Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = plasma cell tumour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 757 KiB  
Communication
Sugar-Linked Diethyldithiocarbamate Derivatives: A Novel Class of Anticancer Agents
by Mohammad Najlah, Niamh McCallum, Ana Maria Pereira, Dan Alves, Niusha Ansari-Fard, Sahrish Rehmani and Ayşe Kaya
Int. J. Mol. Sci. 2025, 26(12), 5589; https://doi.org/10.3390/ijms26125589 - 11 Jun 2025
Viewed by 359
Abstract
Disulfiram (DSF), a well-known anti-alcoholism drug, exhibits potent anticancer activity via its metabolite, diethyldithiocarbamate (DDC), which forms a cytotoxic copper complex that selectively targets cancer stem cells. However, its clinical utility is limited by poor solubility and rapid plasma metabolism. This study explores [...] Read more.
Disulfiram (DSF), a well-known anti-alcoholism drug, exhibits potent anticancer activity via its metabolite, diethyldithiocarbamate (DDC), which forms a cytotoxic copper complex that selectively targets cancer stem cells. However, its clinical utility is limited by poor solubility and rapid plasma metabolism. This study explores saccharide-linked DDCs as novel prodrugs designed to enhance stability, solubility, and tumour-selective activation. These compounds feature thioglycosidic bonds that shield the DDC moiety from premature degradation while retaining its metal-chelating function to form the active copper(II)bis(N,N-diethyldithiocarbamate) (Cu(DDC)2) complex. The synthesised derivatives were characterised and evaluated for serum stability and in vitro cytotoxicity across several cancer cell lines, including colorectal, breast, lung, and brain cancers. Copper-complexed saccharide-DDC prodrugs demonstrated remarkable cytotoxicity, with improved biostability and solubility profiles. These findings highlight the potential of saccharide-linked DDCs as stable, copper-activated prodrugs for cancer therapy. Further in vivo studies are warranted to validate their pharmacokinetics and clinical relevance. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

21 pages, 1882 KiB  
Article
Effect of Arginine Vasopressin on Human Neutrophil Function Under Physiological and Sepsis-Associated Conditions
by Sophie-Marie Haile, Michael Gruber, Gabriele Bollwein and Benedikt Trabold
Int. J. Mol. Sci. 2025, 26(6), 2512; https://doi.org/10.3390/ijms26062512 - 11 Mar 2025
Viewed by 654
Abstract
This study examines how different concentrations of arginine vasopressin (AVP) and its preservative chlorobutanol (ClB) impact the immune functions of human polymorphonuclear neutrophils (PMNs), which are crucial in the immune response, particularly in sepsis. Using a model to simulate the physiological, sepsis-related, and [...] Read more.
This study examines how different concentrations of arginine vasopressin (AVP) and its preservative chlorobutanol (ClB) impact the immune functions of human polymorphonuclear neutrophils (PMNs), which are crucial in the immune response, particularly in sepsis. Using a model to simulate the physiological, sepsis-related, and therapeutic AVP levels in plasma, we analysed how AVP and ClB affect PMN activities, including reactive oxygen species (ROS) production, NETosis, antigen expression, and migration. PMNs were isolated from whole human blood and assessed using flow cytometry and live cell imaging. The results indicated that neither AVP nor ClB significantly affected PMN viability, antigen expression, NETosis, or ROS production in response to N-Formylmethionine-leucyl-phenylalanine, or fMLP, and tumour necrosis factor alpha. In the migration assays, concentration-dependent effects were observed. At physiological AVP levels, PMN migration showed no reduction, while the sepsis-associated AVP levels initially reduced migration before returning to the baseline or even increasing. The therapeutic AVP concentrations showed similar migration to that in the controls, while high concentrations progressively inhibited migration. ClB, regardless of its concentration, enhanced PMN migration. These findings suggest that AVP during sepsis may impair PMN migration, potentially contributing to tissue damage and systemic complications. This highlights AVP’s role as a possible immune modulator in complex immune responses. Full article
Show Figures

