 2024, 10, 199. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, Z.; Xin, M.; Liu, D. SERS-Based Ag NCs@PDMS Flexible Substrate Combined with Chemometrics for Rapid Detection of Foodborne Pathogens on Egg Surface. Microchim. Acta 2024, 191, 612. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Lee, S.H.; Kok, L.C.; Ishdorj, T.O.; Chang, H.Y.; Tseng, F.G. A 3D-ACEK/SERS System for Highly Efficient and Selectable Electrokinetic Bacteria Concentration/Detection/ Antibiotic-Susceptibility-Test on Whole Blood. Biosens. Bioelectron. 2022, 197, 113740. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, L.; Qi, G.; Zhang, S. Trace Detection of E. coli O157:H7 Cells by an Au Nanoparticle-Based SERS Aptasensor. ACS Appl. Nano Mater. 2023, 6, 1386–1394. [Google Scholar] [CrossRef]
- Jayan, H.; Zhou, R.; Zheng, Y.; Xue, S.; Yin, L.; El-Seedi, H.R.; Zou, X.; Guo, Z. Microfluidic-SERS Platform with in-Situ Nanoparticle Synthesis for Rapid E. coli Detection in Food. Food Chem. 2025, 471, 142800. [Google Scholar] [CrossRef]
- Zeiri, L.; Efrima, S. Surface-Enhanced Raman Scattering (SERS) of Microorganisms. Isr. J. Chem. 2006, 46, 337–346. [Google Scholar] [CrossRef]
- Bai, X.; Luo, W.; Zhou, W.; Chen, W.; Guo, X.; Shen, A.; Hu, J. A Sensitive SERS-Based Assay Technique for Accurate Detection of Foodborne Pathogens without Interference. Anal. Methods 2024, 16, 7683–7688. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhu, W.; Yuan, Q.; Hu, J.M.; Zhang, X.; Shen, A.G. Photoreduced Ag+ Surrounding Single Poly(4-Cyanostyrene) Nanoparticles for Undifferentiated SERS Sensing and Killing of Bacteria. Talanta 2022, 245, 123450. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yang, Y.; Xu, C.; Ye, Y.; Huang, L.; Sun, L.; Cai, Y.; Zhou, W.; Ge, Y.; Li, Y.; et al. Vertical Gold Nanowires-Based Surface-Enhanced Raman Scattering for Direct Detection of Ocular Bacteria. Sens. Actuators B Chem. 2023, 380, 133381. [Google Scholar] [CrossRef]
- Gao, W.; Duan, W.; Peng, D.; Li, J.; Hu, Z.; Wang, D.; Gong, Z.; Fan, M. Surface-Enhanced Raman Scattering (SERS) Microbial Sensor for Fresh Water Acute Toxicity Monitoring. Microchem. J. 2023, 191, 108822. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Liu, Y.; Xu, J.; Yang, L.; Gao, Z.; Song, Y.Y. Hydrophobic Interaction Enables Rapid Enrichment of Volatile Metabolites on Au/TiO2 Based SERS Substrates for Ultrasensitive Bacteria Detection. J. Mater. Chem. B 2023, 11, 3877–3884. [Google Scholar] [CrossRef]
- Wang, W.; Vikesland, P.J. Metabolite-Mediated Bacterial Antibiotic Resistance Revealed by Surface-Enhanced Raman Spectroscopy. Environ. Sci. Technol. 2023, 57, 13375–13383. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Liu, Y.; Li, X.; Li, C.; Li, G. A SERS Aptasensor Based on HCR Mediated Signal Conversion Strategy for the Rapid and Reliable Determination of Escherichia coli O157:H7. Microchem. J. 2024, 199, 109951. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, J.; Wang, Y.; Fan, B.; Qiao, J.; Chen, L.; Wang, X.; Guo, L.; Yang, H.; Li, Q. Magnetic Micromotors with Spiky Gold Nanoshells as SERS Sensors for Thiram and Bacteria Detection. Small 2024, 2405193, e2405193. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, L.; Zhang, Z.; Su, L.; Xiong, Y. Photo-Driven Surfactant-Free Gold Nanostars for Rapid Bacterial Detection in Food Safety Using Surface-Enhanced Raman Spectroscopy. ACS Food Sci. Technol. 2024, 4, 373–381. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Hamo, H.B.; Kushmaro, A.; Marks, R.S.; Grüner, C.; Rauschenbach, B.; Abdulhalim, I. Highly Sensitive and Specific Detection of E. coli by a SERS Nanobiosensor Chip Utilizing Metallic Nanosculptured Thin Films. Analyst 2015, 140, 3201–3209. [Google Scholar] [CrossRef]
- Pebdeni, A.B.; Roshani, A.; Mirsadoughi, E.; Behzadifar, S.; Hosseini, M. Recent Advances in Optical Biosensors for Specific Detection of E. coli Bacteria in Food and Water. Food Control 2022, 135, 108822. [Google Scholar] [CrossRef]
- Sadanandan, S.; Meenakshi, V.S.; Ramkumar, K.; Pillai, N.P.; Anuvinda, P.; Sreelekshm, P.J.; Devika, V.; Ramanunni, K.; Jeevan Sankar, R.; Sreejaya, M.M. Biorecognition Elements Appended Gold Nanoparticle Biosensors for the Detection of Food-Borne Pathogens-A Review. Food Control 2023, 148, 109510. [Google Scholar] [CrossRef]
- Aggarwal, R.T.; Lai, L.; Li, H. Microarray Fabrication Techniques for Multiplexed Bioassay Applications. Anal. Biochem. 2023, 683, 115369. [Google Scholar] [CrossRef]
- Xu, Y.; He, P.; Ahmad, W.; Hassan, M.M.; Ali, S.; Li, H.; Chen, Q. Catalytic Hairpin Activated Gold-Magnetic/Gold-Core-Silver-Shell Rapid Self-Assembly for Ultrasensitive Staphylococcus Aureus Sensing via PDMS-Based SERS Platform. Biosens. Bioelectron. 2022, 209, 114240. [Google Scholar] [CrossRef]
