Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = plasma facing components

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2135 KiB  
Article
High Strength and Fracture Resistance of Reduced-Activity W-Ta-Ti-V-Zr High-Entropy Alloy for Fusion Energy Applications
by Siva Shankar Alla, Blake Kourosh Emad and Sundeep Mukherjee
Entropy 2025, 27(8), 777; https://doi.org/10.3390/e27080777 - 23 Jul 2025
Abstract
Refractory high-entropy alloys (HEAs) are promising candidates for next-generation nuclear applications, particularly fusion reactors, due to their excellent high-temperature mechanical properties and irradiation resistance. Here, the microstructure and mechanical behavior were investigated for an equimolar WTaTiVZr HEA, designed from a palette of low-activation [...] Read more.
Refractory high-entropy alloys (HEAs) are promising candidates for next-generation nuclear applications, particularly fusion reactors, due to their excellent high-temperature mechanical properties and irradiation resistance. Here, the microstructure and mechanical behavior were investigated for an equimolar WTaTiVZr HEA, designed from a palette of low-activation elements. The as-cast alloy exhibited a dendritic microstructure composed of W-Ta rich dendrites and Zr-Ti-V rich inter-dendritic regions, both possessing a body-centered cubic (BCC) crystal structure. Room temperature bulk compression tests showed ultra-high strength of around 1.6 GPa and plastic strain ~6%, with fracture surfaces showing cleavage facets. The alloy also demonstrated excellent high-temperature strength of ~650 MPa at 500 °C. Scratch-based fracture toughness was ~38 MPa√m for the as-cast WTaTiVZr HEA compared to ~25 MPa√m for commercially used pure tungsten. This higher value of fracture toughness indicates superior damage tolerance relative to commercially used pure tungsten. These results highlight the alloy’s potential as a low-activation structural material for high-temperature plasma-facing components (PFCs) in fusion reactors. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
Show Figures

Figure 1

11 pages, 1699 KiB  
Article
Optimization of the LIBS Technique in Air, He, and Ar at Atmospheric Pressure for Hydrogen Isotope Detection on Tungsten Coatings
by Salvatore Almaviva, Lidia Baiamonte and Marco Pistilli
J. Nucl. Eng. 2025, 6(3), 22; https://doi.org/10.3390/jne6030022 - 1 Jul 2025
Viewed by 236
Abstract
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing [...] Read more.
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing this task directly in situ, without handling or removing PFCs, thus limiting analysis times and increasing the machine’s duty cycle. To increase sensitivity and the ability to discriminate between isotopes, LIBS analysis can be performed under different background gases at atmospheric pressure, such as air, He, and Ar. In this work, we present the results obtained on tungsten coatings enriched with deuterium and/or hydrogen as a deuterium–tritium nuclear fuel simulant, measured with the LIBS technique in air, He, and Ar at atmospheric pressure, and discuss the pros and cons of their use. The results obtained demonstrate that both He and Ar can improve the LIBS signal resolution of the hydrogen isotopes compared to air. However, using Ar has the additional advantage that the same procedure can also be used to detect He implanted in PFCs as a product of fusion reactions without any interference. Finally, the LIBS signal in an Ar atmosphere increases in terms of the signal-to-noise ratio (SNR), enabling the use of less energetic laser pulses to improve performance in depth profiling analyses. Full article
(This article belongs to the Special Issue Fusion Materials with a Focus on Industrial Scale-Up)
Show Figures

