Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (605)

Search Parameters:
Keywords = plasma-surface interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2229 KiB  
Article
Cell Surface Proteomics Reveals Hypoxia-Regulated Pathways in Cervical and Bladder Cancer
by Faris Alanazi, Ammar Sharif, Melissa Kidd, Emma-Jayne Keevill, Vanesa Biolatti, Richard D. Unwin, Peter Hoskin, Ananya Choudhury, Tim A. D. Smith and Conrado G. Quiles
Proteomes 2025, 13(3), 36; https://doi.org/10.3390/proteomes13030036 - 5 Aug 2025
Abstract
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we [...] Read more.
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we employed a surface proteomics workflow combining cell surface biotinylation and affinity purification prior to LC-MS/MS analysis in cervical (SiHa) and bladder (UMUC3) cancer cell lines cultured under normoxic (21% O2) or hypoxic (0.1% O2) conditions. Results: In SiHa cells, 43 hypoxia-upregulated proteins were identified exclusively in the biotin-enriched fraction, including ITGB2, ITGA7, AXL, MET, JAG2, and CAV1/CAV2. In UMUC3 cells, 32 unique upregulated PMPs were detected, including CD55, ADGRB1, SLC9A1, NECTIN3, and ACTG1. These proteins were not observed in corresponding whole-cell lysates and are associated with extracellular matrix remodelling, immune modulation, and ion transport. Biotinylation enhanced the detection of membrane-associated pathways such as ECM organisation, integrin signalling, and PI3K–Akt activation. Protein–protein interaction analysis revealed links between membrane receptors and intracellular stress regulators, including mitochondrial proteins. Conclusions: These findings demonstrate that surface biotinylation improves the sensitivity and selectivity of plasma membrane proteomics under hypoxia, revealing hypoxia-responsive proteins and pathways not captured by standard whole-cell analysis. Full article
(This article belongs to the Section Proteomics of Human Diseases and Their Treatments)
Show Figures

Figure 1

18 pages, 12442 KiB  
Article
Properties of Diamond-like Coatings in Tribological Systems Lubricated with Ionic Liquid
by Krystyna Radoń-Kobus and Monika Madej
Coatings 2025, 15(7), 799; https://doi.org/10.3390/coatings15070799 - 8 Jul 2025
Viewed by 362
Abstract
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by [...] Read more.
The paper shows the effect of using a lubricant in the form of an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), on the tribological properties of a hydrogenated diamond-like coating (DLC) doped with tungsten a-C:H:W. The coatings were deposited on 100Cr6 steel by plasma-enhanced chemical vapor deposition PECVD. Tribological tests were carried out on a TRB3 tribometer in a rotary motion in a ball–disc combination. 100Cr6 steel balls were used as a counter-sample. Friction and wear tests were carried out for discs made of 100Cr6 steel and 100Cr6 steel discs with a DLC coating. They were performed under friction conditions with and without lubrication under 10 N and 15 N loads. The ionic liquid BMIM-PF6 was used as a lubricant. Coating thickness was observed on a scanning microscope, and the linear analysis of chemical composition on the cross-section was analyzed using the EDS analyzer. The confocal microscope with an interferometric mode was used for analysis of the geometric structure of the surface before and after the tribological tests. The contact angle of the samples for distilled water, diiodomethane and ionic liquid was tested on an optical tensiometer. The test results showed good cooperation of the DLC coating with the lubricant. It lowered the coefficient of friction in comparison to steel about 20%. This indicates the synergistic nature of the interaction: DLC coating–BMIM-PF6 lubricant–100Cr6 steel. Full article
(This article belongs to the Special Issue Tribological and Mechanical Properties of Coatings)
Show Figures

