Blood Vitamin C Levels of Patients Receiving Immunotherapy and Relationship to Monocyte Subtype and Epigenetic Modification
Abstract
:1. Introduction
2. Results
2.1. Participant Cohorts
2.2. PBMC Characterisation of Immunotherapy Cohort
2.3. Treatment Response of Patients Receiving Immunotherapy
3. Discussion
4. Materials and Methods
4.1. Ethics, Consent and Eligibility
4.2. Study Participants
4.3. Patient Follow-Up
4.4. Materials
4.5. Blood Sample and Plasma Collection
4.6. Isolation of Blood Cells
4.7. Ascorbate Analysis
4.8. Flow Cytometry
4.9. Mass Spectrometry
4.10. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzwierzynski, W.W. Melanoma Risk Factors and Prevention. Clin. Plast. Surg. 2021, 48, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Cancer Society. Melanoma Survival Rates|Melanoma Survival Statistics. Available online: https://www.cancer.org/cancer/melanoma-skin-cancer/detection-diagnosis-staging/survival-rates-for-melanoma-skin-cancer-by-stage.html (accessed on 7 December 2023).
- Ahmadi, F.; Karamitanha, F.; Ramezanpour, A. Clustering trends of melanoma incidence and mortality: A worldwide assessment from 1995 to 2019. Australas. J. Dermatol. 2022, 63, e206–e217. [Google Scholar] [CrossRef]
- Huang, J.; Chan, S.C.; Ko, S.; Lok, V.; Zhang, L.; Lin, X.; Lucero-Prisno, D.E., III; Xu, W.; Zheng, Z.J.; Elcarte, E.; et al. Global incidence, mortality, risk factors and trends of melanoma: A systematic analysis of registries. Am. J. Clin. Dermatol. 2023, 24, 965–975. [Google Scholar] [CrossRef]
- Villani, A.; Scalvenzi, M.; Micali, G.; Lacarrubba, F.; Fornaro, L.; Martora, F.; Potestio, L. Management of Advanced Invasive Melanoma: New Strategies. Adv. Ther. 2023, 40, 3381–3394. [Google Scholar] [CrossRef]
- Board, R.; Smittenaar, R.; Lawton, S.; Liu, H.; Juwa, B.; Chao, D.; Corrie, P. Metastatic melanoma patient outcomes since introduction of immune checkpoint inhibitors in England between 2014 and 2018. Int. J. Cancer 2021, 148, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.; Weber, J.S.; et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 2019, 30, 582–588. [Google Scholar] [CrossRef]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Parikh, K.; Kumar, A.; Ahmed, J.; Anwar, A.; Puccio, C.; Chun, H.; Fanucchi, M.; Lim, S.H. Peripheral monocytes and neutrophils predict response to immune checkpoint inhibitors in patients with metastatic non-small cell lung cancer. Cancer Immunol. Immunother. 2018, 67, 1365–1370. [Google Scholar] [CrossRef]
- Gren, S.T.; Rasmussen, T.B.; Janciauskiene, S.; Håkansson, K.; Gerwien, J.G.; Grip, O. A single-cell gene-expression profile reveals inter-cellular heterogeneity within human monocyte subsets. PLoS ONE 2015, 10, e0144351. [Google Scholar] [CrossRef]
- Kapellos, T.S.; Bonaguro, L.; Gemünd, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef]
- Thomas, G.; Tacke, R.; Hedrick, C.C.; Hanna, R.N. Nonclassical patrolling monocyte function in the vasculature. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Ohkuma, R.; Fujimoto, Y.; Ieguchi, K.; Onishi, N.; Watanabe, M.; Takayanagi, D.; Goshima, T.; Horiike, A.; Hamada, K.; Ariizu-mi, H.; et al. Monocyte subsets associated with the efficacy of anti PD 1 antibody monotherapy. Oncol. Lett. 2023, 26, 381. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.L.; Chen, L.; Li, Y.; Miao, S.; Peng, D.H.; Fradette, J.J.; Diao, L.; Konen, J.M.; Alvarez, F.R.R.; Solis, L.M.; et al. Targeting immunosuppressive Ly6C+ classical monocytes reverses anti-PD-1/CTLA-4 immunotherapy resistance. Front. Immunol. 2023, 14, 1161869. [Google Scholar] [CrossRef]