- Bai, H.J.; Gou, H.L.; Xu, J.J.; Chen, H.Y. Molding a Silver Nanoparticle Template on Polydimethylsiloxane to Efficiently Capture Mammalian Cells. Langmuir 2010, 26, 2924–2929. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Ning, P.; Zhang, Y.; Jing, J.; Zhang, M.; Zhang, L.; Huang, J.; He, X.; Fu, T.; Song, Z.; et al. Ta@Ag Porous Array with High Stability and Biocompatibility for SERS Sensing of Bacteria. ACS Appl. Mater. Interfaces 2020, 12, 20138–20144. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Huang, Y.; Wan, Y.; Chen, W.; Liang, J.; Gong, L.; Rui, Z.; Yang, T. Anti-Fouling Array Paper-Based Device for Rapid and Accurate Discrimination of Foodborne Pathogens in Real Samples. Food Chem. 2025, 480, 143871. [Google Scholar] [CrossRef]
- Karmacharya, M.; Michael, I.; Han, J.; Clarissa, E.M.; Gulenko, O.; Kumar, S.; Cho, Y.K. Nanoplasmonic SERS on Fidget Spinner for Digital Bacterial Identification. Microsyst. Nanoeng. 2025, 11, 38. [Google Scholar] [CrossRef]
- Liu, X.; Sun, A.; Brodský, J.; Gablech, I.; Lednický, T.; Vopařilová, P.; Zítka, O.; Zeng, W.; Neužil, P. Microfluidics Chips Fabrication Techniques Comparison. Sci. Rep. 2024, 14, 28793. [Google Scholar] [CrossRef]
- Zhu, A.; Ali, S.; Wang, Z.; Xu, Y.; Lin, R.; Jiao, T.; Ouyang, Q.; Chen, Q. ZnO@Ag-Functionalized Paper-Based Microarray Chip for SERS Detection of Bacteria and Antibacterial and Photocatalytic Inactivation. Anal. Chem. 2023, 95, 18415–18425. [Google Scholar] [CrossRef]
- Mai, Q.D.; Nguyen, H.A.; Dinh, N.X.; Thu Thuy, N.T.; Tran, Q.H.; Thanh, P.C.; Pham, A.T.; Le, A.T. Versatile and High Performance In-Paper Flexible SERS Chips for Simple and in-Situ Detection of Methylene Blue in River Water and Thiram on Apple Skin. Talanta 2023, 253, 124114. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.Y.; Li, J.J.; Zhu, J.; Weng, G.J.; Li, Y.L.; Zhao, J.W. Broad-Spectrum Pathogenic Bacteria SERS Sensing with Face-Centered High-Index Facets Au CPNCs & Microarray Chips: A Novel Platform Able to Achieve Dual-Readout Detection. J. Colloid Interface Sci. 2025, 692, 137485. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Niu, G.; Ren, W.; Jiang, L.; Zhao, J.; Quan, Y.; Ren, M.X.; Yu, W.; Zhang, Y.; Cao, X.; et al. Highly Sensitive Label-Free Detection of Analytes at Different Scales Using Uniform Graphene-Nanopyramids Hybrid SERS System. Sens. Actuators B Chem. 2022, 354, 131205. [Google Scholar] [CrossRef]
- Jiang, T.; He, X.; Du, X.; Xiang, S.; He, H.; Ge, C.; Zhang, X.; Xu, Y. Simultaneous Detection of Staphylococcus Aureus and Escherichia coli in Blood by the Integrated Multifunctional Microfluidic SERS Chip. Microchem. J. 2025, 213, 113833. [Google Scholar] [CrossRef]
- Yin, L.; Huo, B.; Xia, L.; Li, G. On-Chip Capture, Raman-Silent Polymer Labeling, and Digital Mapping Analysis of Escherichia coli O157:H7 in Beverages All-in-One. Anal. Chem. 2024, 96, 11036–11043. [Google Scholar] [CrossRef] [PubMed]
- Bian, J.; Liu, M.; Liu, X.; Bian, X.; Gu, C.; Ma, J.; Jiang, T. SERS Detection of Pelvic Infection-Related Pathogenic Bacteria Based on Flexible PDMS-MXene@MOF@Ag Ternary Substrate. Microchem. J. 2025, 210, 113021. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Tang, J.; Jiang, J.; Gu, C.; Jiang, T.; Wu, K. Quantitative Detection and Intelligent Distinguishing of Urinary Tract Infection Pathogens Based on SERS-Active PDMS@BP-CNT Ternary Substrate. Sens. Actuators B Chem. 2025, 426, 137047. [Google Scholar] [CrossRef]
- Lian, S.; Li, X.; Lv, X. Recent Developments in SERS Microfluidic Chips: From Fundamentals to Biosensing Applications. ACS Appl. Mater. Interfaces 2025, 17, 10193–10230. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Venkatesh, M. Developments in Microfluidic Integrated Lab-on-Chip Devices for DNA Biosensing Towards Unifying the Emergence of Nanobiosensor. Biomed. Mater. Devices 2024, 3, 1104–1124. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, C.; Du, Y.; Huang, J.; Xue, L. Microfluidic Biosensors for Rapid Detection of Foodborne Pathogenic Bacteria: Recent Advances and Future Perspectives. Front. Chem. 2025, 13, 1536928. [Google Scholar] [CrossRef]
- Nnachi, R.C.; Sui, N.; Ke, B.; Luo, Z.; Bhalla, N.; He, D.; Yang, Z. Biosensors for Rapid Detection of Bacterial Pathogens in Water, Food and Environment. Environ. Int. 2022, 166, 107357. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhao, Z.; Lian, K.; Yin, L.; Wang, J.; Man, S.; Liu, G.; Ma, L. SERS-Based CRISPR/Cas Assay on Microfluidic Paper Analytical Devices for Supersensitive Detection of Pathogenic Bacteria in Foods. Biosens. Bioelectron. 2022, 207, 114167. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, X.; Zhou, S.; Zhu, Y.; Chen, J.; Liu, Y.; Ren, X.; Lu, Y.Q.; Xiao, R.; Wang, G. Microsphere Lens Array Embedded Microfluidic Chip for SERS Detection with Simultaneous Enhancement of Sensitivity and Stability. Biosens. Bioelectron. 2024, 261, 116505. [Google Scholar] [CrossRef]