Figure 1

18 pages, 2035 KiB  
Article
Rapid Plasma Synthesis of Gold Nanoparticles Supported on MWCNTs for Electrochemical Detection of Glucose
by Qing Yang, Yuanwen Pang, Hong Li and Lanbo Di
Materials 2025, 18(13), 3076; https://doi.org/10.3390/ma18133076 - 28 Jun 2025
Viewed by 500
Abstract
In this study, a simple, mild, and eco-friendly cold plasma-solution interaction method is employed to rapidly prepare gold colloids. Through modification with multi-walled carbon nanotubes (MWCNTs), a non-enzymatic glucose-sensing electrode material is successfully fabricated. The prepared electrode material is characterized via X-ray diffraction [...] Read more.
In this study, a simple, mild, and eco-friendly cold plasma-solution interaction method is employed to rapidly prepare gold colloids. Through modification with multi-walled carbon nanotubes (MWCNTs), a non-enzymatic glucose-sensing electrode material is successfully fabricated. The prepared electrode material is characterized via X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results show that compared with the chemically reduced AuNPs-C-MWCNTs, the plasma-prepared AuNPs-P-MWCNTs exhibits enhanced glucose catalytic performance with a higher sensitivity of 73 μA·mM−1·cm−2 (approximately 3.2 times that of AuNPs-C-MWCNTs), lower response time of 2.1 s, and ultra-low detection limit of 0.21 μM. It also demonstrates excellent selectivity, reproducibility (RSD = 4.37%), repeatability (RSD = 3.67%), and operational stability (RSD = 4.51%). This improvement can be attributed to the smaller particle size and better dispersion of plasma-derived AuNPs on the surface of MWCNTs. Furthermore, the AuNPs-P-MWCNTs surface is enriched with oxygen-containing functional groups, which is conducive to the enhancement of the hydrophilicity of the electrode surface. These synergistic effects facilitate the AuNPs-catalyzed glucose oxidation reaction, ultimately leading to superior glucose catalytic performance. Full article
Show Figures

Figure 1

23 pages, 1184 KiB  
Article
Time-Resolved Photoacoustic Response of Thin Semiconductors Measured with Minimal Volume Cell: Influence of Photoinduced Charge Carriers
by Slobodanka P. Galovic, Dragana K. Markushev, Dragan D. Markushev, Katarina Lj. Djordjevic, Marica N. Popovic, Edin Suljovrujic and Dragan M. Todorovic
Appl. Sci. 2025, 15(13), 7290; https://doi.org/10.3390/app15137290 - 28 Jun 2025
Viewed by 227
Abstract
When a semiconducting sample is illuminated by an intensity-modulated monochromatic light beam with photon energy exceeding the band gap, part of the absorbed energy is directly converted into heat through photon–lattice interactions. This gives rise to a heat source that closely follows the [...] Read more.
When a semiconducting sample is illuminated by an intensity-modulated monochromatic light beam with photon energy exceeding the band gap, part of the absorbed energy is directly converted into heat through photon–lattice interactions. This gives rise to a heat source that closely follows the temporal profile of the optical excitation, known as the fast heat source. Simultaneously, another portion of the absorbed energy is used to generate electron-hole pairs. These charge carriers diffuse together and recombine via electron–electron and electron–hole interactions, transferring their kinetic energy to the lattice and producing additional heating of the sample. This indirect heating mechanism, associated with carrier recombination, is referred to as the slow heat source. In this study, we develop a model describing surface temperature variations on the non-illuminated side of a thermally thin semiconductor exposed to a rectangular optical pulse, explicitly accounting for the contribution of surface charge carrier recombinations. Using this model, we investigate the influence of surface recombination velocity and the material’s plasma properties on the time-domain temperature response for both plasma-opaque and plasma-transparent samples. Our results demonstrate that charge carrier recombinations can significantly affect the transient photoacoustic signal recorded using a minimum volume cell, highlighting the potential of time-resolved photoacoustic techniques for probing the electronic properties of semiconductors. Full article
(This article belongs to the Special Issue Advances in Photoacoustic and Photothermal Phenomena)
Show Figures