Figure 1

27 pages, 3321 KiB  
Article
Interplay of Cellular Nrf2/NF-κB Signalling after Plasma Stimulation of Malignant vs. Non-Malignant Dermal Cells
by Kristina Manzhula, Alexander Rebl, Kai Budde-Sagert and Henrike Rebl
Int. J. Mol. Sci. 2024, 25(20), 10967; https://doi.org/10.3390/ijms252010967 - 11 Oct 2024
Viewed by 2963
Abstract
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 [...] Read more.
Skin cancer is one of the most common malignancies worldwide. Cold atmospheric pressure Plasma (CAP) is increasingly successful in skin cancer therapy, but further research is needed to understand its selective effects on cancer cells at the molecular level. In this study, A431 (squamous cell carcinoma) and HaCaT (non-malignant) cells cultured under identical conditions revealed similar ROS levels but significantly higher antioxidant levels in unstimulated A431 cells, indicating a higher metabolic turnover typical of tumour cells. HaCaT cells, in contrast, showed increased antioxidant levels upon CAP stimulation, reflecting a robust redox adaptation. Specifically, proteins involved in antioxidant pathways, including NF-κB, IκBα, Nrf2, Keap1, IKK, and pIKK, were quantified, and their translocation level upon stimulation was evaluated. CAP treatment significantly elevated Nrf2 nuclear translocation in non-malignant HaCaT cells, indicating a strong protection against oxidative stress, while selectively inducing NF-κB activation in A431 cells, potentially leading to apoptosis. The expression of pro-inflammatory genes like IL-1B, IL-6, and CXCL8 was downregulated in A431 cells upon CAP treatment. Notably, CAP enhanced the expression of antioxidant response genes HMOX1 and GPX1 in non-malignant cells. The differential response between HaCaT and A431 cells underscores the varied antioxidative capacities, contributing to their distinct molecular responses to CAP-induced oxidative stress. Full article
(This article belongs to the Special Issue NRF2/KEAP1 Signalling in Cancer)
Show Figures

Graphical abstract

15 pages, 2235 KiB  
Perspective
Implementation of Liquid Biopsy in Non-Small-Cell Lung Cancer: An Ontario Perspective
by Daniel Breadner, David M. Hwang, Don Husereau, Parneet Cheema, Sarah Doucette, Peter M. Ellis, Shaqil Kassam, Natasha Leighl, Donna E. Maziak, Shamini Selvarajah, Brandon S. Sheffield and Rosalyn A. Juergens
Curr. Oncol. 2024, 31(10), 6017-6031; https://doi.org/10.3390/curroncol31100449 - 8 Oct 2024
Cited by 2 | Viewed by 2618
Abstract
Lung cancer is the leading cause of cancer-related deaths in Canada, with non-small-cell lung cancer (NSCLC) accounting for the majority of cases. Timely access to comprehensive molecular profiling is critical for selecting biomarker-matched targeted therapies, which lead to improved outcomes in advanced NSCLC. [...] Read more.
Lung cancer is the leading cause of cancer-related deaths in Canada, with non-small-cell lung cancer (NSCLC) accounting for the majority of cases. Timely access to comprehensive molecular profiling is critical for selecting biomarker-matched targeted therapies, which lead to improved outcomes in advanced NSCLC. Tissue biopsy samples are the gold standard for molecular profiling; however, several challenges can prevent timely and complete molecular profiling from being performed, causing delays in treatment or suboptimal therapy selection. Liquid biopsy offers a minimally invasive method for molecular profiling by analyzing circulating tumour DNA (ctDNA) and RNA (cfRNA) in plasma, potentially overcoming these barriers. This paper discusses the outcomes of a multidisciplinary working group in Ontario, which proposed three eligibility criteria for liquid biopsy reimbursement: (1) insufficient tissue for complete testing or failed tissue biomarker testing; (2) suspected advanced NSCLC where tissue biopsy is not feasible; and (3) high-risk patients who may deteriorate before tissue results are available. The group also addressed considerations for assay selection, implementation, and economic impact. These discussions aim to inform reimbursement and implementation strategies for liquid biopsy in Ontario’s public healthcare system, recognizing the need for ongoing evaluation as technology and evidence evolve. Full article
Show Figures