- Fong, Z.H.; Wang, C.H.; Yang, C.Y.; Kan, H.C.; Lin, Y.J.; Chen, Y.L.; Shen, Y.C.; Yu, Y.C.; Chau, L.K.; Io, C.W.; et al. Spectral Flow Cytometry Based on Integration of Surface-Enhanced Raman Scattering Nanoprobes with Microfluidic Chip for Detection of Bacteria. Microchem. J. 2025, 212, 113436. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.; Go, A.; Lee, M.H.; Chen, L.; Choo, J. Rapid and Sensitive Escherichia coli Detection: Integration of SERS and Acoustofluidics in a Lysis-Free Microfluidic Platform. ACS Sens. 2025, 10, 1217–1227. [Google Scholar] [CrossRef]
- Ansah, I.B.; Lee, W.C.; Mun, C.W.; Rha, J.J.; Jung, H.S.; Kang, M.; Park, S.G.; Kim, D.H. In Situ Electrochemical Surface Modification of Au Electrodes for Simultaneous Label-Free SERS Detection of Ascorbic Acid, Dopamine and Uric Acid. Sens. Actuators B Chem. 2022, 353, 131196. [Google Scholar] [CrossRef]
- Liu, H.; Fu, J.; Zhang, J.; Dong, Y.; Yang, L.; Cao, J.; Lei, Y.; Cao, K. A Universal Electrochemical-Modulated Surface-Enhanced Raman Scattering Platform for the Sensitive Detection of Charged Molecules. Anal. Chim. Acta 2024, 1326, 343134. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wen, R.; Ji, C.; Wei, J.; Han, Y.; Wu, L. Electrochemical Potential Enhanced EC-SERS Sensor for Sensitive and Label-Free Detection of Acetamiprid. Microchem. J. 2024, 206, 111524. [Google Scholar] [CrossRef]
- Nie, Z.; Huang, Z.; Wu, Z.; Xing, Y.; Yu, F.; Wang, R. SERS-Based Approaches in the Investigation of Bacterial Metabolism, Antibiotic Resistance, and Species Identification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 336, 126051. [Google Scholar] [CrossRef]
- Aivali, S.; Beaumont, C.; Leclerc, M. Conducting Polymers: Towards Printable Transparent Electrodes. Prog. Polym. Sci. 2024, 148, 101766. [Google Scholar] [CrossRef]
- Wang, C.; Xu, G.; Wang, W.; Ren, Z.; Zhang, C.; Gong, Y.; Zhao, M.; Qu, Y.; Li, W.; Zhou, H.; et al. Bioinspired Hot-Spot Engineering Strategy towards Ultrasensitive SERS Sandwich Biosensor for Bacterial Detection. Biosens. Bioelectron. 2023, 237, 115497. [Google Scholar] [CrossRef]
- Wang, C.; Weng, G.; Li, J.; Zhu, J.; Zhao, J. A Review of SERS Coupled Microfluidic Platforms: From Configurations to Applications. Anal. Chim. Acta 2024, 1296, 342291. [Google Scholar] [CrossRef]
- Wain, A.J.; O’connell, M.A. Advances in Surface-Enhanced Vibrational Spectroscopy at Electrochemical Interfaces. Adv. Phys. X 2017, 2, 188–209. [Google Scholar] [CrossRef]
- Lynk, T.P.; Sit, C.S.; Brosseau, C.L. Electrochemical Surface-Enhanced Raman Spectroscopy as a Platform for Bacterial Detection and Identification. Anal. Chem. 2018, 90, 12639–12646. [Google Scholar] [CrossRef]
- Mu, Y.; Islam, J.; Murray, R.; Larrigy, C.; Russo, A.; Zhang, X.; Quinn, A.J.; Iacopino, D. Silver Nanoparticles—Laser Induced Graphene (Ag NPs-LIG) Hybrid Electrodes for Sensitive Electrochemical-Surface Enhanced Raman Spectroscopy (EC-SERS) Detection. Analyst 2023, 148, 3087–3096. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, Z.; Zhang, D.; Yan, Y.; Yu, Y.; Du, B.; Zhang, Z.; Wang, X. Integrating Liquid Chromatography-Electrochemical Detection-Surface Enhanced Raman Spectroscopy on Microfluidic Chip for Phenylurea Herbicides Analysis. Sens. Actuators B Chem. 2024, 407, 135436. [Google Scholar] [CrossRef]
- Liu, S.; Dong, N.; Meng, S.; Li, Y.; Li, Y.; Wang, S.; Liu, D.; You, T. Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin. Anal. Chem. 2025, 97, 1329–1337. [Google Scholar] [CrossRef]
- Sohrabi, H.; Majidi, M.R.; Fakhraei, M.; Jahanban-Esfahlan, A.; Hejazi, M.; Oroojalian, F.; Baradaran, B.; Tohidast, M.; de la Guardia, M.; Mokhtarzadeh, A. Lateral Flow Assays (LFA) for Detection of Pathogenic Bacteria: A Small Point-of-Care Platform for Diagnosis of Human Infectious Diseases. Talanta 2022, 243, 123330. [Google Scholar] [CrossRef]
- Jung, Y.; Heo, Y.; Lee, J.J.; Deering, A.; Bae, E. Smartphone-Based Lateral Flow Imaging System for Detection of Food-Borne Bacteria E. Coli O157:H7. J. Microbiol. Methods 2020, 168, 105800. [Google Scholar] [CrossRef]
- Shi, L.; Xu, L.; Xiao, R.; Zhou, Z.; Wang, C.; Wang, S.; Gu, B. Rapid, Quantitative, High-Sensitive Detection of Escherichia coli O157:H7 by Gold-Shell Silica-Core Nanospheres-Based Surface-Enhanced Raman Scattering Lateral Flow Immunoassay. Front. Microbiol. 2020, 11, 596005. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Li, J.; Tu, Z.; Gu, B.; Wang, S. Ultrasensitive and Multiplex Detection of Four Pathogenic Bacteria on a Bi-Channel Lateral Flow Immunoassay Strip with Three-Dimensional Membrane-like SERS Nanostickers. Biosens. Bioelectron. 2022, 214, 114525. [Google Scholar] [CrossRef]
- Shen, W.; Li, J.; Zheng, S.; Wang, S.; Wang, C.; Yin, J.; Wang, C. 3D Membrane-like Tag Mediated SERS Encoding-Lateral Flow Immunoassay for Ultrasensitive and Multiplex Diagnosis of Pathogens. Chem. Eng. J. 2025, 514, 163223. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Yuan, J.; Leng, Y.; Lai, W.; Huang, X.; Xiong, Y. Integrated Gold Superparticles into Lateral Flow Immunoassays for the Rapid and Sensitive Detection of Escherichia coli O157:H7 in Milk. J. Dairy Sci. 2020, 103, 6940–6949. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Liu, Z.; Ma, J.; Han, J.; Sun, Y.; Liang, J.; Han, H.; Zhao, J.; Wang, B.; et al. Ultrasensitive SERS Biosensor for Synchronous Detection of Escherichia coli O157:H7 and Pseudomonas Aeruginosa via Cecropin 1-Functionalized Magnetic Tags-Based Lateral Flow Assay. Sens. Actuators B Chem. 2024, 409, 135598. [Google Scholar] [CrossRef]