Graphical abstract

26 pages, 5990 KiB  
Article
Efficient Image Processing Technique for Detecting Spatio-Temporal Erosion in Boron Nitride Exposed to Iodine Plasma
by Ahmed S. Afifi, Janith Weerasinghe, Karthika Prasad, Igor Levchenko and Katia Alexander
Nanomaterials 2025, 15(13), 961; https://doi.org/10.3390/nano15130961 - 21 Jun 2025
Viewed by 1097
Abstract
Erosion detection in materials exposed to plasma-generated species, such as those used for space propulsion systems, is critical for ensuring their reliability and longevity. This study introduces an efficient image processing technique to monitor the evolution of the erosion depth in boron nitride [...] Read more.
Erosion detection in materials exposed to plasma-generated species, such as those used for space propulsion systems, is critical for ensuring their reliability and longevity. This study introduces an efficient image processing technique to monitor the evolution of the erosion depth in boron nitride (BN) subjected to multiple cycles of iodine plasma exposure. Utilising atomic force microscopy (AFM) images from both untreated and treated BN samples, the technique uses a modified semi-automated image registration method that accurately aligns surface profiles—even after substantial erosion—and overcomes challenges related to changes in the eroded surface features. The registered images are then processed through frequency-domain subtraction to visualise and quantify erosion depth. Our technique tracks changes across the BN surface at multiple spatial locations and generates erosion maps at exposure durations of 24, 48, 72 and 84 min using both one-stage and multi-stage registration methods. These maps not only reveal localised material loss (up to 5.5 μm after 84 min) and assess its uniformity but also indicate potential re-deposition of etched material and redistribution across the surface through mechanisms such as diffusion. By analysing areas with higher elevations and observing plasma-treated samples over time, we notice that these elevated regions—initially the most affected—gradually decrease in size and height, while overall erosion depth increases. Progressive surface smoothing is observed with increasing iodine plasma exposure, as quantified by AFM-based erosion mapping. Notably, up to 89.3% of surface heights were concentrated near the mean after 72–84 min of plasma treatment, indicating a more even distribution of surface features compared to the untreated surface. Iodine plasma was compared to argon plasma to distinguish material loss during degradation between these two mechanisms. Iodine plasma causes more aggressive and spatially selective erosion, strongly influenced by initial surface morphology, whereas argon plasma results in milder and more uniform surface changes. Additional scale-dependent slope and curvature analyses confirm that iodine rapidly smooths fine features, whereas argon better preserves surface sharpness over time. Tracking such sharpness is critical for maintaining the fine structures essential to the fabrication of modern semiconductor components. Overall, this image processing tool offers a powerful and adaptable method for accurately assessing surface degradation and morphological changes in materials used in plasma-facing and space propulsion environments. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

18 pages, 4263 KiB  
Article
Predicting Overload Risk on Plasma-Facing Components at Wendelstein 7-X from IR Imaging Using Self-Organizing Maps
by Giuliana Sias, Emanuele Corongiu, Enrico Aymerich, Barbara Cannas, Alessandra Fanni, Yu Gao, Bartłomiej Jabłoński, Marcin Jakubowski, Aleix Puig Sitjes, Fabio Pisano and W7-X Team
Energies 2025, 18(12), 3192; https://doi.org/10.3390/en18123192 - 18 Jun 2025
Viewed by 341
Abstract
Overload detection is crucial in nuclear fusion experiments to prevent damage to plasma-facing components (PFCs) and ensure the safe operation of the reactor. At Wendelstein 7-X (W7-X), real-time monitoring and prediction of thermal events are essential for maintaining the integrity of PFCs. This [...] Read more.
Overload detection is crucial in nuclear fusion experiments to prevent damage to plasma-facing components (PFCs) and ensure the safe operation of the reactor. At Wendelstein 7-X (W7-X), real-time monitoring and prediction of thermal events are essential for maintaining the integrity of PFCs. This paper proposes a machine learning approach for developing a real-time overload detector, trained and tested on OP1.2a experimental data. The analysis showed that Self-Organizing Maps (SOMs) are efficient in detecting the overload risk starting from a set of plasma parameters that describe the magnetic configuration, the energy behavior, and the power balance. This study aims to thoroughly evaluate the capabilities of the SOM in recognizing overload risk levels, defined by quantizing the maximum criticality across different IR cameras. The goal is to enable detailed monitoring for overload prevention while maintaining high-performance plasmas and sustaining long pulse operations. The SOM proves to be a highly effective overload risk detector. It correctly identifies the assigned overload risk level in 87.52% of the samples. The most frequent error in the test set, occurring in 10.46% of cases, involves assigning a risk level to each sample adjacent to the target one. The analysis of the results highlights the advantages and drawbacks of criticality discretization and opens new solutions to improve the SOM potential in this field. Full article
(This article belongs to the Special Issue AI-Driven Advancements in Nuclear Fusion Energy)
Show Figures

