Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = plasmonic–photonic coupling system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 470
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

14 pages, 23722 KiB  
Article
Optoplasmonics of Single-Walled Carbon Nanotube Thin Films
by Chandra Mani Adhikari
Photonics 2025, 12(4), 298; https://doi.org/10.3390/photonics12040298 - 25 Mar 2025
Viewed by 600
Abstract
An ultrathin film capable of exhibiting material properties across and around two different dimensions by bridging two-dimensionality frameworks, called a trans-dimensional (TD) material, can be an exceptional tool to tune various electronic and optoplasmonic properties of a system that are unattainable from either [...] Read more.
An ultrathin film capable of exhibiting material properties across and around two different dimensions by bridging two-dimensionality frameworks, called a trans-dimensional (TD) material, can be an exceptional tool to tune various electronic and optoplasmonic properties of a system that are unattainable from either dimension. Taking an example of the planar periodic arrangement of single-walled carbon nanotube (SWCNT) TD films, we semi-analytically calculated their dynamical conductivities and dielectric responses as a function of the incident photon frequency and the SWCNT’s radius using the many-particles Green’s function formalism within the Matsubara frequency technique. The periodic array of SWCNTs has an anisotropic dielectric response, which is almost a constant and the same as that of the host dielectric medium in the perpendicular direction of the alignment of the SWCNT array due to the depolarization effect that SWCNTs have. However, the dielectric response functions depend on the incident photon energy in addition to the film’s thickness, the SWCNT’s sparseness, inhomogeneity, and the SWCNT’s diameter. The energy difference between the resonant absorption peak and the plasmonic peak varies with the thickness of the film. Varying the length of the CNTs, we also observed that the exciton–plasmon coupling strength increases with the increase in length of the SWCNTs. The metallic SWCNT-containing films have comparatively pronounced plasmon resonance peaks at low photon energy than semiconducting SWCNT-containing films. Both metallic and semiconducting SWCNT-consisting films have negative refraction for a wide range of energy, making them good candidates for metamaterials. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

12 pages, 3161 KiB  
Article
Surface Plasmon Mediated Angular and Wavelength Tunable Retroreflectors Using Parallel-Superimposed Surface Relief Bi-Gratings
by Maxwell Dollar, Yazan Bdour, Paul Rochon and Ribal Georges Sabat
Appl. Sci. 2025, 15(1), 339; https://doi.org/10.3390/app15010339 - 1 Jan 2025
Cited by 1 | Viewed by 1238
Abstract
This study presents the design and fabrication of light retroreflectors utilizing surface plasmon resonance (SPR) in parallel-superimposed bi-grating structures. The bi-gratings were inscribed onto a thin azobenzene molecular glass film via photolithography and subsequently coated with a thin gold layer to support SPR. [...] Read more.
This study presents the design and fabrication of light retroreflectors utilizing surface plasmon resonance (SPR) in parallel-superimposed bi-grating structures. The bi-gratings were inscribed onto a thin azobenzene molecular glass film via photolithography and subsequently coated with a thin gold layer to support SPR. The two superimposed gratings operate in tandem, with one grating coupling incident light into the SPR mode and the other coupling it back out toward the light source, thereby achieving retroreflection. Monochromatic retroreflection is demonstrated for a target wavelength (785 nm) at angles from 5° to 10°, while multi-wavelength retroreflection is achieved for red, orange, and green wavelengths at corresponding angles. The findings highlight the potential of these bi-gratings for applications in optical sensing, communication, and advanced photonic systems, where compact, tunable, and angularly responsive designs are essential. Full article
Show Figures