Figure 1

9 pages, 520 KiB  
Review
Trichomonas vaginalis Virus: Current Insights and Emerging Perspectives
by Keonte J. Graves, Jan Novak and Christina A. Muzny
Viruses 2025, 17(7), 898; https://doi.org/10.3390/v17070898 - 26 Jun 2025
Viewed by 537
Abstract
Trichomonas vaginalis, a prevalent sexually transmitted protozoan parasite, is associated with adverse birth outcomes, increased risk of HIV and other sexually transmitted infections, infertility, and cervical cancer. Despite its widespread impact, trichomoniasis remains underdiagnosed and underreported globally. Trichomonas vaginalis virus (TVV), a [...] Read more.
Trichomonas vaginalis, a prevalent sexually transmitted protozoan parasite, is associated with adverse birth outcomes, increased risk of HIV and other sexually transmitted infections, infertility, and cervical cancer. Despite its widespread impact, trichomoniasis remains underdiagnosed and underreported globally. Trichomonas vaginalis virus (TVV), a double-stranded RNA (dsRNA) virus infecting T. vaginalis, could impact T. vaginalis pathogenicity. We provide an overview of TVV, including its genomic structure, transmission, impact on protein expression, role in 5-nitroimidazole drug susceptibility, and clinical significance. TVV is a ~5 kbp dsRNA virus enclosed within a viral capsid closely associated with the Golgi complex and plasma membrane of infected parasites. Hypothetical mechanisms of TVV transmission have been proposed. TVV affects protein expression in T. vaginalis, including cysteine proteases and surface antigens, thus impacting its virulence and ability to evade the immune system. Additionally, TVV may influence the sensitivity of T. vaginalis to treatment; clinical isolates of T. vaginalis not harboring TVV are more likely to be resistant to metronidazole. Clinically, TVV-positive T. vaginalis infections have been associated with a range in severity of genital signs and symptoms. Further research into interactions between T. vaginalis and TVV is essential in improving diagnosis, treatment, and the development of targeted interventions. Full article
(This article belongs to the Special Issue 15-Year Anniversary of Viruses)
Show Figures

Figure 1

26 pages, 5990 KiB  
Article
Efficient Image Processing Technique for Detecting Spatio-Temporal Erosion in Boron Nitride Exposed to Iodine Plasma
by Ahmed S. Afifi, Janith Weerasinghe, Karthika Prasad, Igor Levchenko and Katia Alexander
Nanomaterials 2025, 15(13), 961; https://doi.org/10.3390/nano15130961 - 21 Jun 2025
Viewed by 1156
Abstract
Erosion detection in materials exposed to plasma-generated species, such as those used for space propulsion systems, is critical for ensuring their reliability and longevity. This study introduces an efficient image processing technique to monitor the evolution of the erosion depth in boron nitride [...] Read more.
Erosion detection in materials exposed to plasma-generated species, such as those used for space propulsion systems, is critical for ensuring their reliability and longevity. This study introduces an efficient image processing technique to monitor the evolution of the erosion depth in boron nitride (BN) subjected to multiple cycles of iodine plasma exposure. Utilising atomic force microscopy (AFM) images from both untreated and treated BN samples, the technique uses a modified semi-automated image registration method that accurately aligns surface profiles—even after substantial erosion—and overcomes challenges related to changes in the eroded surface features. The registered images are then processed through frequency-domain subtraction to visualise and quantify erosion depth. Our technique tracks changes across the BN surface at multiple spatial locations and generates erosion maps at exposure durations of 24, 48, 72 and 84 min using both one-stage and multi-stage registration methods. These maps not only reveal localised material loss (up to 5.5 μm after 84 min) and assess its uniformity but also indicate potential re-deposition of etched material and redistribution across the surface through mechanisms such as diffusion. By analysing areas with higher elevations and observing plasma-treated samples over time, we notice that these elevated regions—initially the most affected—gradually decrease in size and height, while overall erosion depth increases. Progressive surface smoothing is observed with increasing iodine plasma exposure, as quantified by AFM-based erosion mapping. Notably, up to 89.3% of surface heights were concentrated near the mean after 72–84 min of plasma treatment, indicating a more even distribution of surface features compared to the untreated surface. Iodine plasma was compared to argon plasma to distinguish material loss during degradation between these two mechanisms. Iodine plasma causes more aggressive and spatially selective erosion, strongly influenced by initial surface morphology, whereas argon plasma results in milder and more uniform surface changes. Additional scale-dependent slope and curvature analyses confirm that iodine rapidly smooths fine features, whereas argon better preserves surface sharpness over time. Tracking such sharpness is critical for maintaining the fine structures essential to the fabrication of modern semiconductor components. Overall, this image processing tool offers a powerful and adaptable method for accurately assessing surface degradation and morphological changes in materials used in plasma-facing and space propulsion environments. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