Figure 1

15 pages, 15318 KiB  
Article
Breaking the Hardness-Wear Trade-Off: Quantitative Correlation in Nano-Al2O3-Reinforced Al10Cr17Fe20NiV4 High-Entropy Alloys
by Cong Feng, Huan Wang and Yaping Wang
Nanomaterials 2025, 15(10), 775; https://doi.org/10.3390/nano15100775 - 21 May 2025
Viewed by 380
Abstract
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion [...] Read more.
Multi-principal element alloys (MPEAs) exhibit distinct characteristics compared to conventional single-principal element-based metallic materials, primarily due to their unique design, resulting in intricate microstructural features. Currently, a comprehensive understanding of the fabrication processes, compositional design, and microstructural influence on the tribological and corrosion behavior of multi-component alloys remains limited. While the hardness of MPEAs generally correlates positively with wear resistance, with higher hardness typically associated with improved wear resistance and reduced wear rates, quantitative relationships between these properties are not well established. In this study, the Al10Cr17Fe20NiV4 alloy was selected as a model system. A homogeneous Al10Cr17Fe20NiV4 alloy was successfully synthesized via mechanical alloying followed by spark plasma sintering (SPS). To further investigate the correlation between hardness and wear rate, varying concentrations of alumina nanoparticles were incorporated into the alloy matrix as a reinforcing phase. The results revealed that the Al10Cr17Fe20NiV4 alloy exhibited a single-phase face-centered cubic (FCC) structure, which was maintained with the addition of alumina nanoparticles. The hardness of the Al10Cr17Fe20NiV4 alloy without nano-alumina was 727 HV, with a corresponding wear rate of 2.9 × 10−4 mm3·N−1·m−1. The incorporation of nano-alumina increased the hardness to 823 HV, and significantly reduced the wear rate to 1.6 × 10−4 mm3·N−1·m−1, representing a 45% reduction. The Al2O3 nanoparticles effectively mitigated alloy wear through crack passivation and matrix strengthening; however, excessive addition reversed this effect due to the agglomeration-induced brittleness and thermal mismatch. The quantitative relationship between hardness (HV) and wear rate (W) was determined as W = 2348 e(−0.006HV). Such carefully bounded empirical relationships, as demonstrated in studies of cold-formed materials and dental enamel, remain valuable tools in applied research when accompanied by explicit scope limitations. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

21 pages, 16893 KiB  
Article
Evaluation of Potential Toxic Elements in Soils from Three Urban Areas Surrounding a Steel Industrial Zone
by Georgios Charvalas, Aikaterini Molla, Alexios Lolas, Elpiniki Skoufogianni, Savvas Papadopoulos, Evaggelia Chatzikirou, Christina Emmanouil and Olga Christopoulou
Toxics 2025, 13(5), 351; https://doi.org/10.3390/toxics13050351 - 28 Apr 2025
Viewed by 534
Abstract
The urban zone around the city of Volos, a Greek city with a historically industrialized profile, faces threats arising from Potential Toxic Element (PTE) contamination. The scope of this study is to determine the contamination levels of 10 PTEs in three urban areas [...] Read more.
The urban zone around the city of Volos, a Greek city with a historically industrialized profile, faces threats arising from Potential Toxic Element (PTE) contamination. The scope of this study is to determine the contamination levels of 10 PTEs in three urban areas which are located near the industrial zone in the city of Volos. For this purpose, a total of 30 soil samples from parks, playgrounds and roadsides were collected from the Agios Georgios, Velestino and Rizomilos areas (Magnesia, Central Greece). The sampling was conducted in June 2022 and the concentrations of chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), lead (Pb), iron (Fe), manganese (Mn), cobalt (Co) and zinc (Zn) were measured through inductively coupled plasma mass spectrometry (ICP-MS). The Contamination Factor (CF), Pollution Load Index (PLI) and Geo-accumulation Index (Igeo) revealed moderate pollution in most cases, whereas in some sites the contamination was significant for Ni or for As. Principal Component Analysis showed concomitant changes for some PTEs in Component 1 and for others in Component 2, explaining approximately 67% of the variation. K-means Cluster Analysis showed two distinct groups of PTE-impacted sites within these urban areas. It can be postulated that industrial activities may have a carry-over effect on the soil in residential areas. Frequent monitoring of areas deemed as “contaminated” and time-series data are needed to examine in depth the soil pollution in cities and its possible shifts in relation to the changes in industrialization status in the extended urban areas. Full article
(This article belongs to the Special Issue Soil Heavy Metal Pollution and Human Health)
Show Figures

