Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,692)

Search Parameters:
Keywords = planting intensity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3104 KiB  
Article
Predicting Range Shifts in the Distribution of Arctic/Boreal Plant Species Under Climate Change Scenarios
by Yan Zhang, Shaomei Li, Yuanbo Su, Bingyu Yang and Xiaojun Kou
Diversity 2025, 17(8), 558; https://doi.org/10.3390/d17080558 (registering DOI) - 7 Aug 2025
Abstract
Climate warming is anticipated to significantly alter the distribution and composition of plant species in the Arctic, thereby cascading through food webs and affecting both associated fauna and entire ecosystems. To elucidate the trend in plant distribution in response to climate change, we [...] Read more.
Climate warming is anticipated to significantly alter the distribution and composition of plant species in the Arctic, thereby cascading through food webs and affecting both associated fauna and entire ecosystems. To elucidate the trend in plant distribution in response to climate change, we employed the MaxEnt model to project the future ranges of 25 representative Arctic and Circumpolar plant species (including grasses and shrubs). Species distribution data, in conjunction with bioclimatic variables derived from climate projections of three selected General Circulation Models (GCMs), ESM2, IPSl, and MPIE, were utilized to fit the MaxEnt models. Subsequently, we predicted the potential distributions of these species under three Shared Socioeconomic Pathways (SSPs)—SSP126, SSP245, and SSP585—across a timeline spanning 2010, 2050, 2100, 2200, 2250, and 2300 AD. Range shift indices were applied to quantify changes in plant distribution and range sizes. Our results show that the ranges of nearly all species are projected to diminish progressively over time, with a more pronounced rate of reduction under higher emission scenarios. The species are generally expected to shift northward, with the distances of these shifts positively correlated with both the time intervals from the current state and the intensity of thermal forcing associated with the SSPs. Arctic species (A_Spps) are anticipated to face higher extinction risks compared to Boreal–Arctic species (B_Spps). Additional indices, such as range gain, loss, and overlap, consistently corroborate these patterns. Notably, the peak range shift speeds differ markedly between SSP245 and SSP585, with the latter extending beyond 2100 AD. In conclusion, under all SSPs, A_Spps are generally expected to experience more significant range shifts than B_Spps. In the SSP585 scenario all species are projected to face substantial range reductions, with Arctic species being more severely affected and consequently facing the highest extinction risks. These findings provide valuable insights for developing conservation recommendations for polar plant species and have significant ecological and socioeconomic implications. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

27 pages, 3377 KiB  
Article
Effect of Thuja occidentalis L. Essential Oil Combined with Diatomite Against Selected Pests
by Janina Gospodarek, Elżbieta Boligłowa, Krzysztof Gondek, Krzysztof Smoroń and Iwona B. Paśmionka
Molecules 2025, 30(15), 3300; https://doi.org/10.3390/molecules30153300 - 6 Aug 2025
Abstract
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures [...] Read more.
Combining products of natural origin with different mechanisms of action on insect herbivores may provide an alternative among methods of plant protection against pests that are less risky for the environment. The aim of the study was to evaluate the effectiveness of mixtures of Thuja occidentalis L. essential oil and diatomite (EO + DE) compared to each substance separately in reducing economically important pests such as black bean aphid (BBA) Aphis fabae Scop., Colorado potato beetle (CPB) Leptinotarsa decemlineata Say., and pea leaf weevil (PLW) Sitona lineatus L. The effects on mortality (all pests) and foraging intensity (CPB and PLW) were tested. The improvement in effectiveness using a mixture of EO + DE versus single components against BBA was dose- and the developmental stage-dependent. The effect of enhancing CPB foraging inhibition through DE addition was obtained at a concentration of 0.2% EO (both females and males of CPB) and 0.5% EO (males) in no-choice experiments. In choice experiments, mixtures EO + DE with both 0.2% and 0.5% EO concentrations resulted in a significant reduction in CPB foraging. A significant strengthening effect of EO 0.5% through the addition of DE at a dose of 10% against PLW males was observed in the no-choice experiment, while, when the beetles had a choice, the synergistic effect of a mixture of EO 0.5% and DE 10% was also apparent in females. In conclusion, the use of DE mixtures with EO from T. occidentalis appears to be a promising strategy. The results support the idea of not using doses of EO higher than 0.5%. Full article
17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

