Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (377)

Search Parameters:
Keywords = plant available water capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2357 KiB  
Article
Nitrogen Fertilizer Reduction in Rice–Eel Co-Culture System Improves the Soil Microbial Diversity and Its Functional Stability
by Mengqian Ma, Weiguang Lv, Yu Huang, Juanqin Zhang, Shuangxi Li, Naling Bai, Haiyun Zhang, Xianpu Zhu, Chenglong Xu and Hanlin Zhang
Plants 2025, 14(15), 2425; https://doi.org/10.3390/plants14152425 - 5 Aug 2025
Abstract
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began [...] Read more.
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began in 2016 and was sampled in 2023, the effects of reduced nitrogen fertilizer application on soil physico-chemical properties and the bacterial community were investigated. Treatments included a conventional regular fertilization treatment (RT), rice–eel co-culture system regular fertilization (IT), and nitrogen-reduction 10%, 30%, and 50% fertilization treatments (IT90, IT70, and IT50). Our research demonstrated the following: (1) Compared to RT, IT significantly increased soil water-stable macroaggregates (R0.25), mean weight diameter (MWD), geometric mean diameter (GMD), and available phosphorus content, with the increases of 15.66%, 25.49%, 36.00%, and 18.42%, respectively. Among the nitrogen-reduction fertilization treatments, IT90 showed the most significant effect. Compared to IT, IT90 significantly increased R0.25, MWD, GMD, and available nitrogen content, with increases of 4.4%, 7.81%, 8.82%, and 28.89%, respectively. (2) Compared to RT, at the phylum level, the diversity of Chloroflexi was significantly increased under IT and IT50, and the diversity of Gemmatimonadota was significantly increased under IT90, IT70, and IT50. The diversity of Acidobacteriota was significantly higher in IT90 and IT70 compared to IT. It was shown that the rice–eel co-culture system and nitrogen fertilizer reduction could effectively improve the degradation capacity of organic matter and promote soil nitrogen cycling. In addition, redundancy analysis (RDA) identified total phosphorus, total nitrogen, and available nitrogen (p = 0.007) as the three most important environmental factors driving changes in the bacterial community. (3) The functional prediction analysis of soil microbiota showed that, compared to RT, the diversity of pathways related to biosynthesis (carbohydrate biosynthesis and cell structure biosynthesis) and metabolism (L-glutamate and L-glutamine biosynthesis) was significantly higher under IT70, IT90, IT, and IT50 (in descending order). However, the diversity of pathways associated with degradation/utilization/assimilation (secondary metabolite degradation and amine and polyamine degradation) was significantly lower under all the rice–eel co-culture treatments. In conclusion, the rice–eel co-culture system improved soil physicochemical properties and the soil microbial environment compared with conventional planting, and the best soil improvement was achieved with 10% less N fertilizer application. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

24 pages, 5270 KiB  
Article
Ecophysiological Keys to the Success of a Native-Expansive Mediterranean Species in Threatened Coastal Dune Habitats
by Mario Fernández-Martínez, Carmen Jiménez-Carrasco, Mari Cruz Díaz Barradas, Juan B. Gallego-Fernández and María Zunzunegui
Plants 2025, 14(15), 2342; https://doi.org/10.3390/plants14152342 - 29 Jul 2025
Viewed by 215
Abstract
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have [...] Read more.
Range-expanding species, or neonatives, are native plants that spread beyond their original range due to recent climate or human-induced environmental changes. Retama monosperma was initially planted near the Guadalquivir estuary for dune stabilisation. However, changes in the sedimentary regime and animal-mediated dispersal have facilitated its exponential expansion, threatening endemic species and critical dune habitats. The main objective of this study was to identify the key functional traits that may explain the competitive advantage and rapid spread of R. monosperma in coastal dune ecosystems. We compared its seasonal responses with those of three co-occurring woody species, two native (Juniperus phoenicea and J. macrocarpa) and one naturalised (Pinus pinea), at two sites differing in groundwater availability within a coastal dune area (Doñana National Park, Spain). We measured water relations, leaf traits, stomatal conductance, photochemical efficiency, stable isotopes, and shoot elongation in 12 individuals per species. Repeated-measures ANOVA showed significant effects of species and species × season interaction for relative water content, shoot elongation, effective photochemical efficiency, and stable isotopes. R. monosperma showed significantly higher shoot elongation, relative water content, and photochemical efficiency in summer compared with the other species. Stable isotope data confirmed its nitrogen-fixing capacity. This characteristic, along with the higher seasonal plasticity, contributes to its competitive advantage. Given the ecological fragility of coastal dunes, understanding the functional traits favouring the success of neonatives such as R. monosperma is essential for biodiversity conservation and ecosystem management. Full article
Show Figures