Figure 1

22 pages, 1675 KiB  
Review
Plasma Spraying of W Coatings for Nuclear Fusion Applications: Advancements and Challenges
by Ekaterina Pakhomova, Alessandra Palombi and Alessandra Varone
Crystals 2025, 15(5), 408; https://doi.org/10.3390/cryst15050408 - 26 Apr 2025
Viewed by 821
Abstract
The selection of a suitable plasma-facing material (PFM) that must protect the divertor, cooling systems, and structural components is an important challenge in the design of advanced fusion reactors and requires careful consideration. Material degradation due to melting and evaporation may lead to [...] Read more.
The selection of a suitable plasma-facing material (PFM) that must protect the divertor, cooling systems, and structural components is an important challenge in the design of advanced fusion reactors and requires careful consideration. Material degradation due to melting and evaporation may lead to plasma contamination, which must be strictly avoided. Among the candidate materials, tungsten (W) is the most promising because of its thermo-mechanical and physical properties, which allow it to endure repeated exposure to extremely harsh conditions within the reactor. The plasma spraying (PS) technique is gaining increasing interest for the deposition of tungsten (W) coatings to protect heat sink materials, due to its relatively low cost, high deposition rates, and capability to coat complex-shaped surfaces and fix damaged coatings in situ. This review aims to provide a systematic assessment of tungsten (W) coatings produced by PS techniques, evaluating their suitability as PFMs. It discusses W-based materials, plasma spraying technologies, the role of the interface in joining W coating and metallic substrates such as copper alloys and steels, and the main issues related to coating surface erosion under steady-state and transient heat loads associated with advanced fusion reactor operation modes and off-normal events. Quantitative data available in the literature, such as porosity, oxygen content, thermal conductivity of the coatings, residual stresses accumulated in the coating–substrate interface, surface temperature, and material loss following heat load events, were summarized and compared to bulk W ones. The results demonstrate that, following optimization of the fabrication process, PS-W coatings exhibit excellent performance. In addition, previously mentioned advantages of PS technology make PS-W coatings an attractive alternative for PFM fabrication. Full article
Show Figures

Graphical abstract

21 pages, 5601 KiB  
Article
Effect of Low-Temperature Plasma Sterilization on the Quality of Pre-Prepared Tomato-Stewed Beef Brisket During Storage: Microorganism, Freshness, Protein Oxidation and Flavor Characteristics
by Qihan Shi, Ying Xiao, Yiming Zhou, Jinhong Wu, Xiaoli Zhou, Yanping Chen and Xiaodan Liu
Foods 2025, 14(7), 1106; https://doi.org/10.3390/foods14071106 - 22 Mar 2025
Viewed by 667
Abstract
Traditional tomato-braised beef brisket with potatoes is celebrated for its rich, complex flavors and culinary appeal but requires lengthy preparation. Pre-packaged versions of the dish rely on thermal sterilization for safety; however, high-temperature processing accelerates protein and lipid oxidation, thereby compromising its sensory [...] Read more.
Traditional tomato-braised beef brisket with potatoes is celebrated for its rich, complex flavors and culinary appeal but requires lengthy preparation. Pre-packaged versions of the dish rely on thermal sterilization for safety; however, high-temperature processing accelerates protein and lipid oxidation, thereby compromising its sensory quality. As the demand for ready-to-eat meals grows, the food industry faces the challenge of ensuring microbial safety while preserving flavor integrity. In this study, low-temperature plasma sterilization (LTPS) (160 KV, 450 s) was evaluated as a non-thermal alternative to conventional high-temperature short-time (HSS) sterilization. Furthermore, a comprehensive analysis was conducted over a 10-day storage period, assessing microbial viability, physicochemical properties (pH, shear force, and water-holding capacity), oxidative markers (TBARS, TVB-N, and protein carbonyls), volatile compounds (GC-MS), and electronic nose (e-nose) responses. The results revealed that LTPS (160 kV, 450 s) successfully maintained bacterial counts below regulatory limits (5 lg CFU/g) for 72 h, ensuring that the microbial indicators of short-term processed products sold to supermarkets through cold chain logistics were in the safety range. Additionally, LTPS-treated samples showed a 4.2% higher water-holding capacity (p < 0.05) during storage, indicating improved preservation of texture. Furthermore, LTPS-treated samples exhibited 32% lower lipid oxidation (p < 0.05) and retained 18% higher sulfhydryl content (p < 0.05) compared to HSS, indicating reduced protein oxidation. GC-MS and e-nose analyses showed that LTPS preserved aldehydes and ketones associated with meaty aromas, while HSS contributed to sulfur-like off-flavors. Principal component analysis showed that the LTPS samples had shorter distances across various storage periods compared to HSS, indicating reduced differences in aroma difference. The findings of this study demonstrate LTPS’s dual efficacy in microbial control and aroma preservation. The technology presents a viable strategy for extending the shelf life of pre-prepared meat dishes while reducing oxidative and flavor deterioration, thereby establishing a solid foundation for LTPS application in the pre-prepared food sector. Full article
Show Figures