Figure 1

14 pages, 7536 KiB  
Article
Novel Structures for PV Solar Cells: Fabrication of Cu/Cu2S-MWCNTs 1D-Hybrid Nanocomposite
by Sevinj Nuriyeva, Aynura Karimova, Habiba Shirinova, Sevinj Jafarova, Ghulam Abbas, Alexandr Zamchiy and Hugo Aguas
Micromachines 2024, 15(11), 1318; https://doi.org/10.3390/mi15111318 - 29 Oct 2024
Cited by 2 | Viewed by 1400
Abstract
The production of cost-effective novel materials for PV solar cells with long-term stability, high energy conversion efficiency, enhanced photon absorption, and easy electron transport has stimulated great interest in the research community over the last decades. In the presented work, Cu/Cu2S-MWCNTs [...] Read more.
The production of cost-effective novel materials for PV solar cells with long-term stability, high energy conversion efficiency, enhanced photon absorption, and easy electron transport has stimulated great interest in the research community over the last decades. In the presented work, Cu/Cu2S-MWCNTs nanocomposites were produced and analyzed in the framework of potential applications for PV solar cells. Firstly, the surface of the produced one-dimensional Cu was covered by Cu2S nanoflake. XRD data prove the formation of both Cu and Cu2S structures. The length and diameter of the one-dimensional Cu wire were 5–15 µm and 80–200 nm, respectively. The thickness of the Cu2S nanoflake layer on the surface of the Cu was up to 100 nm. In addition, the Cu/Cu2S system was enriched with MWCNTs. MWCNs with a diameter of 50 nm interact by forming a conductive network around the Cu/Cu2S system and facilitate quick electron transport. Raman spectra also prove good interfacial coupling between the Cu/Cu2S system and MWCNTs, which is crucial for charge separation and electron transfer in PV solar cells. Furthermore, UV studies show that Cu/Cu2S-MWCNTs nanocomposites have a wide absorption band. Thus, MWCNTs, Cu, and Cu2S exhibit an intense absorption spectrum at 260 nm, 590 nm, and 972 nm, respectively. With a broad absorption band spanning the visible–infrared spectrum, the Cu/Cu2S-MWCNTs combination can significantly boost PV solar cells’ power conversion efficiency. Furthermore, UV research demonstrates that the plasmonic character of the material is altered fundamentally when CuS covers the Cu surface. Additionally, MWCN-Cu/Cu2S nanocomposite exhibits hybrid plasmonic phenomena. The bandgap of Cu/Cu2S NWs was found to be approximately 1.3 eV. Regarding electron transfer and electromagnetic radiation absorption, the collective oscillations in plasmonic metal-p-type semiconductor–conductor MWCNT contacts can thus greatly increase energy conversion efficiency. The Cu/Cu2S-MWCNTs nanocomposite is therefore a promising new material for PV solar cell application. Full article
(This article belongs to the Special Issue Thin Film Photovoltaic and Photonic Based Materials and Devices)
Show Figures

Figure 1

18 pages, 2857 KiB  
Review
Research Progress of Single-Photon Emitters Based on Two-Dimensional Materials
by Chengzhi Zhang, Zehuizi Gong, Dawei He, Yige Yan, Songze Li, Kun Zhao, Jiarong Wang, Yongsheng Wang and Xiaoxian Zhang
Nanomaterials 2024, 14(11), 918; https://doi.org/10.3390/nano14110918 - 23 May 2024
Cited by 5 | Viewed by 3495
Abstract
From quantum communications to quantum computing, single-photon emitters (SPEs) are essential components of numerous quantum technologies. Two-dimensional (2D) materials have especially been found to be highly attractive for the research into nanoscale light–matter interactions. In particular, localized photonic states at their surfaces have [...] Read more.
From quantum communications to quantum computing, single-photon emitters (SPEs) are essential components of numerous quantum technologies. Two-dimensional (2D) materials have especially been found to be highly attractive for the research into nanoscale light–matter interactions. In particular, localized photonic states at their surfaces have attracted great attention due to their enormous potential applications in quantum optics. Recently, SPEs have been achieved in various 2D materials, while the challenges still remain. This paper reviews the recent research progress on these SPEs based on various 2D materials, such as transition metal dichalcogenides (TMDs), hexagonal boron nitride (hBN), and twisted-angle 2D materials. Additionally, we summarized the strategies to create, position, enhance, and tune the emission wavelength of these emitters by introducing external fields into these 2D system. For example, pronounced enhancement of the SPEs’ properties can be achieved by coupling with external fields, such as the plasmonic field, and by locating in optical microcavities. Finally, this paper also discusses current challenges and offers perspectives that could further stimulate scientific research in this field. These emitters, due to their unique physical properties and integration potential, are highly appealing for applications in quantum information and communication, as well as other physical and technological fields. Full article
(This article belongs to the Special Issue Optoelectronic Functional Nanomaterials and Devices)
Show Figures