- Wu, P.; Zuo, W.; Wang, Y.; Yuan, Q.; Yang, J.; Liu, X.; Jiang, H.; Dai, J.; Xue, F.; Ju, Y. Multimodal Capture−Antibody-Independent Lateral Flow Immunoassay Based on AuNF−PMBA for Point-of-Care Diagnosis of Bacterial Urinary Tract Infections. Chem. Eng. J. 2023, 451, 139021. [Google Scholar] [CrossRef]
- Bazsefidpar, S.; Serrano-Pertierra, E.; Gutiérrez, G.; Calvo, A.S.; Matos, M.; Blanco-López, M.C. Rapid and Sensitive Detection of E. coli O157:H7 by Lateral Flow Immunoassay and Silver Enhancement. Microchim. Acta 2023, 190, 264. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Katani, R.; Li, L.; Hegde, N.; Roberts, E.L.; Kapur, V.; DebRoy, C. Rapid Detection of Escherichia coli O157 and Shiga Toxins by Lateral Flow Immunoassays. Toxins 2016, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Liu, C.; Wu, S.; Li, H.; Guo, H.; Yang, B.; Qiu, S.; Li, J.; Liu, L.; Zeng, H.; et al. Development of a Lateral Flow Colloidal Gold Immunoassay Strip for the Simultaneous Detection of Shigella Boydii and Escherichia coli O157:H7 in Bread, Milk and Jelly Samples. Food Control 2016, 59, 345–351. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, X.; Zhang, B.; Cheng, S.; Han, H.; Jin, Q.; Wang, C.; Xiao, R. Sensitive Detection of Escherichia coli O157:H7 and Salmonella Typhimurium in Food Samples Using Two-Channel Fluorescence Lateral Flow Assay with Liquid Si@quantum Dot. Food Chem. 2021, 363, 130400. [Google Scholar] [CrossRef]
- Yan, S.; Liu, C.; Fang, S.; Ma, J.; Qiu, J.; Xu, D.; Li, L.; Yu, J.; Li, D.; Liu, Q. SERS-Based Lateral Flow Assay Combined with Machine Learning for Highly Sensitive Quantitative Analysis of Escherichia coli O157:H7. Anal. Bioanal. Chem. 2020, 412, 7881–7890. [Google Scholar] [CrossRef]
- Jarvis, R.M.; Goodacre, R. Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2004, 76, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Bas, A.; Burns, N.; Gulotta, A.; Junker, J.; Drasler, B.; Lehner, R.; Aicher, L.; Constant, S.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding the Development, Standardization, and Validation Process of Alternative In Vitro Test Methods for Regulatory Approval from a Researcher Perspective. Small 2021, 17, 2006027. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Uchida, N.; Furutani, S.; Murahashi, M.; Espulgar, W.; Nagatani, N.; Nagai, H.; Inoue, Y.; Ikeuchi, T.; Kondo, S.; et al. Field-Deployable Rapid Multiple Biosensing System for Detection of Chemical and Biological Warfare Agents. Microsyst. Nanoeng. 2018, 4, 17083. [Google Scholar] [CrossRef]
- Hassanain, W.A.; Johnson, C.L.; Faulds, K.; Graham, D.; Keegan, N. Recent Advances in Antibiotic Resistance Diagnosis Using SERS: Focus on the “Big 5” Challenges. Analyst 2022, 147, 4674–4700. [Google Scholar] [CrossRef]







| S.N. | Substrate Type | Method | Process | Sensitivity | Uniformity | Reproducibility |
|---|---|---|---|---|---|---|
| 1 | Colloidal nanoparticles | Colloidal Nanoparticles | Easy NP synthesis is required | Low | Poor | Poor |
| Microstructures of plasmonic materials (e.g., copper-, silver-, or gold-based lithography) | Sophisticated and hard Lithography, sputtering, hot-press, etc. | Very high | Very high | Very high | ||
| Nanoparticle coating on microstructure surfaces | Complex Nanostructured substrate synthesis (ablation, lithography) and NP deposition are time-consuming | Moderate to high | Moderate to high | High | ||
| 2 | Nanoparticles on porous materials | Nanoparticle coating on porous material | Complex Fabrication is time-consuming | Moderate to high | Moderate to high | Moderate |
| Nanoparticle coating on commercially available substrates | Easy NPs’ attachment to the substrate is required | Moderate to acceptable | Poor to moderate | Moderate to high | ||
| 3 | Nanoparticles on flexible substrates | Mixing and drop-casting or filtering through/on flexible surfaces (e.g., filter paper or membrane-assisted SERS) | Easy NP synthesis is required | Moderate to high | Poor | Poor |
| Nanoparticle coating on flexible surfaces | Easy NP synthesis is required, followed by coating | Moderate | Poor to moderate | Moderate | ||
| Nanoparticle coating on microstructures’ flexible surfaces | Complex Nanoparticle synthesis, microstructure making (lithography, template moulding, electrochemical deposition, etc.), followed by nanoparticle coating (if required) | High | Moderate to high | High | ||
| Nanoparticle coating on flexible electrodes (EC-SERS) | Easy NPs synthesis is required | Very high | High | Very high |
| S.N. | Bands | Assignment/Description | References |
|---|---|---|---|
| 1 | 653 | Xanthine (DNA/RNA component) | [176,177] |
| 2 | 655 | Hypoxanthine, xanthine, guanine, tyrosine | [137,178,179,180] |