Figure 1

15 pages, 2296 KiB  
Article
Plasma Gasification of Medical Plastic Waste to Syngas in a Greenhouse Gas (CO2) Environment
by Andrius Tamošiūnas, Mindaugas Milieška, Dovilė Gimžauskaitė, Mindaugas Aikas, Rolandas Uscila, Kęstutis Zakarauskas, Sebastian Fendt, Sebastian Bastek and Hartmut Spliethoff
Sustainability 2025, 17(5), 2040; https://doi.org/10.3390/su17052040 - 27 Feb 2025
Viewed by 1774
Abstract
The global coronavirus (COVID-19) pandemic in early 2020 caused the amount of medical waste, especially plastic waste, to increase. The pandemic exacerbated the plastic waste management problem, including the need to find more sustainable treatment methods. This study investigated the sustainable conversion of [...] Read more.
The global coronavirus (COVID-19) pandemic in early 2020 caused the amount of medical waste, especially plastic waste, to increase. The pandemic exacerbated the plastic waste management problem, including the need to find more sustainable treatment methods. This study investigated the sustainable conversion of plastic waste (FFP2-type face masks) to syngas via pure CO2 plasma gasification to recover energy and reduce environmental pollution. A direct current (DC) thermal arc plasma torch of 40.6–68.4 kW power generated the plasma stream. Carbon dioxide (CO2), as a greenhouse gas (GHG), was used as the main plasma-forming gas and gasifying agent. The 140thermal feedstock input plasma gasification system was used in the study. The effect of the CO2-to-C ratio on the gasification performance efficiency was investigated. The best CO2 plasma gasification process performance was obtained at a CO2-to-C ratio of 2.34. In these conditions, the main syngas components (H2 + CO) comprised 80.46 vol.% (H2: 24.62 vol.% and CO: 55.84 vol.%) and the following values were seen for the heating value of the syngas (LHVsyngas: 13.88 MJ/Nm3), the syngas yield (3.13 Nm3/kgFFP2), the tar content in the syngas (23.0 g/Nm3), the carbon conversion efficiency (CCE: 70.6%), and the cold gas efficiency (CGE: 47.8%). Additionally, the plasma gasification process mass and energy balance were evaluated. It was demonstrated that CO2 plasma gasification could be a promising thermochemical treatment technology for sustainable plastic waste disposal and the simultaneous utilization of greenhouse gases, such as carbon dioxide. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

9 pages, 3854 KiB  
Proceeding Paper
The Mechanical Characterization of a Gyroid-Based Metamaterial by Compression Testing
by Andrea Ciula, Gianluca Rubino and Pierluigi Fanelli
Eng. Proc. 2025, 85(1), 17; https://doi.org/10.3390/engproc2025085017 - 18 Feb 2025
Viewed by 548
Abstract
Gyroid-based mechanical metamaterials have garnered increasing attention for their unique mechanical properties, particularly in applications involving complex stress environments. This study focuses on the mechanical characterization of the gyroid cell, a member of the Triply Periodic Minimal Surfaces (TPMS) family, through both experimental [...] Read more.
Gyroid-based mechanical metamaterials have garnered increasing attention for their unique mechanical properties, particularly in applications involving complex stress environments. This study focuses on the mechanical characterization of the gyroid cell, a member of the Triply Periodic Minimal Surfaces (TPMS) family, through both experimental and numerical analyses. Three different gyroid morphologies were generated by varying a single parameter in the parametric equation of the gyroid surface. Specimens were fabricated by 3D printing based on Liquid Crystal Display (LCD) technology, and compression tests were conducted to measure the equivalent Young’s modulus. Numerical models developed using Finite Element Method (FEM) analysis were validated through the experimental findings. The results indicate a good correlation between the experimental and numerical data, particularly in the linear elastic region, confirming the suitability of FEM simulations in predicting the mechanical response of these cellular structures. The study serves as a foundational step towards a broader multi-physical characterization of TPMS-based metamaterials and paves the way for the future development of tailored metamaterials for specific applications, including sacrificial limiters in plasma-facing components of Tokamaks. Full article
Show Figures