Figure 1

24 pages, 8957 KiB  
Article
An Anti-Invasive Role for Mdmx through the RhoA GTPase under the Control of the NEDD8 Pathway
by Lara J. Bou Malhab, Susanne Schmidt, Christine Fagotto-Kaufmann, Emmanuelle Pion, Gilles Gadea, Pierre Roux, Francois Fagotto, Anne Debant and Dimitris P. Xirodimas
Cells 2024, 13(19), 1625; https://doi.org/10.3390/cells13191625 - 28 Sep 2024
Viewed by 1661
Abstract
Mdmx (Mdm4) is established as an oncogene mainly through repression of the p53 tumour suppressor. On the other hand, anti-oncogenic functions for Mdmx have also been proposed, but the underlying regulatory pathways remain unknown. Investigations into the effect of inhibitors for the NEDD8 [...] Read more.
Mdmx (Mdm4) is established as an oncogene mainly through repression of the p53 tumour suppressor. On the other hand, anti-oncogenic functions for Mdmx have also been proposed, but the underlying regulatory pathways remain unknown. Investigations into the effect of inhibitors for the NEDD8 pathway in p53 activation, human cell morphology, and in cell motility during gastrulation in Xenopus embryos revealed an anti-invasive function of Mdmx. Through stabilisation and activation of the RhoA GTPase, Mdmx is required for the anti-invasive effects of NEDDylation inhibitors. Mechanistically, through its Zn finger domain, Mdmx preferentially interacts with the inactive GDP-form of RhoA. This protects RhoA from degradation and allows for RhoA targeting to the plasma membrane for its subsequent activation. The effect is transient, as prolonged NEDDylation inhibition targets Mdmx for degradation, which subsequently leads to RhoA destabilisation. Surprisingly, Mdmx degradation requires non-NEDDylated (inactive) Culin4A and the Mdm2 E3-ligase. This study reveals that Mdmx can control cell invasion through RhoA stabilisation/activation, which is potentially linked to the reported anti-oncogenic functions of Mdmx. As inhibitors of the NEDD8 pathway are in clinical trials, the status of Mdmx may be a critical determinant for the anti-tumour effects of these inhibitors. Full article
Show Figures

Figure 1

17 pages, 4127 KiB  
Article
Impact of the Immunomodulatory Factor Soluble B7-H4 in the Progress of Preeclampsia by Inhibiting Essential Functions of Extravillous Trophoblast Cells
by Yuyang Ma, Liyan Duan, Beatrix Reisch, Rainer Kimmig, Antonella Iannaccone and Alexandra Gellhaus
Cells 2024, 13(16), 1372; https://doi.org/10.3390/cells13161372 - 17 Aug 2024
Cited by 4 | Viewed by 1705
Abstract
A key aspect of preeclampsia pathophysiology is the reduced invasiveness of trophoblasts and the impairment of spiral artery remodelling. Understanding the causes of altered trophoblast function is critical to understand the development of preeclampsia. B7-H4, a checkpoint molecule, controls a wide range of [...] Read more.
A key aspect of preeclampsia pathophysiology is the reduced invasiveness of trophoblasts and the impairment of spiral artery remodelling. Understanding the causes of altered trophoblast function is critical to understand the development of preeclampsia. B7-H4, a checkpoint molecule, controls a wide range of processes, including T-cell activation, cytokine release, and tumour progression. Our previous findings indicated that B7-H4 levels are elevated in both maternal blood and placental villous tissue during the early stages of preeclampsia. Here, we investigated the function of B7-H4 in trophoblast physiology. Recombinant B7-H4 protein was used to treat human SGHPL-5 extravillous trophoblast cells. Biological functions were investigated using MTT, wound healing, and transwell assays. Signalling pathways were analysed by immunoblotting and immunofluorescence. The functionality of B7-H4 was further confirmed by immunoblotting and immunohistochemical analysis in placental tissues from control and preeclamptic patients following therapeutic plasma exchange (TPE) or standard of care treatment. This study showed that B7-H4 inhibited the proliferation, migration, and invasion capacities of SGHPL-5 extravillous cells while promoting apoptosis by downregulating the PI3K/Akt/STAT3 signalling pathway. These results were consistently confirmed in placental tissues from preterm controls compared to early-onset preeclamptic placental tissues from patients treated with standard of care or TPE treatment. B7-H4 may play a role in the development of preeclampsia by inhibiting essential functions of extravillous trophoblast cells during placental development. One possible mechanism by which TPE improves pregnancy outcomes in preeclampsia is through the elimination of B7-H4 amongst other factors. Full article
Show Figures