19 pages, 29727 KiB  
Review
A Review of Methods for Increasing the Durability of Hot Forging Tools
by Jan Turek and Jacek Cieślik
Materials 2025, 18(15), 3669; https://doi.org/10.3390/ma18153669 - 4 Aug 2025
Viewed by 144
Abstract
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die [...] Read more.
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die geometry, tribological conditions, and lubrication. The review is based on extensive literature data, including recent publications and the authors’ own research, which has been implemented under industrial conditions at the modern forging facility in Forge Plant “Glinik” (Poland). The study introduces original design and technological solutions, such as an innovative concept for manufacturing forging dies from alloy structural steels with welded impressions, replacing traditional hot-work tool steel dies. It also proposes a zonal hardfacing approach, which involves applying welds with different chemical compositions to specific surface zones of the die impressions, selected according to the dominant wear mechanisms in each zone. General guidelines for selecting hardfacing material compositions are also provided. Additionally, the article presents technological processes for die production and regeneration. The importance and application of computer simulations of forging processes are emphasized, particularly in predicting wear mechanisms and intensity, as well as in optimizing tool and forging geometry. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 2082 KiB  
Article
Insect Assemblage and Insect–Plant Relationships in a Cultivated Guayule (Parthenium argentatum A. Gray) Plot in Spain
by Eduardo Jarillo, Guayente Latorre, Enrique Fernández-Carrillo, Sara Rodrigo-Gómez, José Luis Yela and Manuel Carmona
Insects 2025, 16(8), 808; https://doi.org/10.3390/insects16080808 - 4 Aug 2025
Viewed by 140
Abstract
This study aims to characterize for the first time the insect assemblage associated with sown, introduced guayule (Parthenium argentatum A. Gray, Asteraceae) in Castilla-La Mancha, Spain, and identify potential relationships with the crop. Insect sampling was conducted using nets and pan traps [...] Read more.
This study aims to characterize for the first time the insect assemblage associated with sown, introduced guayule (Parthenium argentatum A. Gray, Asteraceae) in Castilla-La Mancha, Spain, and identify potential relationships with the crop. Insect sampling was conducted using nets and pan traps during spring and early summer, coinciding with the flowering period of the plant. A total of 352 insect species/morphospecies across 12 orders were identified. Diptera, Coleoptera, Hemiptera, and Hymenoptera were the most species-rich and abundant orders. Within these orders, Muscidae, Syrphidae, Tenebrionidae, Dermestidae, Miridae, Halictidae, and Apidae were the most numerous families. Guayule flowering intensity increased gradually until mid-June, aligning with the peak activity of pollinating Diptera. The majority of the identified insects (74.4%) were potential pollinators, while nearly 50% were detritivores and approximately 30% were herbivorous. The similarity in insect families and functional roles observed in this study to previous studies in the USA and Mexico suggest that guayule may serve as a similar trophic resource for insects in Spain, despite being a non-native species. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Impact of Kickxia elatine In Vitro-Derived Stem Cells on the Biophysical Properties of Facial Skin: A Placebo-Controlled Trial
by Anastasia Aliesa Hermosaningtyas, Anna Kroma-Szal, Justyna Gornowicz-Porowska, Maria Urbanska, Anna Budzianowska and Małgorzata Kikowska
Appl. Sci. 2025, 15(15), 8625; https://doi.org/10.3390/app15158625 (registering DOI) - 4 Aug 2025
Viewed by 176
Abstract
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various [...] Read more.
The growing demand for natural and sustainable skincare products has driven interest in plant-based active ingredients, especially from in vitro cultures. This placebo-controlled study investigated the impact of a facial cream containing 2% Kickxia elatine (L.) Dumort cell suspension culture extract on various skin biophysical parameters. The cream was applied to the cheek once daily for six weeks on 40 healthy female volunteers between the ages of 40 to 49. The evaluated skin parameters including skin hydration, transepidermal water loss (TEWL), erythema intensity (EI), melanin intensity (MI), skin surface pH, and skin structure, wrinkle depth, vascular lesions, and vascular discolouration. The results indicated that significant improvements were observed in skin hydration (from 40.36 to 63.00 AU, p < 0.001) and there was a decrease in TEWL score (14.82 to 11.76 g/h/m2, p < 0.001), while the skin surface pH was maintained (14.82 to 11.76 g/h/m2, p < 0.001). Moreover, the K. elatine cell extract significantly improved skin structure values (9.23 to 8.50, p = 0.028), reduced vascular lesions (2.72 to 1.54 mm2, p = 0.011), and lowered skin discolouration (20.98% to 14.84%, p < 0.001), indicating its moisturising, protective, brightening, and soothing properties. These findings support the potential use of K. elatine cell extract in dermocosmetic formulations targeting dry, sensitive, or ageing skin. Full article
Show Figures