| 3 | 730 | Ring vibration of adenine Adenine, hypoxanthine, adenine monophosphate Adenine, hypoxanthine, adenine monophosphate A ring breathing (nucleic acid) Ring breathing of adenine (nucleic acid) | [59,177,181,182,183,184,185] |
| 4 | 733 | [59,185,186,187,188] | |
| 5 | 734 | [185,189,190,191,192] | |
| 6 | 735 | [137,146,171,185,191,193,194] | |
| 7 | 736 | [146,185,195,196] | |
| 8 | 738 | [146,197,198,199,200] | |
| 9 | 768 | Pyrimidine ring breathing mode | [140,201] |
| 10 | 796 | Tyrosine C–O–P–O–C—RNA binding | [108,178,202] |
| 11 | 900 | Polysaccharide (bacterial cell wall) | [137,140,203] |
| 12 | 955 | Xanthine Xanthine; protein skeleton C-single bond C-stretch, N–C-α-C stretch α-helix | [59,176,181] |
| 13 | 960 | Xanthine; protein skeleton C-single bond C-stretch, N–C-α-C stretch α-helix/δ(C = C) | [29,59,184,191,204] |
| 14 | 1000 | Protein/ring vibration of phenylalanine | [176,182,203,205] |
| 15 | 1004 | ns(C-C), symmetric ring breathing (phenylalanine of collagen) | [11,13,186,197] |
| 16 | 1010 | Phenylalanine (proteins) | [140,194,197] |
| 17 | 1025 | Carbohydrate’s peak | [29,185] |
| 18 | 1031 | d(C-H), phenylalanine (protein assignment) C-H in-plane bending mode of phenylalanine Carbohydrate residues of collagen Phenylalanine, C-N stretching of proteins C-H in-plane bending mode of phenylalanine | [11,178,202] |
| 19 | 1146 | Carbohydrates peak for solids | [187,206] |
| 20 | 1240 | Amide III/amide III (random coil) | [137,146,179,186,193,207] |
| 21 | 1248 | Amide III (of collagen) | [108,146,184,200] |
| 22 | 1280 | C–N and N–H stretching (amide III); CH2 and CH3—protein deformation; guanine breathing ring | [108,208,209] |
| 23 | 1300 | -(CH2)n- in-plane twist vibration (lipid band) d(CH2)-lipids, fatty acids CH2 twisting modes d(CH), t(CH2)(a-helix) CH2 twisting (lipids) CH2 twisting and wagging (lipids) | [11,183,201,207] |
| 24 | 1310 | CH3/CH2 twisting, wagging and/or bending mode of collagens and lipids | [138,210] |
| 25 | 1320 | Adenine, xanthine, adenine monophosphate (C–N) stretch | [59,184,186,197,211] |
| 26 | 1326 | Ring vibration of adenine Xanthine, adenine, AMP | [182,203,212] |
| 27 | 1330 | Typical phospholipid region associated with DNA and phospholipid collagen (nucleic acids and phosphates) | [11,146,177,181,200] |
| 28 | 1335 | Adenine | [137,146,185,193] |
| 29 | 1395 | C55O symmetric stretch/CH2 deformation | [149,211] |
| 30 | 1415 | C55O symmetric stretch quinoid ring | [186,197] |
| 31 | 1450 | CH2 scissoring vibration (lipid band) | [146,178,184,187,189,209] |
| 32 | 1466 | CH2 deformation of lipids, proteins, carbohydrates | [182,203,213] |
| 33 | 1504 | –C–C conjugated stretching—carotenoids | [108,214,215] |
| 34 | 1570 | C–C stretching | [186,197,198] |
| S.N. | SERS Substrate Fabrication Techniques | Substrate | Substrate Synthesis | Laser | Detection Time | E. coli Source | Sample Preparation | Major Bands Observed | LOD | E.F. | Reference |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Manual mixing and drop-casting | AgNPs | Chemical reduction method | 785 nm | 60 min | Bacterial culture | E. coli supernatant mixed with AgNPs and drop-casted | 1013 cm−1, 1025 cm−1, 1173 cm−1, 1335 cm−1, 1558 cm−1, 1624 cm−1 | - | 100% | [185] |
| 2 | Mixing and drop-casting | AgNPs | Chemical reduction method | 532 nm | 1 s | Bacterial culture | Resuspended the washed E. coli in mile-Q water, mixed with AgNPs, and drop-casted | 735 cm−1, 800 cm−1, 1335 cm−1, 1455 cm−1, 1633 cm−1 | - | - | [193] |
| 3 | Nanoparticle synthesis on analyte surface | AgNPs | In situ synthesis | 532 nm | 5 s | Chicken carcass wash-water | Washed E. coli cells were coated with AgNPs using an in situ process and drop-casted | 1153 cm−1, 1256 cm−1, 1345 cm−1, 1535 cm−1, 2930 cm−1 | - | - | [180] |
| 4 | Mixing and drop-casting | AgNPs | Chemical reduction method | 785 nm | 40 s | Bacterial culture | E. coli cells were washed and mixed with AgNPs and drop-casted | 658 cm−1, 734 cm−1, 958 cm−1, 1332 cm−1, 1450 cm−1 | - | - | [189] |
| 5 | Mixing and drop-casting | AuNPs | Chemical reduction method | 780 nm | 1 s | Ground beef | E. coli was mixed and incubated with AuNPs and drop-casted | 738 cm−1, 1004 cm−1, 1010 cm−1, 1320 cm−1, 1415 cm−1, 1570 cm−1, | - | - | [197] |
| 6 | Drop-casting and manual mixing | Ag-Au microcapsules (layer-by-layer assembly) | Layer-by-layer assembly | 785 nm | 5 s | Bacterial culture | Washed and thawed E. coli cells were drop-casted on microcapsules | 1200 cm−1, 1248 cm−1, 1280 cm−1, 1355 cm−1, 1396 cm−1, 1435 cm−1, 1654 cm−1 | - | 109 EF | [108] |
| 7 | Mixing and drop-casting | AuNP-coated filter paper | Self-assembly | 785 nm | -- | Bacterial culture | Washed E. coli cells were resuspended and mixed with AuNPs, incubated, and drop-casted | 733 cm−1, 1004 cm−1, 1114 cm−1, 1240 cm−1, 1320 cm−1, 1415 cm−1, 1570 cm−1 | - | [186] | |