33 pages, 1666 KiB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Viewed by 1070
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

14 pages, 705 KiB  
Technical Note
Sensing Lunar Dust Density Using Radio Science Signals of Opportunity
by Kamal Oudrhiri, Yu-Ming Yang and Daniel Erwin
Remote Sens. 2025, 17(11), 1940; https://doi.org/10.3390/rs17111940 - 4 Jun 2025
Viewed by 619
Abstract
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions [...] Read more.
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions have laid a strong foundation for our current knowledge. However, due to insufficient near-surface observations, the scientific community has faced challenges in interpreting the phenomena of lunar dust lofting and levitation. This paper introduces the concept of signals of opportunity (SoOP), which utilizes radio occultation (RO) to retrieve the near-surface dust density profile on the Moon. Gravity Recovery and Interior Laboratory (GRAIL) radio science beacon (RSB) signals are used to demonstrate this method. By mapping the concentration of lunar near-surface dust using RO, we aim to enhance our understanding of how charged lunar dust interacts with surrounding plasma, thereby contributing to future research in this field and supporting human exploration of the Moon. Additionally, the introduced SoOP will be able to provide observational constraints to physical model development related to lunar surface particle sputtering and the reactions of near-surface dust in the presence of solar wind and electrostatically charged dust grains. Full article
Show Figures

Figure 1

28 pages, 7518 KiB  
Article
Probing Bacterial Interactions with the Schistosoma mansoni-Killing Toxin Biomphalysin via Atomic Force Microscopy and Single Molecule Force Spectroscopy
by Jihen Zouaoui, Pierre Poteaux, Audrey Beaussart, Nicolas Lesniewska, David Duval and Jérôme F. L. Duval
Toxins 2025, 17(6), 269; https://doi.org/10.3390/toxins17060269 - 27 May 2025
Viewed by 1340
Abstract
Recent work has identified biomphalysin (BM) protein from the snail Biomphalaria glabrata as a cytolytic toxin against the Schistosoma mansoni parasite. Ex vivo interactome studies further evidenced BM’s ability to bind bacterial outer membrane proteins, but its specific antibacterial mechanisms and selectivity remain [...] Read more.
Recent work has identified biomphalysin (BM) protein from the snail Biomphalaria glabrata as a cytolytic toxin against the Schistosoma mansoni parasite. Ex vivo interactome studies further evidenced BM’s ability to bind bacterial outer membrane proteins, but its specific antibacterial mechanisms and selectivity remain unclear. Accordingly, this study aims to elucidate the interaction between BM and two model bacteria with distinct cell surface architectures: Escherichia coli (Gram−) and Micrococcus luteus (Gram+). Employing a multiscale approach, we used in vivo single-molecule force spectroscopy (SMFS) to probe molecular interactions at the single cell level. Combined with cell aggregation assays, immunoblotting and Atomic Force Microscopy (AFM) imaging, SMFS results evidenced a selective interaction of BM from snail plasma with M. luteus but not E. coli. Exposure of M. luteus to BM compromised cell surface integrity and induced cell aggregation. These effects correlated with a patch-like distribution of BM on M. luteus reminiscent of pore-forming toxins, as revealed by the anti-BM antibody-functionalized AFM tip. Overall, this work highlights the utility of SMFS in dissecting host–pathogen molecular dialogs. It reveals BM’s selective action against M. luteus, potentially via surface clustering, and it shows spatially heterogeneous responses to the toxin within and between individual cells. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Graphical abstract