Figure 1

14 pages, 2963 KiB  
Article
Photonic Crystal Waveguides Composed of Hyperbolic Metamaterials for High-FOM Nano-Sensing
by Yaoxian Zheng, Fahim Khan, Barkathulla Asrafali and Qiong Wang
Crystals 2023, 13(9), 1389; https://doi.org/10.3390/cryst13091389 - 18 Sep 2023
Cited by 1 | Viewed by 1938
Abstract
This study introduces an innovative integration of hyperbolic metamaterials (HMMs) and photonic crystals (PtCs), each possessing unique dispersion properties that effectively manipulate the propagation of light. We present a PtC waveguide consisting of arrays of HMM nanorods, denoted as HMM PtCs. This waveguide [...] Read more.
This study introduces an innovative integration of hyperbolic metamaterials (HMMs) and photonic crystals (PtCs), each possessing unique dispersion properties that effectively manipulate the propagation of light. We present a PtC waveguide consisting of arrays of HMM nanorods, denoted as HMM PtCs. This waveguide configuration enables the realization of a high figure of merit (FOM) nano-sensor. HMMs and PtCs share the same underlying physics. HMMs can generate surface plasmonics, while PtCs offer a bandgap for the waveguide. This configuration presents a novel sensing solution that directly couples surface plasmonics and waveguide modes. By modifying the refractive indices of the surrounding materials, the PtC waveguide exhibits alterations in absorption and transmission, allowing for the detection of temperature, pressure, and material variations. The refractive indices of the surrounding materials can be adjusted based on the sensor’s intended application. For instance, when the sensor is utilized for temperature sensing, thermal infrared materials can serve as the surrounding medium. As the temperature rises, the refractive index of the surrounding material changes accordingly, impacting the waveguide modes and thereby altering absorption and transmission. We utilized the finite element method to conduct numerical simulations in order to assess the absorption and transmission characteristics of the proposed system. Given that this approach involves a full electromagnetic calculation based on Maxwell’s equations, it closely approximates real-world scenarios. The employed numerical method demonstrates the remarkable performance of this proposed system, achieving a sensitivity of 324.16 nm/RIU (refractive index unit) and an impressive FOM of 469.58 RIU−1. These results signify a substantial improvement over surface plasmonic sensors, which typically exhibit limited FOMs. The direct coupling between surface plasmonics and waveguide modes provides a distinct advantage, allowing the proposed sensor to deliver a superior performance. As a consequence, the HMM PtC waveguide sensor emerges as an exceptionally appealing option for photonic sensing applications. The complexity of the proposed system presents a fabrication challenge. Nevertheless, as fabrication technology continues to advance, we anticipate that this issue can be effectively resolved. The proposed HMM PtC waveguide holds vast potential across diverse fields, including biology, medicine, and clinics, representing an exciting advancement for both industry and scientific research. Full article
(This article belongs to the Special Issue Metamaterials and Phononic Crystals)
Show Figures

Figure 1

9 pages, 3771 KiB  
Article
Strong Coupling between Surface Plasmon Resonance and Exciton of Labeled Protein–Dye Complex for Immunosensing Applications
by Povilas Jurkšaitis, Ernesta Bužavaitė-Vertelienė and Zigmas Balevičius
Int. J. Mol. Sci. 2023, 24(3), 2029; https://doi.org/10.3390/ijms24032029 - 19 Jan 2023
Cited by 2 | Viewed by 1996
Abstract
In this study, we present an analysis of the optical response of strong coupling between SPR and labeled proteins. We demonstrate a sensing methodology that allows to evaluate the protein mass adsorbed to the gold’s surface from the Rabi gap, which is a [...] Read more.
In this study, we present an analysis of the optical response of strong coupling between SPR and labeled proteins. We demonstrate a sensing methodology that allows to evaluate the protein mass adsorbed to the gold’s surface from the Rabi gap, which is a direct consequence of the strong light–matter interaction between surface plasmon polariton and dye exciton of labeled protein. The total internal reflection ellipsometry optical configuration was used for simulation of the optical response for adsorption of HSA-Alexa633 dye-labeled protein to a thin gold layer onto the glass prism. It was shown that Rabi oscillations had parabolic dependence on the number of labeled proteins attached to the sensor surface; however, for photonic–plasmonic systems in real experimental conditions, the range of the Rabi energy is rather narrow, thus it can be linearly approximated. This approach based on the strong coupling effect paves the alternative way for detection and monitoring of the interaction of the proteins on the transducer surface through the change of coupling strengths between plasmonic resonance and the protein–dye complex. Full article
(This article belongs to the Special Issue Immunoanalytical and Bioinformatics Methods in Immunology Research)
Show Figures