Figure 1

19 pages, 9135 KiB  
Article
A Study on the Characterization of Asphalt Plant Reclaimed Powder Using Fourier Transform Infrared Spectroscopy
by Hao Wu, Daoan Yu, Wentao Wang, Chuanqi Yan, Rui Xiao, Rong Chen, Peng Zhang and Hengji Zhang
Materials 2025, 18(15), 3660; https://doi.org/10.3390/ma18153660 - 4 Aug 2025
Viewed by 176
Abstract
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation [...] Read more.
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation methods, such as the methylene blue test and plasticity index, can assess reclaimed powder properties to guide its recycling. However, these methods suffer from inefficiency, strong empirical dependence, and high variability. To address these limitations, this study proposes a rapid and precise evaluation method for reclaimed powder properties based on Fourier transform infrared spectroscopy (FTIR). To do so, five field-collected reclaimed powder samples and four artificial samples were evaluated. Scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), and X-ray diffraction (XRD) were employed to characterize their microphase morphology, chemical composition, and crystal structure, respectively. Subsequently, FTIR was used to establish correlations between key acidity/alkalinity, cleanliness, and multiple characteristic peak intensities. Representative infrared characteristic peaks were selected, and a quantitative functional group index (Is) was proposed to simultaneously evaluate acidity/alkalinity and cleanliness. The results indicate that reclaimed powder primarily consists of tiny, crushed stone particles and dust, with significant variations in crystal structure and chemical composition, including calcium carbonate, silicon oxide, iron oxide, and aluminum oxide. Some samples also contained clay, which critically influenced the reclaimed powder properties. Since both filler acidity/alkalinity and cleanliness are affected by clay (silicon/carbon ratio determining acidity/alkalinity and aluminosilicate content affecting cleanliness), this study calculated four functional group indices based on FTIR absorption peaks, namely the Si-O-Si stretching vibration (1000 cm−1) and the CO32− asymmetric stretching vibration (1400 cm−1). These indices were correlated with conventional testing results (XRF for acidity/alkalinity, methylene blue value, and pull-off strength for cleanliness). The results show that the Is index exhibited strong correlations (R2 = 0.89 with XRF, R2 = 0.80 with methylene blue value, and R2 = 0.96 with pull-off strength), demonstrating its effectiveness in predicting both acidity/alkalinity and cleanliness. The developed method enhances reclaimed powder detection efficiency and facilitates high-value recycling in road engineering applications. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 - 2 Aug 2025
Viewed by 251
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 - 2 Aug 2025
Viewed by 198
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

