# Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Structure Design and Numerical Setups

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Najer, D.; Söllner, I.; Sekatski, P.; Dolique, V.; Löbl, M.C.; Riedel, D.; Schott, R.; Starosielec, S.; Valentin, S.R.; Wieck, A.D.; et al. A gated quantum dot strongly coupled to an optical microcavity. Sci. Adv.
**2019**, 575, 622–627. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Satapathy, S.; Khatoniar, M.; Parappuram, D.K.; Liu, B.; John, G.; Feist, J.; Garcia-Vidal, F.J.; Menon, V.M. Selective isomer emission via funneling of exciton polaritons. Sci. Adv.
**2021**, 7, eabj0997. [Google Scholar] [CrossRef] [PubMed] - Hu, F.; Fei, Z. Recent Progress on Exciton Polaritons in Layered Transition-Metal Dichalcogenides. Adv. Opt. Mater.
**2019**, 8, 1901003. [Google Scholar] [CrossRef] - Hertzog, M.; Wang, M.; Mony, J.; Börjesson, K. Strong light–matter interactions: A new direction within chemistry. Chem. Soc. Rev.
**2019**, 48, 937–961. [Google Scholar] [CrossRef] [Green Version] - Kottilil, D.; Babusenan, A.; Vijayan, C.; Ji, W. Strong light–matter interaction in organic microcavity polaritons: Essential criteria, design principles and typical configurations. Eur. Phys. J. Spec. Top.
**2021**. [Google Scholar] [CrossRef] - Ameling, R.; Giessen, H. Microcavity plasmonics: Strong coupling of photonic cavities and plasmons. Laser Photonics Rev.
**2013**, 7, 141–169. [Google Scholar] [CrossRef] - Baranov, D.G.; Wersall, M.; Cuadra, J.; Antosiewicz, T.J.; Shegai, T. Novel Nanostructures and Materials for Strong Light-Matter Interactions. ACS Photonics
**2018**, 5, 24–42. [Google Scholar] [CrossRef] - Dovzhenko, D.S.; Ryabchuk, S.V.; Rakovich, Y.P.; Nabiev, I.R. Light–matter interaction in the strong coupling regime: Configurations, conditions, and applications. Nanoscale
**2018**, 10, 3589–3605. [Google Scholar] [CrossRef] - Yu, X.; Yuan, Y.; Xu, J.; Yong, K.T.; Qu, J.; Song, J. Strong Coupling in Microcavity Structures: Principle, Design, and Practical Application. Laser Photonics Rev.
**2019**, 13, 1800219. [Google Scholar] [CrossRef] - Ramezani, M.; Berghuis, M.; Rivas, J.G. Strong light–matter coupling and exciton-polariton condensation in lattices of plasmonic nanoparticles [Invited]. J. Opt. Soc. Am. B
**2019**, 36, E88–E103. [Google Scholar] [CrossRef] [Green Version] - Ameling, R.; Giessen, H. Cavity Plasmonics: Large Normal Mode Splitting of Electric and Magnetic Particle Plasmons Induced by a Photonic Microcavity. Nano Lett.
**2010**, 10, 4394–4398. [Google Scholar] [CrossRef] [PubMed] - Ameling, R.; Langguth, L.; Hentschel, M.; Mesch, M.; Braun, P.V.; Giessen, H. Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett.
**2010**, 97, 253116. [Google Scholar] [CrossRef] - Schmidt, M.A.; Lei, D.Y.; Wondraczek, L.; Nazabal, V.; Maier, S.A. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat. Commun.
**2012**, 3, 1108. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chen, J.; Nie, H.; Peng, C.; Qi, S.; Tang, C.; Zhang, Y.; Wang, L.; Park, G.S. Enhancing the Magnetic Plasmon Resonance of Three-Dimensional Optical Metamaterials via Strong Coupling for High-Sensitivity Sensing. J. Light. Technol.
**2018**, 36, 3481–3485. [Google Scholar] [CrossRef] - Alrasheed, S.; Fabrizio, E.D. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors. Sci. Rep.
**2017**, 7, 10524. [Google Scholar] [CrossRef] [Green Version] - Li, B.; Zu, S.; Zhang, Z.; Zheng, L.; Jiang, Q.; Du, B.; Luo, Y.; Gong, Y.; Zhang, Y.; Lin, F.; et al. Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature. Opto-Electron. Adv.
**2019**, 2, 190008. [Google Scholar] [CrossRef] - Bisht, A.; Cuadra, J.; Wersall, M.; Canales, A.; Antosiewicz, T.J.; Shegai, T. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems. Nano Lett.
**2019**, 19, 189–196. [Google Scholar] [CrossRef] [Green Version] - Li, P.; Ji, L.; Gao, N.; Wang, H.; Ge, S.; Huang, K.; Kang, J.; Yu, E.T. Peak splitting and locking behavior arising from Fano interference between localized surface plasmons and cavity modes. Phys. Rev. B
**2019**, 99, 125420. [Google Scholar] [CrossRef] [Green Version] - Baranov, D.G.; Munkhbat, B.; Zhukova, E.; Bisht, A.; Canales, A.; Rousseaux, B.; Johansson, G.; Antosiewicz, T.J.; Shegai, T. Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions. Nat. Commun.
**2020**, 11, 2715. [Google Scholar] [CrossRef] - Ameling, R.; Dregely, D.; Giessen, H. Strong coupling of localized and surface plasmons to microcavity modes. Opt. Lett.
