Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = plant protection product residues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1117 KiB  
Article
Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons
by Dan Bodescu, Viorel Fătu, Agripina Şapcaliu, Elena Luiza Bădic, Roxana Zaharia, Dana Tăpăloagă, Alexandru-Dragoș Robu and Radu-Adrian Moraru
Agriculture 2025, 15(15), 1648; https://doi.org/10.3390/agriculture15151648 - 31 Jul 2025
Viewed by 233
Abstract
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and [...] Read more.
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and other pesticides in biological materials (bees, bee brood, etc.) and beehive products (honey, pollen, etc.) applied as seed dressings in rapeseed and sunflower plants in two growing seasons (2020–2021) in fields located in three agro-climatic regions in Romania. The study involved the comparative sampling of hive products (honey, pollen, adult bees, and brood) from experimental and control apiaries, followed by pesticide residue analysis in an accredited laboratory (Primoris) using validated chromatographic techniques (LC-MS/MS and GC-MS). Toxicological analyses of 96 samples, including bees, bee brood, honey, and pollen, confirmed the presence of residues in 46 samples, including 10 bee samples, 10 bee brood samples, 18 honey samples, and 8 pollen bread samples. The mean pesticide residue concentrations detected in hive products were 0.032 mg/kg in honey, 0.061 mg/kg in pollen, 0.167 mg/kg in bees, and 0.371 mg/kg in bee brood. The results highlight the exposure of honeybee colonies to multiple sources of pesticide residue contamination, under conditions where legal recommendations for the controlled application of agricultural treatments are not followed. The study provides relevant evidence for strengthening the risk assessment framework and underscores the need for adopting stricter monitoring and regulatory measures to ensure the protection of honeybee colony health. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

13 pages, 1535 KiB  
Article
L-Lysine from Bacillus subtilis M320 Induces Salicylic-Acid–Dependent Systemic Resistance and Controls Cucumber Powdery Mildew
by Ja-Yoon Kim, Dae-Cheol Choi, Bong-Sik Yun and Hee-Wan Kang
Int. J. Mol. Sci. 2025, 26(14), 6882; https://doi.org/10.3390/ijms26146882 - 17 Jul 2025
Viewed by 334
Abstract
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime [...] Read more.
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime systemic acquired resistance (SAR) pathways in cucumber plants. Liquid chromatography–mass spectrometry analysis identified L-lysine as the primary bioactive metabolite in the BSM320 culture filtrate. Foliar application of purified L-lysine significantly reduced powdery mildew symptoms, lowering disease severity by up to 92% at concentrations ≥ 2500 mg/L. However, in vitro spore germination assays indicated that L-lysine did not exhibit direct antifungal activity, indicating that its protective effect is likely mediated through the activation of plant immune responses. Quantitative reverse transcription PCR revealed marked upregulation of key defense-related genes encoding pathogenesis-related proteins 1 and 3, lipoxygenase 1 and 23, WRKY transcription factor 20, and L-type lectin receptor kinase 6.1 within 24 h of treatment. Concurrently, salicylic acid (SA) levels increased threefold in lysine-treated plants, confirming the induction of an SA-dependent SAR pathway. These findings highlight L-lysine as a sustainable, residue-free priming agent capable of enhancing broad-spectrum plant immunity, offering a promising approach for amino acid-based crop protection. Full article
Show Figures