| 8 | Flat gel surface coated with NPs (aptamer-mediated specificity) | Apt-AgNPs-CS gel | Mixing, coating, and drop-casting | 633 nm | 120 min | Milk and orange juice | Washed E. coli cells were mixed with plasmonic complex and incubated in the dark, washed and mixed with aptamers and incubated in the dark, and washed with PBS; the sandwich structure was analysed | 738 cm−1, 1100 cm−1, 1570 cm−1 | 3.46 CFU/mL | - | [198] |
| 9 | Mixing and drop-casting | Au@Ag-stuffed Nanopancakes | Mixing and self-assembly | 532 nm | -- | Bacterial culture | E. coli cells were mixed with SERS tags, incubated, and washed. Mixed with Au@Ag nanopancakes and drop-casted | 415 cm−1, 687 cm−1, 994 cm−1, 1017 cm−1, 1067 cm−1, 1188 cm−1, 1217 cm−1, 1594 cm−1 | 7 CFU/mL | - | [106] |
| 10 | Nanostructured plasmonic meta-surface | Au + metasurface cavities | Electron beam lithography | 785 nm | 10 s | E. coli | E. coli toxins were drop-casted on nanostructures, 2-nanostructure prefunctionalisation, and E. coli toxin drop-casting | 768 cm−1, 1022 cm−1, 1053 cm−1, 1115 cm−1, 1300 cm−1, 1392 cm−1 | 1.4 nM | 9 × 107 | [201] |
| 11 | Nanoparticles on a flexible surface (filter paper) | Au@Ag NPs + filter paper | Seed growth method followed by dip-coating | 785 nm | -- | Bacterial culture | E. coli cells were drop-casted on NP dip-coated filter paper | 655 cm−1, 735 cm−1, 900 cm−1, 1240 cm−1, 1335 cm−1 | 104 CFU/mL | - | [137] |
| 12 | Nanoparticle coating on flexible surface (antibody-mediated specificity) | GO@Au nanosheet with antibodies | Two-step seed growth method followed by antibody mixing 2-antibody-sprayed strip loading | - | 30 min | Bacterial culture | Antibodies were mixed with the GO@Au nanosheets and E. coli cells and drop-casted 2-antibody-sprayed strip was loaded with a mixture of E. coli cells and GO@Au nanosheet-coated strip | 1079 cm−1, 1310 cm−1 | 10 cells/mL | 7.07 × 107 | [138] |
| 13 | Mixing and drop-casting | Anup’s with Thioglucose, polyvinylpyrrolidone, and citrate | Chemical reduction | 808 nm | 10 min (60 s × 10 cycles) | Bacterial culture | E. coli cells were mixed with AuNPs, drop-casted, and heat-fixed | 500 cm−1, 600 cm−1, 768 cm−1, 900 cm−1, 1010 cm−1 | - | - | [140] |
| 14 | Drop-casting and manual mixing | Ag+ surrounding single poly(4-cyanostyrene) NPs | Emulsion polymerisation | 532 nm | 5 s | Drinking water, sour milk, and lake water | Washed E. coli cells were mixed with Ag+, incubated, and centrifuged. Supernatant was further blended with poly (4CSN) NPs and filled in capillary | - | 100 cells | - | [218] |
| 15 | Mixing and drop-casting (antibody-mediated specificity) | AuNPs+antibiotics | Mixing | 785 nm | 1 s | Bacterial culture | Washed E. coli cells were resuspended, mixed with AuNPs, and drop-casted | 738 cm−1 | - | - | [199] |
| 16 | Drop-casting and manual mixing | AuNPs/PIB−POE−PIB/NMPs | Multistep assembly of nanoparticles using hydrophilic and hydrophobic polymer dispersants | 633 nm | -- | Bacterial culture | E. coli | 736 cm−1 | 10−8 M | 8.9 × 106 | [195] |
| 17 | Nanoparticles on microstructured surface (capillary-driven detection) | PDMS-based microfluidic channel and AuNPs | Chemical reduction method and micro/soft lithography | 785 nm | 60 min | Bacterial culture | Fixed E. coli O157:H7 cells were washed, centrifuged, and mixed with SERS active probes. Mixture was incubated, centrifuged, and pelleted down | - | 0.5 CFU/mL | - | [139] |
| 18 | Mixing and drop-casting | PVP-modified AgNPs colloid | Chemical reduction followed by surface modification/functionalisation | - | -- | Bacterial culture | E. coli | - | - | - | [141] |
| 19 | Nanoparticles on microstructured surface (capillary-driven detection) (antibody-mediated specificity) | Fe3O4 MNPs on microfluidic chip | PMMA at CNC machine for the microfluidic chamber. Two-seed growth method followed by chemical reduction method and self-assembly | 785 nm | 60 min | Milk | In four-step (chambered) microfluidic device, E. coli–MNP conjugates were injected Binding with E. coli antibodies and washing. | 1080 cm−1, 1590 cm−1, | 7 CFU/mL | - | [25] |
| 20 | Drop-casting and mixing | Fe3O4@PEI and MNComposite@ Au@Ag | Hydrothermal and chemical reduction followed by coating | 785 nm | 20 min | Fish pathogen E. coli | E. coli cells mixed and incubated with Fe3O4@PEI. Washed, drop-casted, and coated with Au@Ag NPs | 537 cm−1, 564 cm−1, 652 cm−1, 730 cm−1, 792 cm−1, 955 cm−1, 1090 cm−1, 1330 cm−1, 1372 cm−1, 1456 cm−1, 1597 cm−1 | 105 CFU/mL | - | [181] |
| 21 | Mixing and drop-casting | Fe3O4@AuNPs@NSP (nanoscale silicate platelets) | Coating on NSP sheet then Fe3O4 linking with coprecipitation method | 632.8 nm | -- | Bacterial culture | E. coli | 734 cm−1, 1599 cm−1 | 103 CFU/mL | 3.4 × 106 | [190] |
| 22 | Nanoparticle coating on microstructure surface | Flexible plasmonic microneedles | Bioprinting/soft lithography followed by coating | 785 nm | 15 min | Mutton | Substrate pressing on Agar plates | 715 cm−1, 960 cm−1, 1025 cm−1, 1140 cm−1, 1270 cm−1, 1457 cm−1, 1585 cm−1, | 143 CFU/gm | 1.2 × 104 | [29] |