Figure 1

11 pages, 3588 KiB  
Article
Numerical Study of GaP Nanowires: Individual and Coupled Optical Waveguides and Resonant Phenomena
by Maria A. Anikina, Prithu Roy, Svetlana A. Kadinskaya, Alexey Kuznetsov, Valeriy M. Kondratev and Alexey D. Bolshakov
Nanomaterials 2023, 13(1), 56; https://doi.org/10.3390/nano13010056 - 23 Dec 2022
Cited by 7 | Viewed by 2575
Abstract
The development of novel nanophotonic devices and circuits necessitates studies of optical phenomena in nanoscale structures. Catalyzed semiconductor nanowires are known for their unique properties including high crystallinity and silicon compatibility making them the perfect platform for optoelectronics and nanophotonics. In this work, [...] Read more.
The development of novel nanophotonic devices and circuits necessitates studies of optical phenomena in nanoscale structures. Catalyzed semiconductor nanowires are known for their unique properties including high crystallinity and silicon compatibility making them the perfect platform for optoelectronics and nanophotonics. In this work, we explore numerically optical properties of gallium phosphide nanowires governed by their dimensions and study waveguiding, coupling between the two wires and resonant field confinement to unveil nanoscale phenomena paving the way for the fabrication of the integrated optical circuits. Photonic coupling between the two adjacent nanowires is studied in detail to demonstrate good tolerance of the coupling to the distance between the two aligned wires providing losses not exceeding 30% for the gap of 100 nm. The dependence of this coupling is investigated with the wires placed nearby varying their relative position. It is found that due to the resonant properties of a nanowire acting as a Fabry–Perot cavity, two coupled wires represent an attractive system for control over the optical signal processing governed by the signal interference. We explore size-dependent plasmonic behaviors of the metallic Ga nanoparticle enabling GaP nanowire as an antenna-waveguide hybrid system. We demonstrate numerically that variation of the structure dimensions allows the nearfield tailoring. As such, we explore GaP NWs as a versatile platform for integrated photonic circuits. Full article
Show Figures

Figure 1

12 pages, 2180 KiB  
Article
Controlling Surface Wettability and Plasmonic Resonance of Au/ZnO Heterostructured Films
by Sheng-Chiang Chen and Da-Hua Wei
J. Compos. Sci. 2022, 6(11), 328; https://doi.org/10.3390/jcs6110328 - 2 Nov 2022
Cited by 1 | Viewed by 2369
Abstract
This work investigated the (0002) textured ZnO films without and with the addition of an Au continuous top layer and its effects on their surface wettability and plasmonic resonance characteristics. The ZnO films were directly fabricated onto glass substrates at the synthesized temperature [...] Read more.
This work investigated the (0002) textured ZnO films without and with the addition of an Au continuous top layer and its effects on their surface wettability and plasmonic resonance characteristics. The ZnO films were directly fabricated onto glass substrates at the synthesized temperature of 300 °C via a plasma-enhanced chemical vapor deposition (PECVD) system, and the as-synthesized ZnO film exhibited an average optical transmittance value of 85%. The ultraviolet (UV) light irradiation can be applied to enhance the hydrophilicity, changing it from a hydrophobic status to hydrophilic status due to the existing and adjustable characteristics of the photocatalytic activity. On the other hand, the surface wetting/contact angle (CA) value of the ZnO film with a controllable surface wettability switched from 94° (hydrophobicity) to 44° (hydrophilicity), after it was exposed to UV light irradiation for 5 min, and stably reversed back to hydrophobicity (92°) via a post-annealed treatment using rapid thermal annealing (RTA) at 350 °C for 5 min in air. A fast, simple, and reversible method for switching between hydrophilic and hydrophobic status is claimed in this present work. The improved surface plasmonic resonance is owning to the coupled electron and photon oscillations that can be obtained and produced at the interface between the flat Au layer and ZnO (metal/metallic oxide) heterostructured films for future applications of various wide-bandgap compound semiconductors. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2022)
Show Figures

Graphical abstract

8 pages, 2905 KiB  
Article
Excitation of Hybrid Waveguide-Bloch Surface States with Bi2Se3 Plasmonic Material in the Near-Infrared Range
by Hongjing Li and Gaige Zheng
Micromachines 2022, 13(7), 1020; https://doi.org/10.3390/mi13071020 - 28 Jun 2022
Cited by 2 | Viewed by 1718
Abstract
Bloch surface waves (BSWs) with Bi2Se3 in a composite structure consisting of a coupling prism, distributed Bragg reflector (DBR) and cavity layer have been demonstrated. The design relies on the confinement of surface waves that originates from the coupling between [...] Read more.
Bloch surface waves (BSWs) with Bi2Se3 in a composite structure consisting of a coupling prism, distributed Bragg reflector (DBR) and cavity layer have been demonstrated. The design relies on the confinement of surface waves that originates from the coupling between the defective layer of plasmonic material (Bi2Se3) and DBR. The presence of the cavity layer modifies the local effective refractive index, enabling direct manipulation of the BSWs. The transfer matrix method (TMM) is used to evaluate the reflectance and absorptance responses in the spectral domain for various angles of incidence, demonstrating the presence of sharp resonances associated with the BSW. With an optimal thickness of DBR bilayers, the energy of an evanescent wave can be transferred into the periodic stack resulting in the excitation of waveguide modes (WGMs). It is believed that the proposed design possesses the advantage in terms of easy fabrication to develop integrated photonic systems, especially for biological and chemical sensing. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