**2011**, 36, 2218–2220. [Google Scholar] [CrossRef] - Chen, S.; Li, G.; Lei, D.; Cheah, K.W. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity. Nanoscale
**2013**, 5, 9129–9133. [Google Scholar] [CrossRef] - Wang, Y.; Sun, C.; Gan, F.; Li, H.; Gong, Q.; Chen, J. Sharp phase variations from the plasmon mode causing the Rabi-analogue splitting. Nanophotonics
**2017**, 6, 1101–1107. [Google Scholar] [CrossRef] [Green Version] - Lin, Q.Y.; Li, Z.; Brown, K.A.; O’Brien, M.N.; Ross, M.B.; Zhou, Y.; Butun, S.; Chen, P.C.; Schatz, G.C.; Dravid, V.P.; et al. Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays. Nano Lett.
**2015**, 15, 4699–4703. [Google Scholar] [CrossRef] - Saito, H.; Yoshimoto, D.; Lourenco-Martins, H.; Yamamoto, N.; Sannomiya, T. Hybridization of Gap Modes and Lattice Modes in a Plasmonic Resonator Array with a Metal-Insulator-Metal Structure. ACS Photonics
**2019**, 6, 2618–2625. [Google Scholar] [CrossRef] - Chen, J.; Zhang, T.; Tang, C.; Mao, P.; Liu, Y.; Yu, Y.; Liu, Z. Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes. IEEE Photon. Technol. Lett.
**2016**, 28, 1529–1532. [Google Scholar] [CrossRef] - Wang, W.; Ramezani, M.; Väkeväinen, A.I.; Törmä, P.; Rivas, J.G.; Odom, T.W. The Rich Photonic World of Plasmonic Nanoparticle Arrays. Mater. Today
**2018**, 21, 303–314. [Google Scholar] [CrossRef] - Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev.
**2018**, 118, 5912–5951. [Google Scholar] [CrossRef] - Wang, D.; Guan, J.; Hu, J.; Bourgeois, M.R.; Odom, T.W. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices. Acc. Chem. Res.
**2019**, 52, 2997–3007. [Google Scholar] [CrossRef] - Väkeväinen, A.I.; Moerland, R.J.; Rekola, H.T.; Eskelinen, A.P.; Martikainen, J.P.; Kim, D.H.; Törmä, P. Plasmonic Surface Lattice Resonances at the Strong Coupling Regime. Nano Lett.
**2014**, 14, 1721–1727. [Google Scholar] [CrossRef] - Shi, L.; Hakala, T.K.; Rekola, H.T.; Martikainen, J.P.; Moerland, R.J.; Törmä, P. Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes. Phys. Rev. Lett.
**2014**, 112, 153002. [Google Scholar] [CrossRef] [Green Version] - Wang, S.; Le-Van, Q.; Vaianella, F.; Maes, B.; Barker, S.E.; Godiksen, R.H.; Curto, A.G.; Rivas, J.G. Limits to Strong Coupling of Excitons in Multilayer WS2 with Collective Plasmonic Resonances. ACS Photonics
**2019**, 6, 286–293. [Google Scholar] [CrossRef] [Green Version] - Yadav, R.K.; Bourgeois, M.R.; Cherqui, C.; Juarez, X.G.; Wang, W.; Odom, T.W.; Schatz, G.C.; Basu, J.K. Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays. ACS Nano
**2020**, 14, 7347–7357. [Google Scholar] [CrossRef] - Yang, X.; Xiao, G.; Lu, Y.; Li, G. Narrow plasmonic surface lattice resonances with preference to asymmetric dielectric environment. Opt. Express
**2019**, 27, 25384–25394. [Google Scholar] [CrossRef] - Moharam, M.G.; Pommet, D.A.; Grann, E.B.; Gaylord, T.K. Stable Implementation of the Rigorous Coupled-Wave Analysis for Surface-Relief Gratings: Enhanced Transmittance Matrix Approach. J. Opt. Soc. Am. A
**1995**, 12, 1077–1086. [Google Scholar] [CrossRef] - Lalanne, P. Improved formulation of the coupled-wave method for two-dimensional gratings. J. Opt. Soc. Am. A
**1997**, 14, 1592–1598. [Google Scholar] [CrossRef] [Green Version] - David, A.; Benisty, H. Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape. Phys. Rev. B
**2006**, 73, 075107. [Google Scholar] [CrossRef] - Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B
**1972**, 6, 4370–4379. [Google Scholar] [CrossRef] - Alast, F.H.; Li, G.; Cheah, K.W. Rabi-like splitting from large area plasmonic microcavity. AIP Adv.
**2017**, 7, 085201. [Google Scholar] [CrossRef] - Kassa-Baghdouche, L.; Boumaza, T.; Cassan, E.; Bouchemat, M. Enhancement of Q-factor in SiN-based planar photonic crystal L3 nanocavity for integrated photonics in the visible-wavelength range. Optik
**2015**, 126, 3467–3471. [Google Scholar] [CrossRef] - Kassa-Baghdouche, L.; Boumaza, T.; Bouchemat, M. Optimization of Q-factor in nonlinear planar photonic crystal nanocavity incorporating hybrid silicon/polymer material. Phys. Scr.
**2015**, 90, 065504. [Google Scholar] [CrossRef] - Fang, X.; Xiong, L.; Shi, J.; Li, G. High-Q quadrupolar plasmonic lattice resonances in horizontal metal-insulator-metal gratings. Opt. Lett.
**2021**, 46, 1546–1549. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**(