16 pages, 1003 KiB  
Review
Biological Actions of Bile Acids via Cell Surface Receptors
by Yoshimitsu Kiriyama, Hiroshi Tokumaru, Hisayo Sadamoto and Hiromi Nochi
Int. J. Mol. Sci. 2025, 26(11), 5004; https://doi.org/10.3390/ijms26115004 - 22 May 2025
Viewed by 803
Abstract
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in [...] Read more.
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in the intestine and transported to the liver as well as the systemic circulation. BAs can activate many types of receptors, including nuclear receptors and cell surface receptors. By activating these receptors, BAs can exert various effects on the metabolic, immune, and nervous systems. Recently, the detailed structure of TGR5, the major plasma membrane receptor for BAs, was elucidated, revealing a putative second BA binding site along with the orthosteric binding site. Furthermore, BAs act as ligands for bitter taste receptors and the Leukemia inhibitory factor receptor. In addition, the Mas-related, G-protein-coupled receptor X4 interacts with receptor activity-modifying proteins. Thus, a variety of cell surface receptors are associated with BAs, and BAs are thought to have very complex activities. This review focuses on recent advances regarding cell surface receptors for bile acids and the biological actions they mediate. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 7910 KiB  
Article
Optimization of Magnetic Finishing Process and Surface Quality Research for Inner Wall of MP35N Cobalt–Chromium Alloy Vascular Stent Tubing Based on Plasma-Fused Al2O3 Magnetic Abrasives
by Yusheng Zhang, Yugang Zhao, Qilong Fan, Shimin Yang, Shuo Meng, Yu Tang, Guiguan Zhang and Haiyun Zhang
Micromachines 2025, 16(5), 591; https://doi.org/10.3390/mi16050591 - 18 May 2025
Viewed by 668
Abstract
To solve the manufacturing problem of the efficient removal of multi-scale surface defects (wrinkles, cracks, scratches, etc.) on the inner wall of MP35N cobalt–chromium alloy vascular stents, this study proposes a collaborative optimization strategy of magnetic abrasive polishing (MAF) based on a new [...] Read more.
To solve the manufacturing problem of the efficient removal of multi-scale surface defects (wrinkles, cracks, scratches, etc.) on the inner wall of MP35N cobalt–chromium alloy vascular stents, this study proposes a collaborative optimization strategy of magnetic abrasive polishing (MAF) based on a new type of magnetic abrasive. In response to the unique requirements for the inner wall processing of high aspect ratio microtubes, metal-based Al2O3 magnetic abrasives with superior performance were prepared by the plasma melt powder spraying method. A special MAF system for the inner wall of the bracket was designed and constructed. The four-factor and three-level Box–Behnken response surface method was adopted to analyze the influences and interactions of tube rotational speed, magnetic pole feed rate, abrasive filling amount, and processing clearance on surface roughness (Ra). The significance order of each parameter for Ra is determined as follows: processing clearance > tube rotational speed > abrasive filling amount > magnetic pole feed rate. Using the established model and multiple regression equations, the optimal parameters were determined as follows: a tube rotational speed of 600 r/min, a magnetic pole feed rate of 150 mm/min, an abrasive filling amount of 0.50 g, and a processing clearance of 0.50 mm. The optimized model predicted an Ra value of 0.104 μm, while the average Ra value verified experimentally was 0.107 μm, with the minimum error being 2.9%. Compared with the initial Ra of 0.486 μm, directly measured by the ultra-depth-of-field 3D microscope of model DSX1000, the surface roughness was reduced by 77.98%. MAF effectively eliminates the surface defects and deteriorated layers on the inner wall of MP35N tubes, significantly improving the surface quality, which is of great significance for the subsequent preparation of high-quality vascular stents and their clinical applications. Full article
(This article belongs to the Special Issue Advanced Manufacturing Technology and Systems, 3rd Edition)
Show Figures