Figure 1

15 pages, 4516 KiB  
Article
Optimizing the Dealkalization Process of Red Mud: Controlling Calcium Compounds to Improve Solid–Liquid Separation Performance
by Jianfei Zhou, Mengmeng Dai, Qingjun Guan, Hua Zeng, Wei Sun and Li Wang
Minerals 2025, 15(2), 150; https://doi.org/10.3390/min15020150 - 3 Feb 2025
Viewed by 817
Abstract
The acid neutralization process is widely recognized for its effectiveness in the dealkalization of red mud, and it faces challenges in solid–liquid separation due to the formation of numerous colloidal components. This study investigated the impact of calcium-containing compounds (CaO, CaCl2, [...] Read more.
The acid neutralization process is widely recognized for its effectiveness in the dealkalization of red mud, and it faces challenges in solid–liquid separation due to the formation of numerous colloidal components. This study investigated the impact of calcium-containing compounds (CaO, CaCl2, CaCO3, and CaSO4) on the solid–liquid separation and the dealkalization efficiency of red mud during the dealkalization process. The sodium leaching efficiency of the red mud reached 95.6% when the red mud was reacted with 8% of sulfuric acid for 10 min with a stirring speed and liquid to solid ratio of 700 r/min and 5:1, respectively. The replacement of sulfuric acid using simulated waste acid reached similar sodium leaching efficiency. However, the filtration rate of red mud becomes exceedingly sluggish using sulfuric acid or simulated waste acid. Adding calcium-containing compounds significantly augments the efficacy of solid–liquid separation in red mud. With a mass content of 2% for CaO or 8% for CaCl2, the filtration speed experienced a remarkable fivefold and ninefold increase, respectively. Furthermore, a simplification in the composition was observed within the leaching solution derived from red mud, thereby creating favorable conditions for the extraction of sodium. The influence mechanism was investigated with X-ray diffraction, inductively coupled plasma analysis, and scanning electron microscopy. The addition of calcium compounds led to the formation of calcium silicate and iron silicate in the leaching residue, inhibiting the generation of colloidal substances, such as silica gel. Additionally, these compounds increased the size of red mud particles, facilitating the solid–liquid separation process. This study provides valuable technical insights for the dealkalization of red mud. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 13315 KiB  
Article
Numerical Investigation of the Coupling Effects of Pulsed H2 Jets and Nanosecond-Pulsed Actuation in Supersonic Crossflow
by Keyu Li and Jiangfeng Wang
Aerospace 2025, 12(1), 44; https://doi.org/10.3390/aerospace12010044 - 11 Jan 2025
Viewed by 902
Abstract
Numerical investigations were conducted to analyze the coupling effects of pulsed H2 jets and nanosecond-pulsed actuation (NS-SDBD) in a supersonic crossflow. The FVM was employed to solve the multi-component 2D URANS equations with the SST k-omega turbulence model, while H2-air [...] Read more.
Numerical investigations were conducted to analyze the coupling effects of pulsed H2 jets and nanosecond-pulsed actuation (NS-SDBD) in a supersonic crossflow. The FVM was employed to solve the multi-component 2D URANS equations with the SST k-omega turbulence model, while H2-air combustion was described using a seven species–seven reactions chain reaction model, and the plasma thermal effect was represented by a phenomenological model. The backward-facing step flows with an inlet Mach number of 2.5 and a pulsed jet frequency of 10 kHz under different actuation conditions were simulated. The combustion enhancement mechanism under an actuation frequency of 20 kHz was analyzed. Research indicates that compression waves induced by NS-SDBD enhance H2-air mixing and facilitate temperature transport as the flow progresses. This progress is significantly associated with the flow structures generated by pulsed jets. Under this condition, the fuel utilization rate in the flow field increased by 61.2%, the total pressure recovery coefficient increased by 5.34%, and the outlet total temperature slightly increased even with a 50% reduction in fuel flow rate. Comparative analysis of different actuation cases demonstrates that evenly distributed actuation within the jet cycle yields better effects. The innovation of this study lies in proposing and exploring a potential method to address inadequate combustion under high-speed inflow conditions, which couples NS-SDBD with pulsed hydrogen jets. Full article
(This article belongs to the Special Issue Innovations in Hypersonic Propulsion Systems)
Show Figures