Figure 1

20 pages, 2544 KiB  
Article
The Possibilities of Using Non-Traditional Raw Materials for Fertilizing Products
by Goda Gudinskaitė and Rasa Paleckienė
Sustainability 2025, 17(13), 5710; https://doi.org/10.3390/su17135710 - 20 Jun 2025
Viewed by 511
Abstract
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable [...] Read more.
In recent years, the Green Deal has become a cornerstone of the European Union’s development strategy, aiming to establish a sustainable, innovative and environmentally friendly economy. One of its primary goals is to reduce the negative impact of intensive farming by promoting sustainable agricultural practices. These practices include replacing synthetic fertilizers with more natural alternatives and substituting chemical plant protection products with biological solutions. A noteworthy prospect in this context is the growing insect farming industry, which opens up new possibilities for the food industry via waste processing. In Lithuania, insect farming is also expanding rapidly, with companies producing several hundred tons of frass (insect excrement and residues from growing media) every year. As insect farming is projected to increase rapidly over the next decade, the amount of frass produced will also increase. Therefore, it is necessary to find sustainable ways to use this byproduct. Frass is emerging as an important area of research and practical innovation with great potential for fertilizer production. Initial studies show that frass can contain up to 6% nitrogen, 2% phosphorus and 3% potassium, making it a valuable alternative to synthetic fertilizers. The chitin content (nearly 14%) in frass not only improves the soil but also improves plant resistance to disease. In addition, its organic composition improves soil structure and microbiological activity, contributing in the long term to increasing soil fertility. This paper analyses different samples of frass, assesses their physical and chemical properties and discusses the possible applications of these products in the context of sustainable agriculture. The studies show that frass can be a valuable raw material for fertilizer production, potentially reducing the need for synthetic fertilizers and contributing to the reduction in agricultural waste. By combining economic benefits with ecological sustainability, this research contributes to wider sustainable agricultural innovation. Full article
Show Figures

Figure 1

17 pages, 1252 KiB  
Article
Use of Trans-Anethole Against Hop Flea Beetles in Field Conditions
by Kateřina Kovaříková, Roman Pavela, Karel Krofta and Josef Vostřel
Agronomy 2025, 15(6), 1311; https://doi.org/10.3390/agronomy15061311 - 27 May 2025
Viewed by 348
Abstract
In the present study, the effect of two different formulations (NCH1 and NCH2) of trans-anethole was examined against hop flea beetles, Psylliodes attenuatus in field conditions. Products were applied in different locations in the spring seasons of 2019–2021. In 2019, 0.5% and [...] Read more.
In the present study, the effect of two different formulations (NCH1 and NCH2) of trans-anethole was examined against hop flea beetles, Psylliodes attenuatus in field conditions. Products were applied in different locations in the spring seasons of 2019–2021. In 2019, 0.5% and 1% concentrations of both formulations were used so that the effective field dose could be determined. Doses of 1% for both formulations were shown to be more efficient. In 2020, experiments with this dose were carried out in two localities in order to select a more suitable formulation of the product (NCH1 vs. NCH2). The NCH1 formulation was shown to be more effective. After application, there was a significant reduction in the number of flea beetles compared to the control (p < 0.0001). On the other hand, no significant difference was found between the non-treated plot and the NCH2 formulation. In the third year of the experiment (2021), it was found that the number of P. attenuatus on plants treated with NCH1 encapsulation was significantly lower than in the untreated control (p < 0.0001). Residues of trans-anethole degraded immediately; thus, the product is suitable for use in the summer to protect the hop cones before harvest. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