Figure 1

16 pages, 2652 KiB  
Article
Evaluation of the Effect of Floating Treatment Wetlands Planted with Sesuvium portulacastrum on the Dynamics of Dissolved Inorganic Nitrogen, CO2, and N2O in Grouper Aquaculture Systems
by Shenghua Zheng, Man Wu, Jian Liu, Wangwang Ye, Yongqing Lin, Miaofeng Yang, Huidong Zheng, Fang Yang, Donglian Luo and Liyang Zhan
J. Mar. Sci. Eng. 2025, 13(7), 1342; https://doi.org/10.3390/jmse13071342 - 14 Jul 2025
Viewed by 253
Abstract
Aquaculture expansion to meet global protein demand has intensified concerns over nutrient pollution and greenhouse gas (GHG) emissions. While floating treatment wetlands (FTWs) are proven for water quality improvement, their potential to mitigate GHG emissions in marine aquaculture remains poorly understood. This study [...] Read more.
Aquaculture expansion to meet global protein demand has intensified concerns over nutrient pollution and greenhouse gas (GHG) emissions. While floating treatment wetlands (FTWs) are proven for water quality improvement, their potential to mitigate GHG emissions in marine aquaculture remains poorly understood. This study quantitatively evaluated the dual capacity of Sesuvium portulacastrum FTWs to (a) regulate dissolved inorganic nitrogen (DIN) and (b) reduce CO2/N2O emissions in grouper aquaculture systems. DIN speciation (NH4+, NO2, NO3) and CO2/N2O fluxes of six controlled ponds (three FTW and three control) were monitored for 44 days. DIN in the FTW group was approximately 90 μmol/L lower than that in the control group, and the water in the plant group was more “oxidative” than that in the control group. The former groups were dominated by NO3, with lower dissolved inorganic carbon (DIC) and N2O concentrations, whereas the latter were dominated by NH4+ during the first 20 days of the experiment and by NO2 at the end of the experiment, with higher DIC and N2O concentrations on average. Higher primary production may be the reason that the DIC concentration was lower in the plant group than in the control group, whereas efficient nitrification and uptake by plants reduced the availability of NH4+ in the plant group, thereby reducing the production of N2O. A comparison of the CO2 and N2O flux potentials in the plant group and control group revealed that, in the presence of FTWs, the CO2 and N2O emissions decreased by 14% and 36%, respectively. This showed that S. portulacastrum FTWs effectively couple DIN removal with GHG mitigation, offering a nature-based solution for sustainable aquaculture. Their low biomass requirement enhances practical scalability. Full article
(This article belongs to the Special Issue Coastal Geochemistry: The Processes of Water–Sediment Interaction)
Show Figures