Figure 1

13 pages, 3683 KiB  
Article
Automatic Single-Cell Harvesting for Fetal Nucleated Red Blood Cell Isolation on a Self-Assemble Cell Array (SACA) Chip
by Hsin-Yu Yang, Che-Hsien Lin, Yi-Wen Hu, Chih-Hsuan Chien, Mu-Chi Huang, Chun-Hao Lai, Jen-Kuei Wu and Fan-Gang Tseng
Micromachines 2024, 15(12), 1515; https://doi.org/10.3390/mi15121515 - 20 Dec 2024
Cited by 1 | Viewed by 1554
Abstract
(1) Background: Fetal chromosomal examination is a critical component of modern prenatal testing. Traditionally, maternal serum biomarkers such as free β-human chorionic gonadotropin (Free β-HCG) and pregnancy-associated plasma protein A (PAPPA) have been employed for screening, achieving a detection rate of approximately 90% [...] Read more.
(1) Background: Fetal chromosomal examination is a critical component of modern prenatal testing. Traditionally, maternal serum biomarkers such as free β-human chorionic gonadotropin (Free β-HCG) and pregnancy-associated plasma protein A (PAPPA) have been employed for screening, achieving a detection rate of approximately 90% for fetuses with Down syndrome, albeit with a false positive rate of 5%. While amniocentesis remains the gold standard for the prenatal diagnosis of chromosomal abnormalities, including Down syndrome and Edwards syndrome, its invasive nature carries a significant risk of complications, such as infection, preterm labor, or miscarriage, occurring at a rate of 7 per 1000 procedures. Beyond Down syndrome and Edwards syndrome, other chromosomal abnormalities, such as trisomy of chromosomes 9, 16, or Barr bodies, pose additional diagnostic challenges. Non-invasive prenatal testing (NIPT) has emerged as a powerful alternative for fetal genetic screening by leveraging maternal blood sampling. However, due to the extremely low abundance of fetal cells in maternal circulation, NIPT based on fetal cells faces substantial technical challenges. (2) Methods: Fetal nucleated red blood cells (FnRBCs) were first identified in maternal circulation in a landmark study published in The Lancet in 1959. Due to their fetal origin and presence in maternal peripheral blood, FnRBCs represent an ideal target for non-invasive prenatal testing (NIPT). In this study, we introduce a novel self-assembled cell array (SACA) chip system, a microfluidic-based platform designed to efficiently settle and align cells into a monolayer at the chip’s base within five minutes using lateral flow dynamics and gravity. This system is integrated with a fully automated, multi-channel fluorescence scanning module, enabling the real-time imaging and molecular profiling of fetal cells through fluorescence-tagged antibodies. By employing a combination of Hoechst+/CD71+/HbF+/CD45− markers, the platform achieves the precise enrichment and isolation of FnRBCs at the single-cell level from maternal peripheral blood. (3) Results: The SACA chip system effectively reduces the displacement of non-target cells by 31.2%, achieving a single-cell capture accuracy of 97.85%. This isolation and enrichment system for single cells is well suited for subsequent genetic analysis. Furthermore, the platform achieves a high purity of isolated cells, overcoming the concentration detection limit of short tandem repeat (STR) analysis, demonstrating its capability for reliable non-invasive prenatal testing. (4) Conclusions: This study demonstrates that the SACA chip, combined with an automated image positioning system, can efficiently isolate single fetal nucleated red blood cells (FnRBCs) from 50 million PBMCs in 2 mL of maternal blood, completing STR analysis within 120 min. With higher purification efficiency compared to existing NIPT methods, this platform shows great promise for prenatal diagnostics and potential applications in other clinical fields. Full article
(This article belongs to the Special Issue Application of Microfluidic Technology in Bioengineering)
Show Figures