21 pages, 2052 KiB  
Article
Optimizing Oilfield-Produced Water Reuse for Sustainable Irrigation: Impacts on Soil Quality and Mineral Accumulation in Plants
by Khaled Al-Jabri, Ahmed Al-Busaidi, Mushtaque Ahmed, Rhonda R. Janke and Alexandros Stefanakis
Water 2025, 17(10), 1497; https://doi.org/10.3390/w17101497 - 16 May 2025
Viewed by 1861
Abstract
The effective management of produced water (PW), a by-product of oil extraction in Oman, is essential for sustainable water use and environmental protection. PW contains petroleum residues, heavy metals, and salts, which require treatment before safe reuse. In the Nimr oil field, PW [...] Read more.
The effective management of produced water (PW), a by-product of oil extraction in Oman, is essential for sustainable water use and environmental protection. PW contains petroleum residues, heavy metals, and salts, which require treatment before safe reuse. In the Nimr oil field, PW undergoes partial treatment in constructed wetlands vegetated with buffelgrass (Cenchrus ciliaris). This study investigated the reuse potential of treated PW for irrigation through two parallel field experiments conducted at Sultan Qaboos University (SQU) and the Nimr wetlands site. At the SQU site, native halophytic plants were irrigated with three water sources: treated municipal wastewater, underground water (from an on-site well), and treated produced water. At the Nimr site, irrigation was conducted using underground water and treated PW. Two soil types were used: well-draining control soil and Nimr soil from southern Oman. The treatments included: (i) PW + control soil, (ii) PW + Nimr soil, (iii) PW + gypsum (3.5 g/kg soil), (iv) PW + biochar (10 g/kg soil), (v) underground water + control soil, and (vi) treated municipal wastewater + control soil. Biochar, produced from locally sourced buffelgrass via low-temperature pyrolysis (300 °C for 3 h), and gypsum (46.57% acid-extractable sulfate) were mixed into the soil before sowing. The impact of each treatment was assessed in terms of soil quality (salinity, boron, major cations), plant physiological responses, and mineral accumulation. PW irrigation (TDS ~ 6500–7000 mg/L) led to a sixfold increase in soil sodium and raised boron levels in plant tissues to over 200 mg/kg, exceeding livestock feed safety limits. Copper remained within acceptable thresholds (≤9.5 mg/kg). Biochar reduced boron uptake, but gypsum showed limited benefit. Neither amendment improved plant growth under PW irrigation. These findings highlight the need for regulated PW reuse, emphasizing the importance of soil management strategies and alternating water sources to mitigate salinity stress. Full article
(This article belongs to the Special Issue Effects of Hydrology on Soil Erosion and Soil Water Conservation)
Show Figures

Graphical abstract

18 pages, 652 KiB  
Article
The Effect of Sustainable Tillage Systems on Faba Bean Yield in a Long-Term Experiment in Poland
by Irena Małecka-Jankowiak, Andrzej Blecharczyk, Zuzanna Sawinska, Tomasz Piechota and Robert Idziak
Sustainability 2025, 17(10), 4293; https://doi.org/10.3390/su17104293 - 9 May 2025
Viewed by 701
Abstract
In recent times, there has been a trend towards sustainable agriculture in the world, which is aimed at protecting the production potential of the soil and ensuring stable agricultural production. Conservation agriculture is one way to ensure sustainable production. The main principles of [...] Read more.
In recent times, there has been a trend towards sustainable agriculture in the world, which is aimed at protecting the production potential of the soil and ensuring stable agricultural production. Conservation agriculture is one way to ensure sustainable production. The main principles of conservation agriculture are crop diversification, minimizing tillage, and maintaining soil cover with plant residues. An important role in crop diversification is assigned to legumes. The research was conducted in 2016–2019 based on a long-term experiment established in 1999 (Brody/Poznań). The experiment with faba bean included four variants of tillage: 1—conventional tillage (CT), 2—reduced tillage (RT), 3—strip-tillage (ST), and 4—no-tillage (NT). The research took place in two extremely different weather conditions. Two very favorable years and two with catastrophic drought. Weather conditions had a greater effect on faba bean yields than the tillage systems. The highest faba bean seed yield was obtained in 2017. The seed yield ranged from 6.73 t ha−1 in NT to 7.64 t ha−1 after ST. A high seed yield (4.94–5.97 t ha−1) was also in 2016. In years characterized by low rainfall (2018 and 2019), the average seed yield was 1.89 and 1.74 t ha−1, respectively. Considering the sustainability of the assessed tillage systems in faba bean, both in terms of environment and production, RT and ST should be indicated as the most sustainable. They limit the intensity of tillage and can be classified as conservation tillage, as opposed to conventional tillage. NT provides the best soil protection and conservation, but in favorable weather conditions, it limits the yield level of faba beans. The yields obtained in RT and ST technologies were high, both in favorable and extremely unfavorable years. Given the increasing climatic instability and unpredictable weather, yield stability in various conditions is as important as ensuring conservation tillage. Full article
Show Figures