Figure 1

28 pages, 2520 KiB  
Article
Minimally Invasive Plasma Device Management of Multiple Benign Skin Cancers Associated with Rare Genodermatoses—Case Series and Review of the Therapeutic Methods
by Anna Płatkowska, Monika Słowińska, Joanna Zalewska, Zbigniew Swacha, Anna Szumera-Ciećkiewicz, Michał Wągrodzki, Janusz Patera, Katarzyna Łapieńska-Rey, Małgorzata Lorent, Iwona Ługowska, Piotr Rutkowski and Witold Owczarek
J. Clin. Med. 2024, 13(15), 4377; https://doi.org/10.3390/jcm13154377 - 26 Jul 2024
Cited by 1 | Viewed by 2571
Abstract
Background: Non-melanocytic benign skin tumours encompass a diverse group of lesions, classified based on their cellular origin, such as epidermal, vascular, fibrous, neural, muscle, and adnexal tumours. Though they often reveal solitary lesions, multiple skin tumours focus on genodermatoses. Each syndrome exhibits [...] Read more.
Background: Non-melanocytic benign skin tumours encompass a diverse group of lesions, classified based on their cellular origin, such as epidermal, vascular, fibrous, neural, muscle, and adnexal tumours. Though they often reveal solitary lesions, multiple skin tumours focus on genodermatoses. Each syndrome exhibits distinct clinical characteristics and potential complications, including cutaneous and extra-cutaneous malignancies, some of which are potentially life-threatening. Diagnosing genetic syndromes is complex and requires numerous histopathological and immunohistochemistry tests due to similarities between the adnexal tumours and basal cell carcinoma upon pathology. Methods: To illustrate the clinical practice, we conducted a retrospective case study that included eleven patients with genodermatoses referred to a tertiary dermatology clinic from September 2018 to April 2024. We have also conducted a research study on available treatment modalities in this setting. Results: Five patients with excellent aesthetic results were treated using a recently approved FDA plasma device. After searching SCOPUS and PubMed database records, we assessed 96 original articles to present current knowledge regarding the dermato-surgical approach. Conclusions: Multiple skin tumours, especially on the face, may significantly affect patients’ quality of life and have psychological consequences. An appropriate treatment selection tailored to the patient’s needs should be provided. There is no standardised treatment for multiple benign tumours in genodermatoses, and selected methods with varying efficacy are employed. We presented the utility of a new plasma device in these settings. Full article
(This article belongs to the Special Issue Advances in Surgeries for Treating Common Skin Cancers)
Show Figures