Figure 1

19 pages, 6984 KiB  
Article
Improvement of Bonding Strength Between Polyphenylene Sulfide/Glass Fiber Composites and Epoxy via Atmospheric-Pressure Plasma Surface Treatment
by Hwan-Gi Do, Pyoung-Chan Lee and Beom-Gon Cho
Polymers 2025, 17(10), 1344; https://doi.org/10.3390/polym17101344 - 14 May 2025
Viewed by 749
Abstract
Polyphenylene sulfide (PPS) is becoming increasingly valuable in the electrical, electronic, and automotive industries. In particular, PPS composites reinforced with glass fiber (GF) have better dimensional stability and mechanical properties than conventional PPS materials and can be used in applications like electric vehicle [...] Read more.
Polyphenylene sulfide (PPS) is becoming increasingly valuable in the electrical, electronic, and automotive industries. In particular, PPS composites reinforced with glass fiber (GF) have better dimensional stability and mechanical properties than conventional PPS materials and can be used in applications like electric vehicle capacitor housing. In the electric vehicle industry, the epoxy-molding process is essential for manufacturing capacitor housings, where the bonding strength between the PPS/GF composites and epoxy significantly affects the durability of the product. However, the inert surface characteristics of polymers like PPS limit their interaction with epoxy, decreasing the bonding strength. This study was aimed at enhancing the bonding strength between PPS/GF composites and epoxy by modifying the PPS surface using atmospheric-pressure plasma treatment. The surface modification resulted in increased surface roughness and the introduction of polar functional groups, which improved both mechanical interlocking and chemical affinity to the epoxy. Surface changes were analyzed using atomic force microscopy and scanning electron microscopy, and chemical characterization was conducted using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Surface energy was determined via contact angle measurements, and bonding strength was evaluated through single-lap shear tests. The results showed a 55% increase in surface energy and a 24.8% improvement in bonding strength due to the surface modification. Full article
(This article belongs to the Special Issue Application and Characterization of Polymer Composites)
Show Figures

Figure 1

17 pages, 2598 KiB  
Article
Molecular Dynamics Simulation Study of Stabilizer Association with the Val122Ile Transthyretin Variant
by Kevin Morris, John DeSalvo, Iman Deanparvar, Lucus Schneider, Kaleigh Leach, Matthew George and Yayin Fang
Biophysica 2025, 5(2), 16; https://doi.org/10.3390/biophysica5020016 - 23 Apr 2025
Cited by 1 | Viewed by 1073
Abstract
The tetrameric protein transthyretin (TTR) transports the hormone thyroxine in plasma and cerebrospinal fluid. Certain point mutations of TTR, including the Val122Ile mutation investigated here, destabilize the tetramer leading to its dissociation, misfolding, aggregation, and the eventual buildup of amyloid fibrils in the [...] Read more.
The tetrameric protein transthyretin (TTR) transports the hormone thyroxine in plasma and cerebrospinal fluid. Certain point mutations of TTR, including the Val122Ile mutation investigated here, destabilize the tetramer leading to its dissociation, misfolding, aggregation, and the eventual buildup of amyloid fibrils in the myocardium. Cioffi et al. reported the design and synthesis of a novel TTR kinetic stabilizing ligand, referred to here as TKS14, that inhibited TTR dissociation and amyloid fibril formation. In this study, molecular dynamics simulations were used to investigate the binding of TKS14 and eight TSK14 derivatives to the Val122Ile TTR mutant. For each complex, the ligand’s solvent accessible surface area (SASA), ligand–receptor hydrogen-bonding interactions, and the free energy of ligand-binding to TTR were investigated. The goal of this study was to identify the TSK14 functional groups that contributed to TTR stabilization. TKS14 was found to form a stable, two-point interaction with TTR by hydrogen bonding to Ser-117 residues in the inner receptor binding pocket and interacting through hydrogen bonds and electrostatically with Lys-15 residues near the receptor’s surface. The free energy of TKS14-TTR binding was −18.0 kcal mol−1 and the ligand’s average SASA value decreased by over 80% upon binding to the receptor. The thermodynamic favorability of TTR binding decreased when TKS14 derivatives contained either methyl ester, amide, tetrazole, or N-methyl functional groups that disrupted the above two-point interaction. One derivative in which a tetrazole ring was added to TKS14 was found to form hydrogen bonds with Thr-106, Thr-119, Ser-117, and Lys-15 residues. This derivative had a free energy of TTR binding of −21.4 kcal mol−1. Overall, the molecular dynamics simulations showed that the functional groups within the TKS14 structural template can be tuned to optimize the thermodynamic favorability of ligand binding. Full article
(This article belongs to the Special Issue Molecular Structure and Simulation in Biological System 3.0)
Show Figures