Figure 1

55 pages, 3842 KiB  
Review
New Strategies and Artificial Intelligence Methods for the Mitigation of Toxigenic Fungi and Mycotoxins in Foods
by Fernando Mateo, Eva María Mateo, Andrea Tarazona, María Ángeles García-Esparza, José Miguel Soria and Misericordia Jiménez
Toxins 2025, 17(5), 231; https://doi.org/10.3390/toxins17050231 - 7 May 2025
Cited by 2 | Viewed by 1542
Abstract
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in [...] Read more.
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in food matrices as opposed to traditional approaches such as chemical fungicides, which may leave toxic residues and pose risks to human and animal health as well as the environment. The novel methodologies discussed include the use of plant-derived compounds such as essential oils, classified as Generally Recognized as Safe (GRAS), polyphenols, lactic acid bacteria, cold plasma technologies, nanoparticles (particularly metal nanoparticles such as silver or zinc nanoparticles), magnetic materials, and ionizing radiation. Among these, essential oils, polyphenols, and lactic acid bacteria offer eco-friendly and non-toxic alternatives to conventional fungicides while demonstrating strong antimicrobial and antifungal properties; essential oils and polyphenols also possess antioxidant activity. Cold plasma and ionizing radiation enable rapid, non-thermal, and chemical-free decontamination processes. Nanoparticles and magnetic materials contribute advantages such as enhanced stability, controlled release, and ease of separation. Furthermore, this review explores recent advancements in the application of artificial intelligence, particularly machine learning methods, for the identification and classification of fungal species as well as for predicting the growth of toxigenic fungi and subsequent mycotoxin production in food products and culture media. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

17 pages, 1977 KiB  
Article
Potential Residual Pesticide Consumption: A Stratified Analysis of Brazilian Families
by Yan Lucas Leite, Tayna Sousa Duque, José Barbosa dos Santos and Elizângela Aparecida dos Santos
J. Xenobiot. 2025, 15(2), 37; https://doi.org/10.3390/jox15020037 - 1 Mar 2025
Cited by 2 | Viewed by 1179
Abstract
Food safety is essential to ensure that food is safe for human consumption, particularly in light of the growing global and environmental changes, including population growth and climate variations. Meeting the increasing demand for food requires enhancing and protecting agricultural systems. A common [...] Read more.
Food safety is essential to ensure that food is safe for human consumption, particularly in light of the growing global and environmental changes, including population growth and climate variations. Meeting the increasing demand for food requires enhancing and protecting agricultural systems. A common strategy is the use of pesticides, which serve to protect cultivated plants from pests, diseases, and weeds. However, improper and excessive use of these products can lead to negative impacts, spanning economic, environmental, and human health aspects. Concerns about pesticide residues in food are global, as their effects on human health vary depending on exposure and quantity. The main objective of this study was to estimate the potential residual consumption (PRC) of pesticides present in food consumed by Brazilian households. Using a specific methodology, it was identified that pineapple had the highest average PRC (121.01 mg), primarily due to the high residue of the active ingredient ethephon. On the other hand, Dithiocarbamates showed the highest residual quantity. Tebuconazole was the most repeated in the samples. It was observed that the insecticide class was responsible for the highest average PRC in households, estimated at 142.45 mg annually, while higher-income families and those located in rural areas showed a greater propensity for potential residual pesticide consumption due to the higher consumption of fruits and vegetables. Additionally, it was found that households where the head of the family is male, highly educated, and older than 40 years present a higher risk of potential residual pesticide consumption. These results highlight the need for public policies focused on sanitary inspection, the training of professionals in the field, the rational use of pesticides by producers, and proper hygiene practices by consumers to mitigate health risks. Full article
Show Figures