- Pico de Coaña, Y.; Wolodarski, M.; van der Haar Àvila, I.; Nakajima, T.; Rentouli, S.; Lundqvist, A.; Masucci, G.; Hansson, J.; Kiessling, R. PD-1 checkpoint blockade in advanced melanoma patients: NK cells, monocytic subsets and host PD-L1 expression as predictive biomarker candidates. Oncoimmunology 2020, 9, 1786888. [Google Scholar] [CrossRef] [PubMed]
- Olingy, C.; Alimadadi, A.; Araujo, D.J.; Barry, D.; Gutierrez, N.A.; Werbin, M.H.; Arriola, E.; Patel, S.P.; Ottensmeier, C.H.; Dinh, H.Q.; et al. CD33 expression on peripheral blood monocytes predicts efficacy of anti-PD-1 immunotherapy against non-small cell lung cancer. Front. Immunol. 2022, 13, 842653. [Google Scholar] [CrossRef]
- Krieg, C.; Nowicka, M.; Guglietta, S.; Schindler, S.; Hartmann, F.J.; Weber, L.M.; Dummer, R.; Robinson, M.D.; Levesque, M.P.; Becher, B. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 2018, 24, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Mengos, A.E.; Gastineau, D.A.; Gustafson, M.P. The CD14+HLA-DRlo/neg Monocyte: An immunosuppressive phenotype that restrains responses to cancer immunotherapy. Front. Immunol. 2019, 10, 1147. [Google Scholar] [CrossRef]
- White, R.; Nonis, M.; Pearson, J.F.; Burgess, E.; Morrin, H.R.; Pullar, J.M.; Spencer, E.; Vissers, M.C.M.; Robinson, B.A.; Dachs, G.U. Low vitamin C status in patients with cancer is associated with patient and tumor characteristics. Nutrients 2020, 12, 2338. [Google Scholar] [CrossRef] [PubMed]
- Huijskens, M.J.; Wodzig, W.K.; Walczak, M.; Germeraad, W.T.; Bos, G.M. Ascorbic acid serum levels are reduced in patients with hematological malignancies. Results Immunol. 2016, 6, 8–10. [Google Scholar] [CrossRef]
- Anthony, H.M.; Schorah, C.J. Severe hypovitaminosis C in lung-cancer patients: The utilization of vitamin C in surgical repair and lymphocyte-related host resistance. Br. J. Cancer. 1982, 46, 354–367. [Google Scholar] [CrossRef]
- Schleich, T.; Rodemeister, S.; Venturelli, S.; Sinnberg, T.; Garbe, C.; and Busch, C. Decreased plasma ascorbate levels in stage IV melanoma patients. Metab. Nutr. Oncol. 2013, 1, e2–e6. [Google Scholar] [CrossRef]
- Marcus, S.L.; Dutcher, J.P.; Paietta, E.; Ciobanu, N.; Strauman, J.; Wiernik, P.H.; Hutner, S.H.; Frank, O.; Baker, H. Severe hypovitaminosis C occurring as the result of adoptive immunotherapy with high-dose interleukin 2 and lymphokine-activated killer cells. Cancer Res. 1987, 47, 4208–4212. [Google Scholar] [PubMed]
- Marcus, S.L.; Petrylak, D.P.; Dutcher, J.P.; Paietta, E.; Ciobanu, N.; Strauman, J.; Wiernik, P.H.; Hutner, S.H.; Frank, O.O.; Baker, H. Hypovitaminosis C in patients treated with high-dose interleukin 2 and lymphokine-activated killer cells. Am. J. Clin. Nutr. 1991, 54 (Suppl. S6), 1292s–1297s. [Google Scholar] [CrossRef] [PubMed]
- Basu, T.K.; Raven, R.W.; Dickerson, J.W.; Williams, D.C. Leucocyte ascorbic acid and urinary hydroxyproline levels in patients bearing breast cancer with skeletal metastases. Eur. J. Cancer. 1974, 10, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Ang, A.D.; Vissers, M.C.M.; Burgess, E.R.; Currie, M.J.; Dachs, G.U. Gene and protein expression is altered by ascorbate availability in murine macrophages cultured under tumour-like conditions. Antioxidants 2021, 10, 430. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Rao, A. TET family dioxygenases and the TET activator vitamin C in immune responses and cancer. Blood 2020, 136, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, S.U.; Gillberg, L.; Lykkesfeldt, J.; Grønbæk, K. The role of vitamin C in epigenetic cancer therapy. Free Radic. Biol. Med. 2021, 170, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.C.M.; Das, A.B. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front. Physiol. 2018, 9, 809. [Google Scholar] [CrossRef]
- Carr, A.C.; Maggini, S. Vitamin C and immune function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK225480/ (accessed on 7 December 2023).