Figure 1

14 pages, 1964 KiB  
Article
Assessment of Radiolabelled Derivatives of R954 for Detection of Bradykinin B1 Receptor in Cancer Cells: Studies on Glioblastoma Xenografts in Mice
by Miho Shukuri, Satoru Onoe, Tsubasa Karube, Risa Mokudai, Hayate Wakui, Haruka Asano, Shin Murai and Hiromichi Akizawa
Pharmaceuticals 2024, 17(7), 902; https://doi.org/10.3390/ph17070902 - 7 Jul 2024
Viewed by 1364
Abstract
Bradykinin B1 receptor (B1R) has garnered attention as a cancer therapeutic and diagnostic target. Several reports on radiolabelled derivatives of B1R antagonists have shown favourable properties as imaging agents in cells highly expressing hB1R following transfection. In the present study, we assessed whether [...] Read more.
Bradykinin B1 receptor (B1R) has garnered attention as a cancer therapeutic and diagnostic target. Several reports on radiolabelled derivatives of B1R antagonists have shown favourable properties as imaging agents in cells highly expressing hB1R following transfection. In the present study, we assessed whether radiolabelled probes can detect B1R endogenously expressed in cancer cells. To this end, we evaluated 111In-labelled derivatives of a B1R antagonist ([111In]In-DOTA-Ahx-R954) using glioblastoma cell lines (U87MG and U251MG) with different B1R expression levels. Cellular uptake studies showed that the specific accumulation of [111In]In-DOTA-Ahx-R954 in U87MG was higher than that in U251MG, which correlated with B1R expression levels. Tissue distribution in U87MG-bearing mice revealed approximately 2-fold higher radioactivity in tumours than in the muscle in the contralateral leg. The specific accumulation of [111In]In-DOTA-Ahx-R954 in the tumour was demonstrated by the reduction in the tumour-to-plasma ratios in nonlabelled R954-treated mice. Moreover, ex vivo autoradiographic images revealed that the intratumoural distribution of [111In]In-DOTA-Ahx-R954 correlated with the localisation of B1R-expressing glioblastoma cells. In conclusion, we demonstrated that [111In]In-DOTA-Ahx-R954 radioactivity correlated with B1R expression in glioblastoma cells, indicating that radiolabelled derivatives of the B1R antagonist could serve as promising tools for elucidating the involvement of B1R in cancer. Full article
Show Figures

Figure 1

33 pages, 1733 KiB  
Review
The Promising Potential of Cold Atmospheric Plasma Therapies
by Beata Stańczyk and Marek Wiśniewski
Plasma 2024, 7(2), 465-497; https://doi.org/10.3390/plasma7020025 - 12 Jun 2024
Cited by 11 | Viewed by 5679
Abstract
The outstanding properties and chemistry of cold atmospheric plasma (CAP) are not sufficiently understood due to their relatively complex systems and transient properties. In this paper, we tried to present a detailed review of the applications of CAP in modern medicine, highlighting the [...] Read more.
The outstanding properties and chemistry of cold atmospheric plasma (CAP) are not sufficiently understood due to their relatively complex systems and transient properties. In this paper, we tried to present a detailed review of the applications of CAP in modern medicine, highlighting the biochemistry of this phenomenon. Due to its unique characteristics, CAP has emerged as a promising tool in various medical applications. CAP, as a partially—or fully ionized—gas-retaining state of quasi-neutrality, contains many particles, such as electrons, charged atoms, and molecules displaying collective behaviour caused by Coulomb interactions. CAP can be generated at atmospheric pressure, making it suitable for medical settings. Cold plasma’s anti-microbial properties create an alternative method to antibiotics when treating infections. It also enhances cell proliferation, migration, and differentiation, leading to accelerated tissue regeneration. CAP can also be a powerful tool in anti-tumour therapies, stem cell proliferation, dental applications, and disease treatment, e.g., neurology. It is our belief that this article contributes to the deeper understanding of cold plasma therapy and its potential in medicine. The objective of this study is to demonstrate the potential of this relatively novel approach as a promising treatment modality. By covering a range of various biomedical fields, we hope to provide a comprehensive overview of CAP applications for multiple medical conditions. In order to gain further insight into the subject, we attempted to gather crucial research and evidence from various studies, hopefully creating a compelling argument in favour of CAP therapy. Our aim is to highlight the innovative aspects of CAP therapy where traditional methods may have limitations. Through this article, we intend to provide a convenient reference source for readers engaged in the examination of CAP’s potential in medicine. Full article
Show Figures