5 pages, 798 KiB  
Proceeding Paper
Resonance Fluorescence of a Quantum Dot near a Metallic Nanoparticle: Quantum Interference Effects
by Spyridon G. Kosionis, Vassilios Yannopapas, Ioannis Thanopulos and Emmanuel Paspalakis
Mater. Proc. 2022, 9(1), 19; https://doi.org/10.3390/materproc2022009019 - 22 Apr 2022
Viewed by 1108
Abstract
In recent years, significant attention was given to the quantum or nonlinear optical properties of semiconductor quantum dots coupled to plasmonic nanostructures. A phenomenon that was studied is the modification of the resonance fluorescence spectrum of the quantum dot by the presence of [...] Read more.
In recent years, significant attention was given to the quantum or nonlinear optical properties of semiconductor quantum dots coupled to plasmonic nanostructures. A phenomenon that was studied is the modification of the resonance fluorescence spectrum of the quantum dot by the presence of the plasmonic nanostructure. The most common plasmonic nanostructure studied is the metallic (mainly gold or silver) nanosphere and, in most studies, the quantum dot is modeled as a two-level quantum system. In this work, we model the quantum dot structure with a three-level V-type quantum system, which can naturally arise in quantum dots, and study the resonance fluorescence spectrum near a metallic nanosphere. We show that the present system leads to quantum interference effects due to the presence of the metallic nanoparticle and specifically due to the anisotropic Purcell effect that occurs in the photon emission of the quantum dot near the metallic nanosphere. We then study the resonance fluorescence spectrum for different distances between the quantum dot and the metallic nanosphere, and show that the resonance fluorescence spectrum changes significantly from a single-peak spectrum to a multipeak spectrum. The effects of quantum interference in the resonance fluorescence spectrum are also explored. Full article
(This article belongs to the Proceedings of The 3rd International Online-Conference on Nanomaterials)
Show Figures

Figure 1

20 pages, 5041 KiB  
Article
Engineering the Aggregation of Dyes on Ligand-Shell Protected Gold Nanoparticles to Promote Plexcitons Formation
by Nicola Peruffo, Giovanni Parolin, Elisabetta Collini, Stefano Corni and Fabrizio Mancin
Nanomaterials 2022, 12(7), 1180; https://doi.org/10.3390/nano12071180 - 1 Apr 2022
Cited by 8 | Viewed by 3040
Abstract
The ability to control the light–matter interaction in nanosystems is a major challenge in the field of innovative photonics applications. In this framework, plexcitons are promising hybrid light–matter states arising from the strong coupling between plasmonic and excitonic materials. However, strategies to precisely [...] Read more.
The ability to control the light–matter interaction in nanosystems is a major challenge in the field of innovative photonics applications. In this framework, plexcitons are promising hybrid light–matter states arising from the strong coupling between plasmonic and excitonic materials. However, strategies to precisely control the formation of plexcitons and to modulate the coupling between the plasmonic and molecular moieties are still poorly explored. In this work, the attention is focused on suspensions of hybrid nanosystems prepared by coupling cationic gold nanoparticles to tetraphenyl porphyrins in different aggregation states. The role of crucial parameters such as the dimension of nanoparticles, the pH of the solution, and the ratio between the nanoparticles and dye concentration was systematically investigated. A variety of structures and coupling regimes were obtained. The rationalization of the results allowed for the suggestion of important guidelines towards the control of plexcitonic systems. Full article
(This article belongs to the Special Issue Gold Complex Nanoparticles)
Show Figures