Figure 1

19 pages, 1240 KiB  
Article
Extending the Recovery Ratio of Brackish Water Desalination to Zero Liquid Discharge (>95%) Through Combination of Nanofiltration, 2-Stage Reverse-Osmosis, Silica Precipitation, and Mechanical Vapor Recompression
by Paz Nativ, Raz Ben-Asher, Yaron Aviezer and Ori Lahav
ChemEngineering 2025, 9(4), 70; https://doi.org/10.3390/chemengineering9040070 - 3 Jul 2025
Viewed by 459
Abstract
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are [...] Read more.
Extending the recovery ratio (RR) of brackish water reverse osmosis (RO) plants to zero liquid discharge (ZLD, i.e., ≥95%) is vital, particularly inland, where the cost of safe retentate disposal is substantial. Various suggestions appear in the literature; however, many of these are impractical in the real world. Often, the limiting parameter that determines the maximal recovery is the SiO2 concentration that develops in the RO retentate and the need to further desalinate the high osmotic pressure retentates produced in the process. This work combines well-proven treatment schemes to attain RR ≥ 95% at a realistic cost. The raw brackish water undergoes first a 94% recovery nanofiltration (NF) step, whose permeate undergoes a further 88-RR RO step. To increase the overall RR, the retentate of the 1st RO step undergoes SiO2 removal performed via iron electro-dissolution and then a 2nd, 43% recovery, RO pass. The retentate of this step is combined with the NF retentate, and the mix is treated with mechanical vapor recompression (MVR) (RR = 62.7%). The results show that >95% recovery can be attained by the suggested process at an overall cost of ~USD 0.70/m3. This is ~60% higher than the USD 0.44/m3 calculated for the baseline operation (RR = 82.7%), making the concept feasible when either the increase in the plant’s capacity is regulatorily requested, or when the available retentate discharge method is very costly. The cost assessment accuracy was approximated at >80%. Full article
Show Figures

Figure 1

20 pages, 6259 KiB  
Article
Remediation Effects of Potamogeton crispus on Nitrogen-Loaded Water Bodies and Its Greenhouse Gas Emission Mechanisms
by Xiaoyi Li, Xiaoxiu Lun, Jianzhi Niu, Lumin Zhang, Bo Wu and Xinyue Wang
Atmosphere 2025, 16(7), 803; https://doi.org/10.3390/atmos16070803 - 1 Jul 2025
Viewed by 231
Abstract
Potamogeton crispus (P. crispus), with strong nitrogen uptake capacity, plays an important ecological role during winter and early spring when most aquatic plants are inactive. Its presence can also influence microbial denitrification in sediments by regulating oxygen levels and organic carbon [...] Read more.
Potamogeton crispus (P. crispus), with strong nitrogen uptake capacity, plays an important ecological role during winter and early spring when most aquatic plants are inactive. Its presence can also influence microbial denitrification in sediments by regulating oxygen levels and organic carbon availability. In this study, an indoor hydroponic simulation system was used to systematically evaluate the effects of P. crispus under different nitrogen-loading conditions on nitrogen removal from water, changes in sediment carbon and nitrogen fractions, microbial community structure, and greenhouse gas fluxes. The results showed that P. crispus effectively removed TN, NH4+-N, NO3-N, and NO2-N, maintaining strong denitrification capacity even under high-nitrogen loading. Under all nitrogen conditions, TN removal exceeded 80%, while NH4+-N and NO3-N removal efficiencies surpassed 90%, with effective suppression of NO2-N accumulation. Rhizosphere-mediated regulation by P. crispus enhanced the transformation and stabilization of DOC and NO3-N in sediments, while also mitigating nitrogen-induced disturbances to carbon–nitrogen balance. The plant also exhibited strong CO2 uptake capacity, low CH4 emissions with a slight increase under higher nitrogen loading, and N2O fluxes that were significantly affected by nitrogen levels—showing negative values under low nitrogen and sharp increases under high-nitrogen conditions. Correlation analyses indicated that CO2 and N2O emissions were mainly regulated by microbial taxa involved in carbon and nitrogen transformation, while CH4 emissions were primarily driven by methanogenic archaea and showed weaker correlations with environmental factors. These findings highlight the importance of water restoration during low-temperature seasons and provide a theoretical basis for integrated wetland management strategies aimed at coordinated pollution reduction and carbon mitigation. Full article
(This article belongs to the Special Issue Interactions of Urban Greenings and Air Pollution)
Show Figures