| 23 | Drop-casting and mixing (antibody-mediated specificity) | Lectin-functionalised MNPs with covalent organic framework | Schiff base sequential method | 785 nm | -- | Bacterial culture | E. coli cells were mixed with MNPs, washed, centrifuged, and mixed with antibody-modified nanotags, incubated, washed, and drop-casted | 2271 cm−1 | 101 CFU/mL | - | [182] |
| 24 | Nanoparticle coating on microstructure surface | 3D-ACEK/SERS system and AgNPs | Photo-lithography | 532 nm | 2 min | Whole blood | Blood sample was mixed with AgNPs and drop-casted inside the chamber | 754 cm−1, 1102 cm−1, 1156 cm−1, 1204 cm−1, 1286 cm−1, 1362 cm−1, 1466 cm−1 | 3 CFU/mL | - | [213] |
| 25 | Mixing and drop-casting (affinity-mediated specificity) | Lectin (Con A)-modified BCNCs and AuNPs | Extraction, functionalisation, and mixing | 785 nm | 1 s | Bacterial culture | E. coli was added with lectin and bacterial cellulose nanocomposites (BCNCs) mixture. Mixed, washed, resuspended with AuNPs, and drop-casted | 730 cm−1, 1000 cm−1, 1241 cm−1, 1326 cm−1, 1466 cm−1, 1560 cm−1 | ∼1.5 × 103 CFU/mL | - | [182] |
| 26 | Nanoparticles coated on nanostructure surface | Aptamer-Au@MMSPM Microarray biochip | Frends method followed by self-assembly | 785 nm | 6 s | Bacterial culture, milk, and minced pork | Sample was incubated with Au@MMSPMs, washed, and mixed with nanotags, incubated and drop-casted | 730 cm−1, 1050 cm−1, 1300 cm−1 | 2.20 CFU/mL | - | [183] |
| 27 | Mixing and drop-casting | AgNPs | Chemical reduction method | 785 nm | 15 s | Bacterial culture | E. coli cells were washed and mixed with AgNPs and drop-casted | 450 cm−1, 472 cm−1, 627 cm−1, 706 cm−1, 850 cm−1, 930 cm−1, 1220 cm−1, 1310 cm−1 | - | - | [210] |
| 28 | Microstructures of plasmonic material | Vertically aligned gold nanowires on silicon wafers | Seed growth method | 785 nm | 10 s | Ocular swab | Herringbone structure was used to fasten the PCR. Enriched bacterial samples were drop-casted on the v-AuNW | 681–691 cm−1, 1021–1225 cm−1, 1182–1184 cm−1, 1269–1277 cm−1, 1517–1524 cm−1 | - | 3.16 × 10−6 M | [219] |
| 29 | Mixing and drop-casting | Self-supporting liquid-free membrane and halide-modified AgNPs with antibodies and indole | Chemical reduction method followed by self-assembly | 633 nm | 5 s | Bacterial culture | Sample was mixed and drop-casted | 1063 cm−1 | 0.3 μM | - | [220] |
| 30 | Nanostructure modified with plasmonic material | ODPA-modified AuNPs/TiNTs | Electrochemical anodisation followed by sputtering and photoreduction | 638 nm | 5 s (20 min total detection time) | Bacterial culture | E. coli cells were drop-casted | 2136 cm−1, | 3 cells per mL | 4.0 × 107 | [221] |
| 31 | Mixing and drop-casting (aptamer-based detection) | Au NP-based aptasensor | Chemical reduction method for NPs and freeze recovery method aptamers | 633 nm | 10 s (45 min total detection time) | Bacterial culture along with tap water, drinking water, and milk | Bacterial cells were mixed with the magnetic beads and ds-DNA and incubated. Ligase, polymerase (enzymes), and SERS probe (Au NPs) were drop-casted | 1504 cm−1, | 0.3 CFU/mL | - | [214] |
| 32 | Nanostructure surface with plasmonic material/nanoparticle coating | Ag-coated silicon nanowires | Wet-chemical MACE method | 785 nm | 10 s (total detection time 5 min for 10 samples) | Synthetic urine | Serial dilution and drop-casting | 728–739 cm−1, 966–982 cm−1, 1101–1135 cm−1, 1183–1188 cm−1, 1280 cm−1, 1333 cm−1, 1147 cm−1, 1583–1588 cm−1, | 100 CFU/mL | - | [208] |
| 33 | Mixing and drop-casting (drop-casting through an acoustic printer) | Au nanorods | Seed growth method | 785 nm | 3 min | Bacterial culture | Mixed samples were drop-casted/printed using the acoustic printer | 735–744 cm−1, 1056–1090 cm−1, 1097–1099 cm−1, 1204–1209 cm−1, 1240–1248 cm−1, 1330–1335 cm−1, 1449–1450 cm−1, 1529–1534 cm−1, | - | 1.5 × 102 | [146] |
| 34 | Drop-casting (antibiotic treatment) | AgNPs | Chemical reduction method | 785 nm | - | Bacterial culture | Direct drop-casting of AgNPs on petri plate | - | - | - | [222] |
| 35 | Mixing and drop-casting (ML algorithms for rapid detection) | AgNPs | Chemical reduction method | 784.56 nm | - | Bacterial culture | Single colony was mixed by vortexing in PBS buffer followed by mixing with AgNPs and drop-casting | 530 cm−1, 656 cm−1, 730 cm−1, 1248 cm−1, 1320 cm−1, 1414 cm−1, 1450 cm−1, 1576 cm−1, | - | - | [184] |
| 36 | Nanostructure-based microfluidic chip | Functional organic polymer/Au nanofilm | Chemical reduction method | 785 nm | 30 s (total detection time 60 min) | Bacterial culture | Direct sample injection in microchannel | 601 cm−1, 813 cm−1, 990 cm−1, 1280 cm−1, 1450 cm−1, 1610 cm−1, 1720 cm−1, | - | 8.8 × 105 | [209] |
| 37 | Nanostructure surface coated with plasmonic materials (aptamer-based sensor) | SH-apt@Au-Ag@Si TP and ROX-aptamer | MACE method | 785 nm | 0.5 s (total detection time 210 min) | Bacterial culture (able to differentiate between the bacteria) | Drop-casting the bacteria on SH-apt@Au-Ag@Si TP followed by the ROX-aptamer drop-casting | 663 cm−1, 735 cm−1, 1460 cm−1, | 2.8 CFU/mL | 1.53 × 107 | [171] |