Figure 1

10 pages, 4044 KiB  
Article
Modelling the Impact of Argon Atoms on a WO3 Surface by Molecular Dynamics Simulations
by Shokirbek Shermukhamedov, Thana Maihom and Michael Probst
Molecules 2024, 29(24), 5928; https://doi.org/10.3390/molecules29245928 - 16 Dec 2024
Viewed by 876
Abstract
Machine learning potential energy functions can drive the atomistic dynamics of molecules, clusters, and condensed phases. They are amongst the first examples that showed how quantum mechanics together with machine learning can predict chemical reactions as well as material properties and even lead [...] Read more.
Machine learning potential energy functions can drive the atomistic dynamics of molecules, clusters, and condensed phases. They are amongst the first examples that showed how quantum mechanics together with machine learning can predict chemical reactions as well as material properties and even lead to new materials. In this work, we study the behaviour of tungsten trioxide (WO3) surfaces upon particle impact by employing potential energy surfaces represented by neural networks. Besides being omnipresent on tungsten surfaces exposed to air, WO3 plays an important role in nuclear fusion experiments due to the preferred use of tungsten for plasma-facing components. In this instance, the formation of WO3 is caused by the omnipresent traces of oxygen. WO3 becomes a plasma-facing material, but its properties, especially concerning degradation, have hardly been studied. We employ molecular dynamics simulations to investigate sputtering, reflection, and adsorption phenomena occurring on WO3 surfaces irradiated with Argon. The machine-learned potential energy function underlying the MD simulations is modelled using a neural network (NNP) trained from large sets of density functional theory calculations by means of the Behler–Parrinello method. The analysis focuses on sputtering yields for both oxygen and tungsten (W), for various incident energies and impact angles. An increase in Ar incident energy increases the sputtering yield of oxygen, with distinct features observed in different energy ranges. The sputtering yields of tungsten remain exceedingly low, even compared to pristine W surfaces. The ratios between the reflection, adsorption, and retention of the Ar atoms have been analyzed on their dependence of impact energy and incident end angles. We find that the energy spectrum of sputtered oxygen atoms follows a lognormal distribution and offers information about surface binding energies on the WO3 surface. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

19 pages, 16333 KiB  
Article
Simulation and Study of Manufacturing of W–Cu Functionally Graded Materials by a Selective Laser Melting Process
by Xiaoyu Ding, Di Ma, Yuecheng Fu, Laima Luo, Yucheng Wu and Jianhua Yao
Metals 2024, 14(12), 1421; https://doi.org/10.3390/met14121421 - 11 Dec 2024
Cited by 2 | Viewed by 920
Abstract
Plasma-facing components (PFCs) were simulated by ANSYS, and the influence of gradient layer number and composition distribution index on the distribution of temperature field and stress field was analyzed. The simulation results show that a gradient structure with four gradient layers and a [...] Read more.
Plasma-facing components (PFCs) were simulated by ANSYS, and the influence of gradient layer number and composition distribution index on the distribution of temperature field and stress field was analyzed. The simulation results show that a gradient structure with four gradient layers and a component distribution index of 1 makes the PFC assembly have lower overall temperature and lower thermal stress. Tungsten–copper functionally graded materials (W–Cu FGMs) (W-20 vol% Cu/W-40 vol% Cu/W-60 vol% Cu/W-80 vol% Cu) were fabricated by a selective laser melting (SLM) process based on finite element simulation results. The effects of microstructure on the hardness, internal stresses, thermal conductivity, and thermal expansion coefficient of the W–Cu FGMs were evaluated. The results show that hardness increases from 196 to 1173 HV0.3 with increasing W content. The internal stresses of W-20 vol% Cu, W-40 vol% Cu, W-60 vol% Cu, and W-80 vol% Cu are about 191.7 MPa, 627 MPa, 1049.5 MPa, and 561.9 MPa, respectively. The thermal conductivity of the W–Cu FGM is 23 W/m·K and the thermal diffusion coefficient is 10 mm2/s at 25 °C, and the thermal conductivity rises to 70 W/m·K and the thermal diffusion coefficient rises to 18.5 mm2/s at 800 °C. After 100 thermal shock cycles, the internal defects increased, but the interface between the gradient layers remained well bonded. Full article
(This article belongs to the Special Issue Laser Processing Technology and Principles of Metal Materials)
Show Figures

Figure 1

Back to TopTop