Figure 1

9 pages, 1081 KiB  
Opinion
Tumour Microenvironment Contribution to Checkpoint Inhibitor Therapy in Classic Hodgkin Lymphoma
by Annunziata Gloghini and Antonino Carbone
Hemato 2024, 5(2), 199-207; https://doi.org/10.3390/hemato5020016 - 3 Jun 2024
Cited by 1 | Viewed by 1524
Abstract
Classic Hodgkin lymphoma (cHL) is a B-cell lymphoma in which tumour cells, the so-called Hodgkin Reed–Sternberg (HRS) cells, are admixed with non-malignant cell types that are a functional part of the disease. Immune cells, fibroblasts, specialised mesenchymal cells, and microvasculature together make up [...] Read more.
Classic Hodgkin lymphoma (cHL) is a B-cell lymphoma in which tumour cells, the so-called Hodgkin Reed–Sternberg (HRS) cells, are admixed with non-malignant cell types that are a functional part of the disease. Immune cells, fibroblasts, specialised mesenchymal cells, and microvasculature together make up the tumour microenvironment and have functional interactions with tumour cells. HRS cells are surrounded by T and B cells admixed with plasma cells, macrophages, eosinophils, and mast cells. A cross-talk occurs between HRS cells and immune cells of the TME. This cross-talk is mediated either by a large network of cytokines and chemokines expressed by HRS cells or molecules produced by different cell types of the TME, i.e., CD30/CD30L, CD40/CD40L, OX40L/OX40, Il- 3/Il-3R, CCR5/CCL5, CD74 macrophage migration inhibitory factor/macrophages, and PD-L1/PD-1. The over-expression of CD30 and CD40, members of the TNF receptor family, is a hallmark of HRS cells. This review highlights the current development of newer therapeutic strategies as a means of immune checkpoint blockade and suggests that further research should explore innovative molecules aimed at targeting components of HL that are involved in cancer cell growth and/or immune escape. Hopefully, this will influence sensitivity or resistance to checkpoint inhibitor therapy in an individual patient. Full article
(This article belongs to the Section Lymphomas)
Show Figures

Figure 1

39 pages, 4172 KiB  
Review
Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer
by Adrian I. Abdo and Zlatko Kopecki
Curr. Issues Mol. Biol. 2024, 46(5), 4885-4923; https://doi.org/10.3390/cimb46050294 - 17 May 2024
Cited by 7 | Viewed by 3477
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive [...] Read more.
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer. Full article
(This article belongs to the Special Issue Molecular Research on Free Radicals and Oxidative Stress)
Show Figures

Graphical abstract

15 pages, 2054 KiB  
Article
Blood Vitamin C Levels of Patients Receiving Immunotherapy and Relationship to Monocyte Subtype and Epigenetic Modification
by Ben Topham, Millie de Vries, Maria Nonis, Rebecca van Berkel, Juliet M. Pullar, Nicholas J. Magon, Margreet C. M. Vissers, Margaret J. Currie, Bridget A. Robinson, David Gibbs, Abel Ang and Gabi U. Dachs
Epigenomes 2024, 8(2), 17; https://doi.org/10.3390/epigenomes8020017 - 30 Apr 2024
Viewed by 2811
Abstract
The treatment of metastatic melanoma has been revolutionised by immunotherapy, yet a significant number of patients do not respond, and many experience autoimmune adverse events. Associations have been reported between patient outcome and monocyte subsets, whereas vitamin C (ascorbate) has been shown to [...] Read more.
The treatment of metastatic melanoma has been revolutionised by immunotherapy, yet a significant number of patients do not respond, and many experience autoimmune adverse events. Associations have been reported between patient outcome and monocyte subsets, whereas vitamin C (ascorbate) has been shown to mediate changes in cancer-stimulated monocytes in vitro. We therefore investigated the relationship of ascorbate with monocyte subsets and epigenetic modifications in patients with metastatic melanoma receiving immunotherapy. Patients receiving immunotherapy were compared to other cancer cohorts and age-matched healthy controls. Ascorbate levels in plasma and peripheral blood-derived mononuclear cells (PBMCs), monocyte subtype and epigenetic markers were measured, and adverse events, tumour response and survival were recorded. A quarter of the immunotherapy cohort had hypovitaminosis C, with plasma and PBMC ascorbate levels significantly lower than those from other cancer patients or healthy controls. PBMCs from the immunotherapy cohort contained similar frequencies of non-classical and classical monocytes. DNA methylation markers and intracellular ascorbate concentration were correlated with monocyte subset frequency in healthy controls, but correlation was lost in immunotherapy patients. No associations between ascorbate status and immune-related adverse events or tumour response or overall survival were apparent. Full article
Show Figures