Graphical abstract

11 pages, 1663 KiB  
Article
Biochar and Plant Growth-Promoting Bacteria Boost Chemical and Biological Properties of Semiarid Soil in Cowpea
by Inara da Silva Araujo, Argemiro Pereira Martins Filho, Diogo Paes da Costa, Aline Oliveira Silva, Rafaela Felix da França, Mario de Andrade Lira Junior, Gustavo Pereira Duda, José Romualdo de Sousa Lima, Mairon Moura da Silva, Ademir Sergio Ferreira Araujo, Claude Hammecker and Erika Valente de Medeiros
Soil Syst. 2025, 9(1), 19; https://doi.org/10.3390/soilsystems9010019 - 24 Feb 2025
Cited by 2 | Viewed by 1332
Abstract
Plant growth-promoting bacteria (PGPB) are an effective tool for improving nutrients in agricultural systems; however, their efficacy depends on successful colonization in soils. To address this challenge, biochar has been identified as an effective material for enhancing soil ecosystem services and can serve [...] Read more.
Plant growth-promoting bacteria (PGPB) are an effective tool for improving nutrients in agricultural systems; however, their efficacy depends on successful colonization in soils. To address this challenge, biochar has been identified as an effective material for enhancing soil ecosystem services and can serve as a protective for PGPB. However, the impact of biochar and PGPB on soil health indicators and plant growth remains poorly understood. This study aimed to evaluate the effects of biochar and PGPB on soil chemical and biological properties in cowpea. We used biochar from bean husk (BHB) and grape fermentation residue (GFB) and Bradyrhizobium elkanii USDA 76 (BRA), Burkholderia cepacia ATCC 25416 (PRB), or Rhizobium altiplani BR10423 (RHI). BHB and PRB stimulated cowpea growth, while GFB and PRB promoted soil phosphatase activity. Overall, different combinations of biochar and PGPR increased soil pH, phosphorus, potassium, organic carbon content, and urease activity, but did not affect microbial biomass carbon and β-glucosidase activities. The biochars inoculated with the BRA showed the highest productivity. For example, plants subjected to the BRA + GFB treatment exhibited a 3.85-fold increase in productivity compared to the additional treatment that involved the use of commercial peat. The study demonstrated a positive effect of biochar and PGPB on soil enzymatic activity, nutrient content, and cowpea growth suggesting a sustainable alternative to chemical fertilizers, especially in poor soils. These findings highlight the potential of biochar as an environmentally sustainable carrier of PGPB while addressing the issue of agricultural waste reuse. Full article
Show Figures

Graphical abstract

29 pages, 2281 KiB  
Review
Balancing Health and Sustainability: Assessing the Benefits of Plant-Based Diets and the Risk of Pesticide Residues
by Alexandra Andreea Botnaru, Ancuta Lupu, Paula Cristina Morariu, Oana Lelia Pop, Alin Horatiu Nedelcu, Branco Adrian Morariu, Oana Cioancă, Maria Luisa Di Gioia, Vasile Valeriu Lupu, Liliana Avasilcai, Oana Maria Dragostin, Madalina Vieriu and Ionela Daniela Morariu
Nutrients 2025, 17(4), 727; https://doi.org/10.3390/nu17040727 - 19 Feb 2025
Cited by 3 | Viewed by 3078
Abstract
The increased consumption of fruit and vegetables is essential for moving towards a healthier and more sustainable diet. Vegetarian diets are gaining in popularity due to their environmental and health implications; however, there is a need for additional research investigating pesticide residues in [...] Read more.
The increased consumption of fruit and vegetables is essential for moving towards a healthier and more sustainable diet. Vegetarian diets are gaining in popularity due to their environmental and health implications; however, there is a need for additional research investigating pesticide residues in these foods. It is increasingly recognized that the global food system must prioritize nutritional quality, health, and environmental impact over quantity. Food contaminants, including pesticides, mycotoxins, and heavy metals, pose a substantial threat to food safety due to their persistent nature and harmful effects. We conducted a literature search utilizing four distinct databases (PubMed, Google Scholar, NIH, ScienceDirect) and several combinations of keywords (pesticides, food, vegetarian diet, toxicity, sustainable, removal). Consequently, we selected recent and relevant studies for the proposed topic. We have incorporated articles that discuss pesticide residues in food items, particularly in plant-based products. This study rigorously analyzes the harmful environmental impacts of pesticides and ultimately provides sustainable solutions for their elimination or reduction, along with environmentally sound alternatives to pesticide use. This study concludes that the transition towards sustainable agriculture and food production is essential for reducing pesticide residues in food, thereby protecting human health, wildlife populations, and the environment. This paper argues for the urgent need to transform global food systems to prioritize health and sustainability. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