Figure 1

16 pages, 3716 KiB  
Article
Water Demand and Photosynthetic Performance of Tomatoes Grown Hydroponically Under Increasing Nitrogen Concentrations
by Pablo Rugero Magalhães Dourado, Martha Katharinne Silva Souza Paulino, Lucas Yago de Carvalho Leal, Cicero Aparecido Ferreira Araújo, José Alfredo Nunes, Emidio Cantídio de Oliveira, José Amilton Santos Júnior, Aline de Camargo Santos, Diego Arruda Huggins de Sá Leitão, Márcio Renato Nunes, Bruce Schaffer and Edivan Rodrigues de Souza
Water 2025, 17(13), 1951; https://doi.org/10.3390/w17131951 - 29 Jun 2025
Viewed by 451
Abstract
Water and nitrogen (N) availability are among the primary limiting factors for the productivity of tomato (Solanum licopersicum L.). This study evaluated the interaction between these factors by assessing the effects of different N concentrations (85.5, 128.3, 171.0, 213.8, and 256.1 ppm [...] Read more.
Water and nitrogen (N) availability are among the primary limiting factors for the productivity of tomato (Solanum licopersicum L.). This study evaluated the interaction between these factors by assessing the effects of different N concentrations (85.5, 128.3, 171.0, 213.8, and 256.1 ppm N) on the water consumption, growth, and photosynthetic efficiency of hydroponically-grown tomato plants. The variables that were analyzed included the leaf N content, leaf chlorophyll index (LCI), maximum quantum efficiency of photosystem II (the ratio of variable to maximum chlorophyll fluorescence; Fv/Fm), non-photochemical quenching (NPQ), fresh mass (FM), dry mass (DM), cumulative water consumption, and water use efficiency (WUE). Increasing N concentrations led to higher water consumption and FM accumulation. Dry biomass was quadratically related to the N concentration, which peaked between doses of 213.8 and 256.1 ppm N. The LCI and Fv/Fm increased with the N supply, reaching a peak at N concentrations above 171 ppm, and then remained relatively constant. Conversely, the NPQ was reduced at the highest N level (256.1 ppm), which indicated diminished excess energy dissipation capacity. The highest WUE was observed at 213.8 ppm N, which was associated with greater DM and reduced water consumption compared to the highest N treatment. These findings suggest that the N concentration significantly affects the biomass production and water use in hydroponically-grown tomato plants, with 213.8 ppm N being the most efficient for vegetative growth under the studied conditions. Full article
(This article belongs to the Special Issue Soil Water Use and Irrigation Management)
Show Figures

Figure 1

14 pages, 2770 KiB  
Article
Soil Structure Characteristics in Three Mountainous Regions in Bulgaria Under Different Land Uses
by Milena Kercheva, Tsvetina Paparkova, Emil Dimitrov, Katerina Doneva, Kostadinka Nedyalkova, Jonita Perfanova, Rosica Sechkova, Emiliya Velizarova and Maria Glushkova
Forests 2025, 16(7), 1065; https://doi.org/10.3390/f16071065 - 26 Jun 2025
Viewed by 288
Abstract
Soil structure has an important role in storing and transporting substances, providing natural habitats for soil microorganisms, and allowing chemical reactions in the soil. A complex investigation on factors affecting soil structure characteristics under herbaceous (H), deciduous (D), mixed (M), and coniferous (SP—Scots [...] Read more.
Soil structure has an important role in storing and transporting substances, providing natural habitats for soil microorganisms, and allowing chemical reactions in the soil. A complex investigation on factors affecting soil structure characteristics under herbaceous (H), deciduous (D), mixed (M), and coniferous (SP—Scots Pine and NS—Norway Spruce) vegetation was conducted at three experimental stations—Gabra, Govedartsi, and Igralishte, located correspondingly in the Lozenska, Rila, and Maleshevska Mountains in South-West Bulgaria. The data set obtained includes soil structure indicators and physical, physicochemical, chemical, mineralogical, and microbiological parameters of the A and AC horizons of 11 soil profiles. Under different vegetation conditions, soil structure indicators respond differently depending on climatic conditions and basic soil properties. Regarding the plant available water capacity (PAWC), air capacity (AC), and water-stable aggregates (WSAs), the surface soil layers have an optimal structure in Gabra (H, D), Govedartsi (H, SP, NS), and Igralishte (H). The values for the relative field capacity (RFC < 0.6) showed that the studied soils were water-limited. The WSAs correlated with SOC in Gabra, while in Govedartsi and Igralishte, the WSAs correlated with the β-glucosidase known to hydrolyze organic carbon compounds in soil. The information obtained is important for soil quality monitoring under climatic and anthropogenic changes. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 1571 KiB  
Article
Effects of Biochar Amendment on Potassium Supply Capacity and Potassium Accumulation in Soybean Across Diverse Soils
by Liqun Xiu, Yuanyuan Sun and Xiaori Han
Plants 2025, 14(13), 1959; https://doi.org/10.3390/plants14131959 - 26 Jun 2025
Viewed by 514
Abstract
Biochar enhances soil available potassium and plant uptake, yet its effects on soil potassium supply capacity and crop potassium accumulation require clarification. This study used a pot experiment with three soil types (albic, brown, and sandy soils) and four biochar application rates (0, [...] Read more.
Biochar enhances soil available potassium and plant uptake, yet its effects on soil potassium supply capacity and crop potassium accumulation require clarification. This study used a pot experiment with three soil types (albic, brown, and sandy soils) and four biochar application rates (0, 10, 20, and 30 g·kg−1) to investigate potassium supply capacity and soybean potassium accumulation using the potassium site coordination theory and Q/I curve analysis. The results showed that biochar significantly increased the available potassium content in soil. At the highest biochar application rate (30 g·kg−1), the available potassium in the albic, sandy, and brown soils increased by 24.84%, 60.90%, and 24.84%, respectively, compared to the control. The biochar boosted the instantaneous potassium supply (elevated AR0 and ΔK values) through direct water-soluble potassium input. However, the potential potassium supply capacity (PBC) varied by soil type: the PBC increased in the brown soil at low application rates but decreased in the albic and sandy soils with higher rates. The biochar enhanced soybean potassium accumulation through two pathways: the direct enrichment of soil potassium pools and the indirect improvement in soil properties to promote biomass accumulation. These findings provide theoretical insights for optimizing biochar use in agriculture to maximize potassium availability and crop efficiency. Full article
Show Figures