- Berretta, M.; Quagliariello, V.; Maurea, N.; Di Francia, R.; Sharifi, S.; Facchini, G.; Rinaldi, L.; Piezzo, M.; Manuela, C.; Nunnari, G.; et al. Multiple effects of ascorbic acid against chronic diseases: Updated evidence from preclinical and clinical studies. Antioxidants 2020, 9, 1182. [Google Scholar] [CrossRef]
- Wohlrab, C.; Vissers, M.C.M.; Phillips, E.; Morrin, H.; Robinson, B.A.; Dachs, G.U. The association between ascorbate and the hypoxia-inducible factors in human renal cell carcinoma requires a functional von Hippel-Lindau protein. Front. Oncol. 2018, 8, 574. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.; Wang, Y.; Padayatty, S.J.; Morrow, J. A new recommended dietary allowance of vitamin C for healthy young women. Proc. Natl. Acad. Sci. USA 2001, 98, 9842–9846. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.A.; Zhang, Y.; Fullerton, J.N.; Boelen, L.; Rongvaux, A.; Maini, A.A.; Bigley, V.; Flavell, R.A.; Gilroy, D.W.; Asquith, B.; et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017, 214, 1913–1923. [Google Scholar] [CrossRef] [PubMed]
- Bharat, A.; McQuattie-Pimentel, A.C.; Budinger, G.S. Non-classical monocytes in tissue injury and cancer. Oncotarget 2017, 8, 106171. [Google Scholar] [CrossRef] [PubMed]
- Antohe, M.; Nedelcu, R.I.; Nichita, L.; Popp, C.G.; Cioplea, M.; Brinzea, A.; Hodorogea, A.; Calinescu, A.; Balaban, M.; Ion, D.A.; et al. Tumor infiltrating lymphocytes: The regulator of melanoma evolution. Oncol. Lett. 2019, 17, 4155–4161. [Google Scholar] [CrossRef]
- Li, J.; Peng, G.; Zhu, K.; Jie, X.; Xu, Y.; Rao, X.; Xu, Y.; Chen, Y.; Xing, B.; Wu, G.; et al. PD-1+ mast cell enhanced by PD-1 blocking therapy associated with resistance to immunotherapy. Cancer Immunol. Immunother. 2023, 72, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Niessner, H.; Burkard, M.; Leischner, C.; Renner, O.; Plöger, S.; Meraz-Torres, F.; Böcker, M.; Hirn, C.; Lauer, U.M.; Venturelli, S.; et al. Therapeutic Efficacy of Pharmacological Ascorbate on Braf Inhibitor Resistant Melanoma Cells In Vitro and In Vivo. Cells 2022, 11, 1229. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.J.; Vissers, M.C.M.; Dachs, G.U. Ascorbate availability affects tumor implantation-take rate and increases tumor rejection in Gulo(-/-) mice. Hypoxia 2016, 4, 41–52. [Google Scholar]
- Burkard, M.; Niessner, H.; Leischner, C.; Piotrowsky, A.; Renner, O.; Marongiu, L.; Lauer, U.M.; Busch, C.; Sinnberg, T.; Venturelli, S. High-Dose Ascorbate in Combination with Anti-PD1 Checkpoint Inhibition as Treatment Option for Malignant Melanoma. Cells 2023, 12, 254. [Google Scholar] [CrossRef]
- Magrì, A.; Germano, G.; Lorenzato, A.; Lamba, S.; Chilà, R.; Montone, M.; Amodio, V.; Ceruti, T.; Sassi, F.; Arena, S.; et al. High-dose vitamin C enhances cancer immunotherapy. Sci. Transl. Med. 2020, 12, eaay8707. [Google Scholar] [CrossRef] [PubMed]
- Common Terminology Criteria for Adverse Events Version 5.0. 2017. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 25 April 2024).
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RE-CIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Smith-Díaz, C.C.; Magon, N.J.; McKenzie, J.L.; Hampton, M.B.; Vissers, M.C.M.; Das, A.B. Ascorbate inhibits proliferation and promotes myeloid differentiation in TP53-mutant leukemia. Front. Oncol. 2021, 11, 709543. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A.; Kosinski, M.; Biecek, P. Drawing Survival Curves Using g‘gplot2’. R Package Version 0.4.9. Available online: https://cran.r-project.org/web/packages/survminer/survminer.pdf (accessed on 7 December 2023).