25 pages, 5841 KiB  
Article
Creating Micro-Habitat in a Pool-Weir Fish Pass with Flexible Hydraulic Elements: Insights from Field Experiments
by Mehmet Salih Turker and Serhat Kucukali
Water 2025, 17(15), 2294; https://doi.org/10.3390/w17152294 - 1 Aug 2025
Viewed by 193
Abstract
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches [...] Read more.
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches were assessed at the Dagdelen hydropower plant in the Ceyhan River Basin, Türkiye. Three-dimensional velocity measurements were taken in the pool of the fishway using an Acoustic Doppler velocimeter. The measurements were taken with and without a brush block at two different vertical distances from the bottom, which were below and above the level of bristles tips. A computational fluid dynamics (CFD) analysis was conducted for the studied fishway. The numerical model utilized Large Eddy Simulation (LES) combined with the Darcy–Forchheimer law, wherein brush blocks were represented as homogenous porous media. Our results revealed that the relative submergence of bristles in the brush block plays a very important role in velocity and Reynolds shear stress (RSS) distributions. After the placement of the submerged brush block, flow velocity and the lateral RSS component were reduced, and a resting area was created behind the brush block below the bristles’ tips. Fish movements in the pool were recorded by underwater cameras under real-time operation conditions. The heatmap analysis, which is a 2-dimensional fish spatial presence visualization technique for a specific time period, showed that Capoeta damascina avoided the areas with high turbulent fluctuations during the tests, and 61.5% of the fish presence intensity was found to be in the low Reynolds shear regions in the pool. This provides a clear case for the real-world ecological benefits of retrofitting existing pool-weir fishways with such flexible hydraulic elements. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

12 pages, 1167 KiB  
Article
Experimental Studies on Partial Energy Harvesting by Novel Solar Cages, Microworlds, to Explore Sustainability
by Mohammad A. Khan, Brian Maricle, Zachary D. Franzel, Gabe Gransden and Matthew Vannette
Solar 2025, 5(3), 36; https://doi.org/10.3390/solar5030036 - 1 Aug 2025
Viewed by 175
Abstract
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, [...] Read more.
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, can impact the ecosystem. This experimental study explores the energy available inside and outside of novel miniature energy harvesting cages by measuring light intensity and power generated. Varying light intensity outside the cage has been utilized to study the remaining energy inside the cage of a flexible design, where the heights of the harvesting panels are parameters. Cages are built from custom photovoltaic panels arranged in a staircase manner to provide access to growing plants. The balance between power generation and biological development is investigated. Two different structures are presented to explore the variation of illumination intensity inside the cages. The experimental results show a substantial reduction in energy inside the cages. The experimental results showed up to 24% reduction in illumination inside the cages in winter. The reduction is even larger in summer, up to 57%. The results from the models provide a framework to study the possible impact on a biological system residing inside the cages, paving the way for practical farming with sustainable energy harvesting. Full article
Show Figures

Figure 1

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 482
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

28 pages, 4460 KiB  
Article
New Protocol for Hydrogen Refueling Station Operation
by Carlos Armenta-Déu
Future Transp. 2025, 5(3), 96; https://doi.org/10.3390/futuretransp5030096 (registering DOI) - 1 Aug 2025
Viewed by 241
Abstract
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the [...] Read more.
This work proposes a new method to refill fuel cell electric vehicle hydrogen tanks from a storage system in hydrogen refueling stations. The new method uses the storage tanks in cascade to supply hydrogen to the refueling station dispensers. This method reduces the hydrogen compressor power requirement and the energy consumption for refilling the vehicle tank; therefore, the proposed alternative design for hydrogen refueling stations is feasible and compatible with low-intensity renewable energy sources like solar photovoltaic, wind farms, or micro-hydro plants. Additionally, the cascade method supplies higher pressure to the dispenser throughout the day, thus reducing the refueling time for specific vehicle driving ranges. The simulation shows that the energy saving using the cascade method achieves 9% to 45%, depending on the vehicle attendance. The hydrogen refueling station design supports a daily vehicle attendance of 9 to 36 with a complete refueling process coverage. The carried-out simulation proves that the vehicle tank achieves the maximum attainable pressure of 700 bars with a storage system of six tanks. The data analysis shows that the daily hourly hydrogen demand follows a sinusoidal function, providing a practical tool to predict the hydrogen demand for any vehicle attendance, allowing the planners and station designers to resize the elements to fulfill the new requirements. The proposed system is also applicable to hydrogen ICE vehicles. Full article
Show Figures