Figure 1

13 pages, 2279 KiB  
Article
Diagnostic and Prognostic Value of Circulating DNA Fragments in Glioblastoma Multiforme Patients
by Pawel Jarmuzek, Edyta Wawrzyniak-Gramacka, Barbara Morawin, Anna Tylutka and Agnieszka Zembron-Lacny
Int. J. Mol. Sci. 2024, 25(8), 4221; https://doi.org/10.3390/ijms25084221 - 11 Apr 2024
Cited by 3 | Viewed by 1834
Abstract
Novel blood-circulating molecules, as potential biomarkers for glioblastoma multiforme (GBM) diagnosis and monitoring, are attracting particular attention due to limitations of imaging modalities and invasive tissue biopsy procedures. This study aims to assess the diagnostic and prognostic values of circulating cell-free DNA (cfDNA) [...] Read more.
Novel blood-circulating molecules, as potential biomarkers for glioblastoma multiforme (GBM) diagnosis and monitoring, are attracting particular attention due to limitations of imaging modalities and invasive tissue biopsy procedures. This study aims to assess the diagnostic and prognostic values of circulating cell-free DNA (cfDNA) in relation to inflammatory status in GBM patients and to determine the concentration and average size of DNA fragments typical of tumour-derived DNA fractions. Preoperative plasma samples from 40 patients (GBM 65.0 ± 11.3 years) and 40 healthy controls (HC 70.4 ± 5.4 years) were compared. The cfDNA concentrations and lengths were measured using the electrophoresis platform, and inflammatory indices (NLR, PLR, LMR, and SII) were calculated from complete blood cell analysis. More fragmented cfDNA and 4-fold higher 50–700 bp cfDNA concentrations were detected in GBM patients than in healthy controls. The average cfDNA size in the GBM group was significantly longer (median 336 bp) than in the HC group (median 271 bp). Optimal threshold values were 1265 pg/μL for 50–700 bp cfDNA (AUC = 0.857) and 290 bp for average cfDNA size (AUC = 0.814). A Kaplan–Meier survival curves analysis also demonstrated a higher mortality risk in the GBM group with a cut-off >303 bp cfDNA. This study is the first to have revealed glioblastoma association with high levels of cfDNA > 1000 pg/μL of 50–700 bp in length, which can be aggravated by immunoinflammatory reactivity. Full article
Show Figures