Immunotherapy | Chemotherapy | Presurgical * | Healthy Control | ||
---|---|---|---|---|---|
Total | n = 63 | n = 103 | n = 82 | n = 16 | |
Age | ≤50 years | 7 (11%) | 32 (31%) | 15 (18%) | 5 (31%) |
Sex | Female | 29 (46%) | 69 (67%) | 49 (60%) | 9 (56%) |
Ethnicity | European | 63 (100%) | 88 (85%) | 71 (87%) | 15 (94%) |
Māori/Pacifica | 0 (0%) | 12 (12%) | 9 (11%) | 1 (6%) | |
Other | 0 (0%) | 3 (3%) | 2 (2%) | 0 (0%) | |
Cancer surgery | n/d | n/d | 82 (100%) | n/a | |
Chemotherapy | n/d | 103 (100%) | n/d | n/a | |
Immunotherapy | Pembrolizumab | 57 (90.5%) | n/a | n/a | n/a |
Nivolumab | 4 (6.3%) | n/a | n/a | n/a | |
Combination | 2 (3.2%) | n/a | n/a | n/a | |
Cancer type | Melanoma | 63 (100%) | 0 (0%) | 1 (1%) | n/a |
Colon, breast | 0 (0%) | 52 (50%) | 45 (55%) | n/a | |
Other | 0 (0%) | 51 (50%) | 36 (44%) | n/a | |
Ascorbate intake | ≤45 mg/day | 28 (45%) | 51 (50%) | 43 (52%) | n/d |
Plasma ascorbate | ≤23 μmol | 15 (24%) | 16 (16%) | 8 (9.8%) | 1 (6%) |
Controls | Patients | ||||
---|---|---|---|---|---|
Correlates | r a | p b | r a | p b | |
Intracellular ascorbate c | 5-hmC e | 0.27 | 0.49 | 0.10 | 0.66 |
5-mC e | 0.46 | 0.22 | 0.47 | 0.03 | |
Cytidine e | −0.46 | 0.22 | −0.47 | 0.03 | |
CD14+CD16+ g | 0.21 | 0.47 | 0.03 | 0.90 | |
CD14+CD16− g | 0.72 | 0.004 | −0.15 | 0.52 | |
HLA-DR (CD14+) f | −0.14 | 0.63 | 0.43 | 0.06 | |
Plasma ascorbate d | 5-hmC e | −0.03 | 0.95 | −0.37 | 0.12 |
5-mC e | −0.12 | 0.76 | 0.04 | 0.88 | |
Cytidine e | 0.12 | 0.76 | −0.03 | 0.91 | |
CD14+CD16+ g | −0.02 | 0.95 | 0.16 | 0.53 | |
CD14+CD16− g | <−0.01 | >0.99 | 0.37 | 0.14 | |
HLA-DR (CD14+) f | 0.22 | 0.45 | 0.04 | 0.89 | |
5-hmC e | CD14+CD16− g | 0.79 | 0.02 | 0.02 | 0.92 |
CD14+CD16− g | 0.39 | 0.34 | −0.11 | 0.64 | |
HLA-DR (CD14+) f | 0.68 | 0.07 | 0.07 | 0.78 | |
5-mC e | CD14+CD16+ g | 0.82 | 0.01 | 0.20 | 0.41 |
CD14+CD16− g | 0.51 | 0.20 | 0.22 | 0.37 | |
HLA-DR (CD14+) f | 0.09 | 0.83 | 0.07 | 0.76 | |
Cytidine e | CD14+CD16+ g | −0.82 | 0.01 | −0.20 | 0.42 |
CD14+CD16− g | −0.50 | 0.20 | −0.21 | 0.38 | |
HLA-DR (CD14+) f | −0.10 | 0.81 | −0.08 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topham, B.; de Vries, M.; Nonis, M.; van Berkel, R.; Pullar, J.M.; Magon, N.J.; Vissers, M.C.M.; Currie, M.J.; Robinson, B.A.; Gibbs, D.; et al. Blood Vitamin C Levels of Patients Receiving Immunotherapy and Relationship to Monocyte Subtype and Epigenetic Modification. Epigenomes 2024, 8, 17. https://doi.org/10.3390/epigenomes8020017
Topham B, de Vries M, Nonis M, van Berkel R, Pullar JM, Magon NJ, Vissers MCM, Currie MJ, Robinson BA, Gibbs D, et al. Blood Vitamin C Levels of Patients Receiving Immunotherapy and Relationship to Monocyte Subtype and Epigenetic Modification. Epigenomes. 2024; 8(2):17. https://doi.org/10.3390/epigenomes8020017
Chicago/Turabian StyleTopham, Ben, Millie de Vries, Maria Nonis, Rebecca van Berkel, Juliet M. Pullar, Nicholas J. Magon, Margreet C. M. Vissers, Margaret J. Currie, Bridget A. Robinson, David Gibbs, and et al. 2024. "Blood Vitamin C Levels of Patients Receiving Immunotherapy and Relationship to Monocyte Subtype and Epigenetic Modification" Epigenomes 8, no. 2: 17. https://doi.org/10.3390/epigenomes8020017
APA StyleTopham, B., de Vries, M., Nonis, M., van Berkel, R., Pullar, J. M., Magon, N. J., Vissers, M. C. M., Currie, M. J., Robinson, B. A., Gibbs, D., Ang, A., & Dachs, G. U. (2024). Blood Vitamin C Levels of Patients Receiving Immunotherapy and Relationship to Monocyte Subtype and Epigenetic Modification. Epigenomes, 8(2), 17. https://doi.org/10.3390/epigenomes8020017