Figure 1

15 pages, 4340 KiB  
Article
Variations in Fine-Root Traits of Pseudotsuga sinensis Across Different Rocky-Desertification Gradients
by Wangjun Li, Shun Zou, Dongpeng Lv, Bin He and Xiaolong Bai
Diversity 2025, 17(8), 533; https://doi.org/10.3390/d17080533 - 29 Jul 2025
Viewed by 164
Abstract
Plant functional traits serve as vital tools for understanding vegetation adaptation mechanisms in changing environments. As the primary organs for nutrient acquisition from soil, fine roots are highly sensitive to environmental variations. However, current research on fine-root adaptation strategies predominantly focuses on tropical, [...] Read more.
Plant functional traits serve as vital tools for understanding vegetation adaptation mechanisms in changing environments. As the primary organs for nutrient acquisition from soil, fine roots are highly sensitive to environmental variations. However, current research on fine-root adaptation strategies predominantly focuses on tropical, subtropical, and temperate forests, leaving a significant gap in comprehensive knowledge regarding fine-root responses in rocky-desertification habitats. This study investigates the fine roots of Pseudotsuga sinensis across varying degrees of rocky desertification (mild, moderate, severe, and extremely severe). By analyzing fine-root morphological and nutrient traits, we aim to elucidate the trait differences and correlations under different desertification intensities. The results indicate that root dry matter content increases significantly with escalating desertification severity. Fine roots in mild and extremely severe desertification exhibit notably higher root C, K, and Mg concentrations compared to those in moderate and severe desertification, while root Ca concentration shows an inverse trend. Our correlation analyses reveal a highly significant positive relationship between specific root length and specific root area, whereas root dry matter content demonstrates a significant negative correlation with elemental concentrations. The principal component analysis (PCA) further indicates that the trait associations adopted by the forest in mild- and extremely severe-desertification environments are different from those in moderate- and severe-desertification environments. This study did not account for soil nutrient dynamics, microbial diversity, or enzymatic activity—key factors influencing fine-root adaptation. Future research should integrate root traits with soil properties to holistically assess resource strategies in rocky-desertification ecosystems. This study can serve as a theoretical reference for research on root characteristics and adaptation strategies of plants in rocky-desertification habitats. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

16 pages, 3034 KiB  
Article
Interannual Variability in Precipitation Modulates Grazing-Induced Vertical Translocation of Soil Organic Carbon in a Semi-Arid Steppe
by Siyu Liu, Xiaobing Li, Mengyuan Li, Xiang Li, Dongliang Dang, Kai Wang, Huashun Dou and Xin Lyu
Agronomy 2025, 15(8), 1839; https://doi.org/10.3390/agronomy15081839 - 29 Jul 2025
Viewed by 158
Abstract
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing [...] Read more.
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing intensity influences SOC density in grasslands remain incompletely understood. This study examines the effects of varying grazing intensities on SOC density (0–30 cm) dynamics in temperate grasslands of northern China using field surveys and experimental analyses in a typical steppe ecosystem of Inner Mongolia. Results show that moderate grazing (3.8 sheep units/ha/yr) led to substantial consumption of aboveground plant biomass. Relative to the ungrazed control (0 sheep units/ha/yr), aboveground plant biomass was reduced by 40.5%, 36.2%, and 50.6% in the years 2016, 2019, and 2020, respectively. Compensatory growth failed to fully offset biomass loss, and there were significant reductions in vegetation carbon storage and cover (p < 0.05). Reduced vegetation cover increased bare soil exposure and accelerated topsoil drying and erosion. This degradation promoted the downward migration of SOC from surface layers. Quantitative analysis revealed that moderate grazing significantly reduced surface soil (0–10 cm) organic carbon density by 13.4% compared to the ungrazed control while significantly increasing SOC density in the subsurface layer (10–30 cm). Increased precipitation could mitigate the SOC transfer and enhance overall SOC accumulation. However, it might negatively affect certain labile SOC fractions. Elucidating the mechanisms of SOC variation under different grazing intensities and precipitation regimes in semi-arid grasslands could improve our understanding of carbon dynamics in response to environmental stressors. These insights will aid in predicting how grazing systems influence grassland carbon cycling under global climate change. Full article
Show Figures

Figure 1

Back to TopTop