Graphical abstract

9 pages, 1866 KiB  
Article
Significant Near-Field Enhancement over Large Volumes around Metal Nanorods via Strong Coupling of Surface Lattice Resonances and Fabry–Pérot Resonance
by Yunjie Shi, Yuming Dong, Degui Sun and Guangyuan Li
Materials 2022, 15(4), 1523; https://doi.org/10.3390/ma15041523 - 18 Feb 2022
Cited by 7 | Viewed by 2409
Abstract
Metal nanoparticles supporting plasmons are widely used to enhance electromagnetic fields, resulting in strong light–matter interactions at the nanoscale in a diverse range of applications. Recently, it has been shown that when metal nanorods are periodically arranged with proper lattice periods, surface lattice [...] Read more.
Metal nanoparticles supporting plasmons are widely used to enhance electromagnetic fields, resulting in strong light–matter interactions at the nanoscale in a diverse range of applications. Recently, it has been shown that when metal nanorods are periodically arranged with proper lattice periods, surface lattice resonances (SLRs) can be excited and near fields can be greatly enhanced over extended volumes. In this work, we report significant near field enhancement over even larger volumes by placing the metal nanorod array within a Fabry–Pérot (F-P) microcavity. Simulation results show that by taking advantage of strong coupling between the SLR and the photonic F-P resonances, the electric field intensity of the bonding split mode can be enhanced by up to 1935 times, which is about three times of the enhancement of the SLR, and the greatly enhanced field can extend over most of the F-P microcavity. We further show that the F-P resonances of both odd and even orders can strongly couple to the SLR by varying the nanorods position from the middle of the microcavity. We expect that the proposed plasmonic-photonic coupling system will find promising applications in nanolasers, nonlinear optics and sensing. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

10 pages, 2030 KiB  
Article
Plasmon-Induced Transparency for Tunable Atom Trapping in a Chiral Metamaterial Structure
by Zhao Chen, Yaolun Yu, Yilin Wang, Zhiling Hou and Li Yu
Nanomaterials 2022, 12(3), 516; https://doi.org/10.3390/nano12030516 - 1 Feb 2022
Cited by 5 | Viewed by 2267
Abstract
Plasmon-induced transparency (PIT), usually observed in plasmonic metamaterial structure, remains an attractive topic for research due to its unique optical properties. However, there is almost no research on using the interaction of plasmonic metamaterial and high refractive index dielectric to realize PIT. Here, [...] Read more.
Plasmon-induced transparency (PIT), usually observed in plasmonic metamaterial structure, remains an attractive topic for research due to its unique optical properties. However, there is almost no research on using the interaction of plasmonic metamaterial and high refractive index dielectric to realize PIT. Here, we report a novel nanophotonics system that makes it possible to realize PIT based on guided-mode resonance and numerically demonstrate its transmission and reflection characteristics by finite element method simulations. The system is composed of a high refractive-index dielectric material and a two-dimensional metallic photonic crystal with 4-fold asymmetric holes. The interaction mechanism of the proposed structure is analyzed by the coupled-mode theory, and the effects of the parameters on PIT are investigated in detail. In addition, we first consider this PIT phenomenon of such fields on atom trapping (87Rb), and the results show that a stable 3D atom trapping with a tunable range of position of about ~17 nm is achieved. Our work provides a novel, efficient way to realize PIT, and it further broadens the application of plasmonic metamaterial systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

9 pages, 1797 KiB  
Communication
Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes
by Yunjie Shi, Wei Liu, Shidi Liu, Tianyu Yang, Yuming Dong, Degui Sun and Guangyuan Li
Photonics 2022, 9(2), 84; https://doi.org/10.3390/photonics9020084 - 1 Feb 2022
Cited by 7 | Viewed by 3369
Abstract
We report the strong coupling between plasmonic surface lattice resonances (SLRs) and photonic Fabry-Pérot (F-P) resonances in a microcavity embedded with two-dimensional periodic array of metal-insulator-metal nanopillars. For such a plasmonic-photonic system, we show that the SLR can be strongly coupled to the [...] Read more.
We report the strong coupling between plasmonic surface lattice resonances (SLRs) and photonic Fabry-Pérot (F-P) resonances in a microcavity embedded with two-dimensional periodic array of metal-insulator-metal nanopillars. For such a plasmonic-photonic system, we show that the SLR can be strongly coupled to the F-P resonances of both the odd- and even orders, and that the splitting energy reaches as high as 153 meV in the visible regime. Taking advantage of the strong coupling, the resulted high-energy upper polariton has similar characteristics as the plasmonic SLR, but the quality factor is almost twice of that of the SLR. We expect that this work will provide a new scheme for strong coupling between plasmonic and photonic modes, and will point to a new direction to improve the quality factor of SLRs. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

Back to TopTop