| 38 | Mixing and drop-casting | AuNPs (compared the liq vs. drop-casting method) | Turkevich’s method | 785 nm | 20 s | Bacterial culture | Mixed and spectra taken Mixed and drop-casted and spectra taken (comparison) | 663–664 cm−1, 730–732 cm−1, 954–960 cm−1, 1244–1246 cm−1, 1341–1348 cm−1, 1452 cm−1, 1690–1700 cm−1, | - | 3.4 × 105 | [59] |
| 39 | Mixing and drop-casting (aptamer-based detection) | AuNPs | Chemical reduction method | 785 nm | 5 s | Bacterial culture, tap water, and milk | Aptamer was mixed and incubated with E. coli Centrifuged, mixed and incubated with SERS prob, then drop-casted | 1073 cm−1, 1586 cm−1, 2227 cm−1, | 409 CFU/mL | - | [223] |
| 40 | Flexible microstructure surface coated with nanoparticles | Ag NPs@PDMS sponge | Chemical reduction method | 532 nm | 1 s | Bacterial culture and milk | - | 658 cm−1, 724–738 cm−1, 1242–1248 cm−1, 1330 cm−1, 1467 cm−1, 1622 cm−1, | 1CFU/mL | 1.53 × 108 | [200] |
| 41 | Nanoparticles coated on flexible substrate | Ti3C2Tx-AuNP-based paper substrates | Ti3C2Tx synthesis, AuNPs synthesis and mixing by self-assembly followed by dip coating of cellulose filter paper | 633 nm | 60 s | Bacterial culture and porcine skin | E. coli cells were centrifuged, washed, and resuspended in NaCl solution. Filter paper-based substrate was dipped in bacterial suspension and dried | 657 cm−1, 660 cm−1, 734–735 cm−1, 960–962 cm−1, | 5 × 105 CFU/mL | - | [191] |
| 42 | Mixing and drop-casting | Au–WS2 nanohybrids | Chemical reduction method and drop-casting on silicon wafer | 780 nm | 20 s | Bacterial culture | E. coli culture was diluted in PBS and drop-casted | 736 cm−1, 1149 cm−1, 1210 cm−1, 1306 cm−1, 1438 cm−1, 1494 cm−1 | 104 CFU/mL | ∼1.80 × 109 | [196] |
| 43 | Mixing and drop-casting | 2D-functionalised MoS2 and SnS2 | Hydrothermal followed by self-assembly | 633 nm | - | Bacterial culture | E. coli cells were washed and suspended in PBS, mixed with SERS substrate, and drop-casted | 828 cm−1, 1129 cm−1, 1159 cm−1, 1240 cm−1, 1300 cm−1, 1499 cm−1, | - | - | [207] |
| 44 | Mixing and drop-casting | AgNPs | Chemical reduction method | 785 nm | 10 s | E. coli biofilm | Biofilm was mixed and incubated with AgNPs and drop-casted | 653 cm−1, 726 cm−1, 955 cm−1, 1000 cm−1, 1128 cm−1, 1245 cm−1, 1318 cm−1, | - | - | [176] |
| 45 | Mixing and drop-casting on a 2-electrode surface | FF-PNT/Ag NP and Au electrodes on silicon sheet | Self-assembly and 3D printing (electric potential enhanced the SERS signals by 4–5 fold | 532 nm (with 0–25 V potential difference, 5 V stepwise) | 1 s | Bacterial culture and human blood | Sample was mixed with FE-PNT/Ag NPs and drop-casted | 653 cm−1, 730 cm−1, 1001 cm−1, 1150 cm−1, 1330 cm−1, 1360 cm−1, 1665 cm−1, | 10 CFU/mL | - | [177] |
| 46 | Mixing and drop-casting | MB@Ag@Au | Self-assembly | 785 nm | 10 s | Bacterial culture | Cells were drop-casted and dried on the MB@Ag@Au beads surface arranged on the surface of silicon wafer | 651 cm−1, 727 cm−1, 1378 cm−1, | - | - | [224] |
| 47 | Microstructure surface coated with nanoparticles | Microcavity Array-Based Digital SERS Chip | Photolithography, etching and sputtering | - | - | Bacterial culture | Centrifuged, washed, resuspended in LB broth, and injected | 733 cm–1, 876 cm–1, 918 cm–1, 1146 cm–1, 1260 cm–1 1328 cm–1, 1450 cm–1 | - | 1.1 × 108 | [187] |
| 48 | Drop-casting | PEG-AuNPs@Al foil | Chemical reduction method | 785 nm | 10 s | Bacterial culture and urine | Centrifuged, washed, and drop-casted | - | 105 cells/mL | 108 | [179] |
| 49 | Drop-casting | V2CTx-AuNSs@Silicon wafer | Electrostatic self-assembly | 808 nm | - | Bacterial culture | Cells were washed 3 times and resuspended, incubated with V2CTx-AuNSs overnight and groupcasted on silicon wafer | 733 cm–1, 753 cm–1, | 1 × 105 CFU/mL | - | [188] |
| 50 | Microstructure surface coated with nanoparticles | Au nano stars @AGMS (Array Gas membrane separation) device | Photo-driven synthesis | 785 nm | 2 s | Bacterial culture and Sour food | The culture was washed and kept in AGMS device for treatment; Au nanostars were also added | 751 cm–1, (indole detection) | 5 CFU/mL | - | [225] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Saxena, S.; Dodla, A.; Shukla, S.; Saxena, S.; Wood, B.R. Recent Advancements in the SERS-Based Detection of E. coli. Sensors 2026, 26, 490. https://doi.org/10.3390/s26020490
Saxena S, Dodla A, Shukla S, Saxena S, Wood BR. Recent Advancements in the SERS-Based Detection of E. coli. Sensors. 2026; 26(2):490. https://doi.org/10.3390/s26020490
Chicago/Turabian StyleSaxena, Sarthak, Ankit Dodla, Shobha Shukla, Sumit Saxena, and Bayden R. Wood. 2026. "Recent Advancements in the SERS-Based Detection of E. coli" Sensors 26, no. 2: 490. https://doi.org/10.3390/s26020490
APA StyleSaxena, S., Dodla, A., Shukla, S., Saxena, S., & Wood, B. R. (2026). Recent Advancements in the SERS-Based Detection of E. coli. Sensors, 26(2), 490. https://doi.org/10.3390/s26020490