**a**) Schematic of the strong coupling between the SLR and the F-P resonance in the proposed structure composed of a thin metal film and a 2D array of MIM nanopillars on a quartz substrate. (

**b**,

**c**) schematics of the side views of (

**b**) the reference F-P cavity that supports photonic resonances and (

**c**) the MIM nanopillar array that supports SLR. (

**d**) Simulated reflectance spectra of the proposed plasmonic-photonic system (red curve), the reference F-P cavity (black curve) and the MIM nanopillar array (blue curve). “UP” and “LP” represent upper polariton and lower polariton, respectively. The calculations were performed with $h=320$ nm.

**Figure 2.**Simulated electric field distributions ${\left|E\right|}^{2}$ of (

**a**) the MIM nanopillar array at ${\lambda}_{\mathrm{SLR}}=766.8$ nm, (

**b**) the reference F-P cavity at ${\lambda}_{\mathrm{F}-\mathrm{P}}=769.3$ nm, (

**c**,

**d**) the proposed structure of (

**c**) ${\lambda}_{\mathrm{UP}}=744.1$ nm and ${\lambda}_{\mathrm{LP}}=819.6$ nm. The MIM nanopillar array in (

**a**,

**c**,

**d**) or the MIM multilayers in (

**b**) are outlined by white lines and the thin metal film on the top is outlined by black lines. “+” and “−” in (

**a**,

**c**,

**d**) indicate charge distributions. (

**e**,

**f**) Schematics of the electric field hybridization between the first-order F-P resonance (indicated by blue line) and the SLR (indicated by red lines).

**Figure 3.**Simulated reflectance spectra of (

**a**) reference F-P cavity and (

**b**) proposed plasmonic-photonic coupling system as functions of the cavity length. The vertical white dashed line in (

**b**) indicates the SLR wavelength of the MIM nanopillar array. Anti-crossings indicated by red arrows are observable around every intersection of the F-P modes and the SLR mode.

**Figure 4.**Similar to Figure 2c,d but at (

**a**) ${\lambda}_{\mathrm{UP}}=739.5$ nm and (

**b**) ${\lambda}_{\mathrm{LP}}=787.5$ nm for $h=1.22$ μm supporting the third-order photonic F-P resonance, and (

**c**) ${\lambda}_{\mathrm{UP}}=740.8$ nm and (

**d**) ${\lambda}_{\mathrm{LP}}=792.5$ nm for $h=1.6$ μm, with which the reference F-P cavity supports the fourth-order resonance.

**Figure 5.**Simulated reflectance spectra of (

**a**) the MIM nanopillar array and of (

**b**) the proposed plasmonic-photonic coupling system as functions of the period. White dashed curves in (

**a**,

**b**) indicate the SLR, and the vertical black dashed line in (

**b**) indicates the wavelength of the first-order resonance of the reference F-P cavity. An anti-crossing indicated by the red arrow in (

**b**) is observable around the intersection of the first-order reference F-P mode and the SLR.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shi, Y.; Liu, W.; Liu, S.; Yang, T.; Dong, Y.; Sun, D.; Li, G.
Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes. *Photonics* **2022**, *9*, 84.
https://doi.org/10.3390/photonics9020084

**AMA Style**

Shi Y, Liu W, Liu S, Yang T, Dong Y, Sun D, Li G.
Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes. *Photonics*. 2022; 9(2):84.
https://doi.org/10.3390/photonics9020084

**Chicago/Turabian Style**

Shi, Yunjie, Wei Liu, Shidi Liu, Tianyu Yang, Yuming Dong, Degui Sun, and Guangyuan Li.
2022. "Strong Coupling between Plasmonic Surface Lattice Resonance and Photonic Microcavity Modes" *Photonics* 9, no. 2: 84.
https://doi.org/10.3390/photonics9020084