25 pages, 2187 KiB  
Article
Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides
by Tatyana Korshunova, Elena Kuzina, Svetlana Mukhamatdyarova, Milyausha Iskuzhina, Liliya Kulbaeva and Svetlana Petrova
Plants 2024, 13(24), 3560; https://doi.org/10.3390/plants13243560 - 20 Dec 2024
Cited by 1 | Viewed by 891
Abstract
Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria [...] Read more.
Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria of the genera Pseudomonas and Acinetobacter, which exhibited a high degree of oil biodegradation (72–96%). All strains showed resistance to herbicides based on 2,4-D, imazethapyr and tribenuron-methyl, the ability to fix nitrogen, phosphate mobilization, and production of indole-3-acetic acid. The presence of pollutants affected the growth-stimulating properties of bacteria in different ways. The most promising strain P. citronellolis N2 was used alone and together with oat and lupine plants for soil remediation of oil, including herbicide-treated oil-contaminated soil. Combined contamination was more toxic to plants and soil microorganisms. Bacterization stimulated the formation of chlorophyll and suppressed the synthesis of abscisic acid and malonic dialdehyde in plant tissues. The combined use of bacteria and oat plants most effectively reduced the content of hydrocarbons in the soil (including in the presence of herbicides). The results obtained can be used to develop new methods for bioremediation of soils with polychemical pollution. Full article
(This article belongs to the Special Issue Role of Microbial Plant Biostimulants in Abiotic Stress Mitigation)
Show Figures

Figure 1

13 pages, 714 KiB  
Article
Multiresidue Methods Analysis to Detect Contamination of Selected Metals in Honey and Pesticides in Honey and Pollen
by Mattia Casula, Francesco Corrias, Alessandro Atzei, Massimo Milia, Nicola Arru, Alberto Satta, Ignazio Floris, Michelina Pusceddu and Alberto Angioni
Foods 2024, 13(24), 4099; https://doi.org/10.3390/foods13244099 - 18 Dec 2024
Cited by 3 | Viewed by 1373
Abstract
Honey, a natural food with a rich history, is produced by honeybees and other species of bees from nectar, other plant fluids, and honeydew of sap-sucking insects. During foraging, these bees may be exposed to plant protection products (PPPs), metals, and metalloids, potentially [...] Read more.
Honey, a natural food with a rich history, is produced by honeybees and other species of bees from nectar, other plant fluids, and honeydew of sap-sucking insects. During foraging, these bees may be exposed to plant protection products (PPPs), metals, and metalloids, potentially leading to residues in honey and hive products that could have a negative impact on human safety. Recognizing the lack of an appropriate methodology for pesticide contamination of honey and other hive products, this research aims to support the need for studies on residues in pollen and bee products for human consumption to establish safe maximum residue levels (MRLs) for consumers. A UHPLC-MS/MS residues method and a modified QuEChERS extraction were applied to simultaneously determine 237 pesticide residues in honey and pollen. The study in North Sardinia analyzed honey and pollen samples from six areas for pesticide residues and verified 27 heavy metals and metalloid residues using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The data obtained showed residues at levels close to the LOQ of the method, cycloate in a few samples of pollen, and dichlorvos, zoxamide, cycloate, and chlorantraniliprole in honey samples. All samples showed the absence of heavy metal contamination. Overall, no risk to human health was identified. The results of this study confirm that honey and pollen may be a good bioindicator of environmental contamination of a wide area surrounding honeybee hives. Full article
Show Figures