Figure 1

45 pages, 10295 KiB  
Review
Holistic Molecular Design of Ionic Surfaces for Tailored Water Wettability and Technical Applications
by Huiyun Wang, Chongling Cheng and Dayang Wang
Nanomaterials 2025, 15(8), 591; https://doi.org/10.3390/nano15080591 - 11 Apr 2025
Cited by 1 | Viewed by 1216
Abstract
This comprehensive review systematically explores the molecular design and functional applications of nano-smooth hydrophilic ionic polymer surfaces. Beginning with advanced fabrication strategies—including plasma treatment, surface grafting, and layer-by-layer assembly—we critically evaluate their efficacy in eliminating surface irregularities and tailoring wettability. Central to this [...] Read more.
This comprehensive review systematically explores the molecular design and functional applications of nano-smooth hydrophilic ionic polymer surfaces. Beginning with advanced fabrication strategies—including plasma treatment, surface grafting, and layer-by-layer assembly—we critically evaluate their efficacy in eliminating surface irregularities and tailoring wettability. Central to this discussion are the types of ionic groups, molecular configurations, and counterion hydration effects, which collectively govern macroscopic hydrophilicity through electrostatic interactions, hydrogen bonding, and molecular reorganization. By bridging molecular-level insights with application-driven design, we highlight breakthroughs in oil–water separation, anti-fogging, anti-icing, and anti-waxing technologies, where precise control over ionic group density, the hydration layer’s stability, and the degree of perfection enable exceptional performance. Case studies demonstrate how zwitterionic architectures, pH-responsive coatings, and biomimetic interfaces address real-world challenges in industrial and biomedical settings. In conclusion, we synthesize the molecular mechanisms governing hydrophilic ionic surfaces and identify key research directions to address future material challenges. This review bridges critical gaps in the current understanding of molecular-level determinants of wettability while providing actionable design principles for engineered hydrophilic surfaces. Full article
(This article belongs to the Special Issue Advances in Polymer Nanocomposite Films:2nd Edition)
Show Figures

Figure 1

27 pages, 1822 KiB  
Review
p.Phe508del-CFTR Trafficking: A Protein Quality Control Perspective Through UPR, UPS, and Autophagy
by Pascal Trouvé and Claude Férec
Int. J. Mol. Sci. 2025, 26(8), 3623; https://doi.org/10.3390/ijms26083623 - 11 Apr 2025
Viewed by 778
Abstract
Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most frequent mutation (p.Phe508del) results in a misfolded protein (p.Phe508del-CFTR) with an altered transport to the membrane of the cells via [...] Read more.
Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most frequent mutation (p.Phe508del) results in a misfolded protein (p.Phe508del-CFTR) with an altered transport to the membrane of the cells via the conventional protein secretion (CPS) pathway. Nevertheless, it can use unconventional protein secretion (UPS). Indeed, p.Phe508del-CFTR forms a complex with GRASP55 to assist its direct trafficking from the endoplasmic reticulum to the plasma membrane. While GRASP55 is a key player of UPS, it is also a key player of stress-induced autophagy. In parallel, the unfolded protein response (UPR), which is activated in the presence of misfolded proteins, is tightly linked to UPS and autophagy through the key effectors IRE1, PERK, and ATF6. A better understanding of how UPS, UPR, and stress-induced autophagy interact to manage protein trafficking in CF and other conditions could lead to novel therapeutic strategies. By enhancing or modulating these pathways, it may be possible to increase p.Phe508del-CFTR surface expression. In summary, this review highlights the critical roles of UPS- and UPR-induced autophagy in managing protein transport, offering new perspectives for therapeutic approaches. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Molecular Pathogenesis, Diagnosis, and Treatment)
Show Figures

Figure 1

Back to TopTop