Figure 1

19 pages, 2914 KiB  
Article
Blood-Based DNA Methylation Analysis by Multiplexed OBBPA-ddPCR to Verify Indications for Prostate Biopsies in Suspected Prostate Cancer Patients
by Markus Friedemann, Carsten Jandeck, Lars Tautz, Katharina Gutewort, Lisa von Rein, Olga Sukocheva, Susanne Fuessel and Mario Menschikowski
Cancers 2024, 16(7), 1324; https://doi.org/10.3390/cancers16071324 - 28 Mar 2024
Cited by 4 | Viewed by 1992
Abstract
Current prostate carcinoma (PCa) biomarkers, including total prostate-specific antigen (tPSA), have unsatisfactory diagnostic sensitivity and specificity resulting in overdiagnosis and overtreatment. Previously, we described an optimised bias-based preamplification–digital droplet PCR (OBBPA-ddPCR) technique, which detects tumour DNA in blood-derived cell-free DNA (cfDNA) of cancer [...] Read more.
Current prostate carcinoma (PCa) biomarkers, including total prostate-specific antigen (tPSA), have unsatisfactory diagnostic sensitivity and specificity resulting in overdiagnosis and overtreatment. Previously, we described an optimised bias-based preamplification–digital droplet PCR (OBBPA-ddPCR) technique, which detects tumour DNA in blood-derived cell-free DNA (cfDNA) of cancer patients. The current study investigated the performance of newly developed OBBPA-ddPCR-based biomarkers. Blood plasma samples from healthy individuals (n = 90, controls) and PCa (n = 39) and benign prostatic hyperplasia patients (BPH, n = 40) were analysed. PCa and BPH patients had tPSA values within a diagnostic grey area of 2–15 ng/mL, for whom further diagnostic validation is most crucial. Methylation levels of biomarkers RASSF1A, MIR129-2, NRIP3, and SOX8 were found significantly increased in PCa patients compared to controls. By combining classical PCa risk factors (percentage of free PSA compared to tPSA (QfPSA) and patient’s age) with cfDNA-based biomarkers, we developed PCa risk scores with improved sensitivity and specificity compared to established tPSA and QfPSA single-marker analyses. The diagnostic specificity was increased to 70% with 100% sensitivity for clinically significant PCa patients. Thus, prostate biopsies could be avoided for 28 out of 40 BPH patients. In conclusion, the newly developed risk scores may help to confirm the clinical decision and prevent unnecessary prostate biopsy. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

16 pages, 473 KiB  
Article
Cytotoxic and Antiproliferative Activity of LASSBio-2208 and the Attempts to Determine Its Drug Metabolism and Pharmacokinetics In Vitro Profile
by Raysa Magali Pillpe-Meza, Wesley Leandro Gouveia, Gisele Barbosa, Carlos A. M. Fraga, Eliezer J. Barreiro and Lidia Moreira Lima
Pharmaceuticals 2024, 17(3), 389; https://doi.org/10.3390/ph17030389 - 18 Mar 2024
Cited by 2 | Viewed by 2125
Abstract
Inappropriate expression of histone deacetylase (HDAC-6) and deregulation of the phosphatidylinositol 3-kinase (PI3K) signalling pathway are common aberrations observed in cancers. LASSBio-2208, has been previously described as a dual inhibitor in the nanomolar range of HDAC-6 and PI3Kα and is three times more [...] Read more.
Inappropriate expression of histone deacetylase (HDAC-6) and deregulation of the phosphatidylinositol 3-kinase (PI3K) signalling pathway are common aberrations observed in cancers. LASSBio-2208, has been previously described as a dual inhibitor in the nanomolar range of HDAC-6 and PI3Kα and is three times more potent in inhibiting HDAC-6. In this paper we described the cytotoxic and antiproliferative potency of LASSBio-2208 on different tumour cell lines, its possible synergism effect in association with PI3K and HDAC-6 inhibitors, and its drug metabolism and pharmacokinetics (DMPK) in vitro profile. Our studies have demonstrated that LASSBio-2208 has moderate cytotoxic potency on breast cancer cell line MCF-7 (IC50 = 23 µM), human leukaemia cell line CCRF-CEM (IC50 = 8.54 µM) and T lymphoblast cell line MOLT-4 (IC50 = 7.15 µM), with no cytotoxic effect on human peripheral blood mononuclear cells (hPBMC). In addition, it has a good antiproliferative effect on MCF-7 cells (IC50 = 5.44 µM), low absorption by parallel artificial membrane permeability—gastrointestinal tract (PAMPA—GIT) and low permeation by parallel artificial membrane permeability—blood–brain barrier (BBB) (PAMPA—BBB), exhibiting high metabolic stability in rat plasma. Moreover, LASSBio-2208 exhibited synergism when combined with getadolisib and tubastatin A, using the concentrations corresponding to their CC50 values on MOLT-4 and CCRF-CEM cells. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

Back to TopTop