Figure 1

18 pages, 2901 KiB  
Article
Protective Action of Cannabidiol on Tiamulin Toxicity in Humans—In Vitro Study
by Eryka Pankowska, Oliwia Kończak, Paula Żakowicz, Tatiana Wojciechowicz, Maciej Gogulski and Lidia Radko
Int. J. Mol. Sci. 2024, 25(24), 13542; https://doi.org/10.3390/ijms252413542 - 18 Dec 2024
Viewed by 1333
Abstract
The growing awareness and need to protect public health, including food safety, require a thorough study of the mechanism of action of veterinary drugs in consumers to reduce their negative impact on humans. Inappropriate use of veterinary drugs in animal husbandry, such as [...] Read more.
The growing awareness and need to protect public health, including food safety, require a thorough study of the mechanism of action of veterinary drugs in consumers to reduce their negative impact on humans. Inappropriate use of veterinary drugs in animal husbandry, such as tiamulin, leads to the appearance of residues in edible animal tissues. The use of natural substances of plant origin, extracted from hemp (Cannabis sativa L.), such as cannabidiol (CBD), is one of the solutions to minimize the negative effects of tiamulin. This study aimed to determine the effect of CBD on the cytotoxicity of tiamulin in humans. The cytotoxic activity of tiamulin and the effect of its mixtures with CBD were tested after 72 h exposure to three human cell lines: SH-SY5Y, HepG2 and HEK-293. Cytotoxic concentrations (IC50) of the tested drug and in combination with CBD were assessed using five biochemical endpoints: mitochondrial and lysosomal activity, proliferation, cell membrane integrity and effects on DNA synthesis. Oxidative stress, cell death and cellular morphology were also assessed. The nature of the interaction between the veterinary drug and CBD was assessed using the combination index. The long-term effect of tiamulin inhibited lysosomal (SH-SY5SY) and mitochondrial (HepG2) activity and DNA synthesis (HEK-293). IC50 values for tiamulin ranged from 2.1 to >200 µg/mL (SH-SY5SY), 13.9 to 39.5 µg/mL (HepG2) and 8.5 to 76.9 µg/mL (HEK-293). IC50 values for the drug/CBD mixtures were higher. Reduced levels of oxidative stress, apoptosis and changes in cell morphology were demonstrated after exposure to the mixtures. Interactions between the veterinary drug and CBD showed a concentration-dependent nature of tiamulin in cell culture, ranging from antagonistic (low concentrations) to synergistic effects at high drug concentrations. The increased risk to human health associated with the presence of the veterinary drug in food products and the protective nature of CBD use underline the importance of these studies in food toxicology and require further investigation. Full article
Show Figures

Graphical abstract

19 pages, 7735 KiB  
Article
VdCHS2 Overexpression Enhances Anthocyanin Biosynthesis, Modulates the Composition Ratio, and Increases Antioxidant Activity in Vitis davidii Cells
by Liyuan He, Gongti Lai, Junxuan Lin, Aolin Guo, Fangxue Yang, Ruo Pan, Jianmei Che and Chengchun Lai
Antioxidants 2024, 13(12), 1472; https://doi.org/10.3390/antiox13121472 - 29 Nov 2024
Cited by 1 | Viewed by 1194
Abstract
Anthocyanins are significant secondary metabolites that are essential for plant growth and development, possessing properties such as antioxidant, anti-inflammatory, and anti-cancer activities and cardiovascular protection. They offer significant potential for applications in food, medicine, and cosmetics. However, since anthocyanins are mainly obtained through [...] Read more.
Anthocyanins are significant secondary metabolites that are essential for plant growth and development, possessing properties such as antioxidant, anti-inflammatory, and anti-cancer activities and cardiovascular protection. They offer significant potential for applications in food, medicine, and cosmetics. However, since anthocyanins are mainly obtained through plant extraction and chemical synthesis, they encounter various challenges, including resource depletion, ecological harm, environmental pollution, and the risk of toxic residuals. To address these issues, this study proposes a plant cell factory approach as a novel alternative solution for anthocyanin acquisition. In this study, the VdCHS2 gene was successfully transformed into spine grape cells, obtaining a high-yield anthocyanin cell line designated as OE1. Investigations of the light spectrum demonstrated that white light promoted spine grape cell growth, while short-wavelength blue light significantly boosted anthocyanin production. Targeted metabolomics analysis revealed that the total anthocyanin content in the OE1 cell line reached 11 mg/g, representing a 60% increase compared to the WT. A total of 54 differentially accumulated metabolites were identified, among which 44 were upregulated. Overexpression of the CHS gene enhanced the expression of downstream genes involved in anthocyanin biosynthesis, resulting in the differential expression of CHI, F3Hb, F3′5′H, DFR4, and LDOX. This led to the differential accumulation of anthocyanin monomers, predominantly consisting of 3-O-glucosides and 3-O-galactosides, thereby causing alterations in anthocyanin levels and composition. Furthermore, the OE1 cell line increased the activity of various antioxidant enzymes, improved the clearance of reactive oxygen species, and reduced the levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). The subsequent cultivation of the transformed OE1 cell line, in conjunction with cell suspension culture, established a plant cell factory for anthocyanin production, significantly increasing anthocyanin yield while shortening the culture duration. This study elucidates the molecular mechanisms through which the VdCHS2 gene influenced anthocyanin accumulation and compositional variations. Additionally, it established a model for a small-scale anthocyanin plant cell factory, thereby providing a theoretical and practical foundation for the targeted synthesis of anthocyanin components and the development and utilization of plant natural products. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Graphical abstract

8 pages, 1556 KiB  
Proceeding Paper
Assessment of the Chemical Hazards in Herbs Consumed in Europe: Toxins, Heavy Metals, and Pesticide Residues
by Maria Carpena, Paula Barciela, Ana Perez-Vazquez, Kinga Noras, Joanna Trafiałek, Miguel A. Prieto and Monika Trząskowska
Proceedings 2024, 102(1), 2054; https://doi.org/10.3390/proceedings2024102054 - 21 Nov 2024
Cited by 1 | Viewed by 1131
Abstract
The increasing global interest in herbs and spices necessitates a thorough examination of the chemical hazards associated with their consumption. The objective of this work was to provide an understanding of the current state and prevalence of chemical contaminants (toxins, heavy metals, and [...] Read more.
The increasing global interest in herbs and spices necessitates a thorough examination of the chemical hazards associated with their consumption. The objective of this work was to provide an understanding of the current state and prevalence of chemical contaminants (toxins, heavy metals, and pesticide residues) in herbs and spices consumed in Europe, facilitating informed decision-making in public health and regulatory frameworks Through an extensive literature search, contamination levels of chemical hazards among different herbs and spices were evaluated. The European Rapid Alert System for Food and Feed (RASFF) has shown 1133 notifications for spices and herbs in the last 10 years (2013–2023). Focusing on the chemical hazards associated with the consumption of these products, mycotoxins (especially aflatoxins and ochratoxin A) and plant-derived compounds with potential health implications (e.g., pyrrolizidine alkaloids) were the most often notified. Nevertheless, besides these naturally occurring compounds, other deliberated added substances such as artificial unauthorized dyes (e.g., Sudan I, II, III, and IV) that can pose a human health risk have been identified. Finally, environmental contaminants could also be present in herbs and spices. Pesticide residues (e.g., chlorpyrifos, carbendazim, and bifenthrin) have been notified, and studies in terms of their persistence and adherence to regulatory limits and heavy metals were also investigated, focusing on cadmium, lead, and mercury due to the bioaccumulation abilities of plants. Other environmental contaminants, such as dioxins and dioxin-like polychlorinated biphenyls (dl-PCBs) and polycyclic aromatic hydrocarbons (PAHs), were considered for this study. In conclusion, this work contributed to identifying gaps and challenges in regulatory practices and to the dialog on the safety and quality of herbs and spices, offering a holistic perspective on toxins, heavy metals, and pesticide residues and fostering collaboration between all stakeholders to advance in public health protection in Europe. Full article
(This article belongs to the Proceedings of The 1st International Electronic Conference on Toxics)
Show Figures

Figure 1

Back to TopTop