Figure 1

27 pages, 2962 KiB  
Review
Celosia argentea: Towards a Sustainable Betalain Source—A Critical Review and Future Prospects
by Preekamol Klanrit, Sudarat Thanonkeo, Poramaporn Klanrit, Poramate Klanrit, Kanchanok Mueangnak and Pornthap Thanonkeo
Plants 2025, 14(13), 1940; https://doi.org/10.3390/plants14131940 - 24 Jun 2025
Viewed by 809
Abstract
Betalains are nitrogen-containing, water-soluble, and non-toxic natural pigments found in various plant species. Among these, Celosia argentea (Amaranthaceae) has garnered attention as a significant source, accumulating substantial quantities of both red–purple betacyanins and yellow–orange betaxanthins. Impressively, betalain concentrations in C. argentea inflorescences can [...] Read more.
Betalains are nitrogen-containing, water-soluble, and non-toxic natural pigments found in various plant species. Among these, Celosia argentea (Amaranthaceae) has garnered attention as a significant source, accumulating substantial quantities of both red–purple betacyanins and yellow–orange betaxanthins. Impressively, betalain concentrations in C. argentea inflorescences can reach up to 14.91 mg/g dry weight (DW), a level comparable to that reported in red beetroot. Beyond harvesting from inflorescences, betalains can also be produced using cell culture systems, which can yield even higher amounts, up to 42.08 mg/g DW. Beyond their role as vibrant natural colorants, betalains exhibit impressive health-promoting properties, most notably potent antioxidant activities. For instance, C. argentea inflorescence extracts demonstrate approximately 84.07% 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 88.70% 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. Extracts derived from cell cultures show even higher scavenging capacities, reaching up to 99.28% for ABTS and 99.63% for DPPH, rivaling the antioxidant standard (ascorbic acid). Further research indicates additional potential benefits, including anti-inflammatory, antimicrobial, anticancer, antidiabetic, and hepatoprotective properties. This diverse bioactivity underpins their value across various industries. Betalains serve as natural colorants and functional ingredients in food and beverages, offer sustainable alternatives for textile dyeing, and hold therapeutic promise in cosmetics and pharmaceuticals. This review critically examines existing research on betalain production in C. argentea. Recognizing that research specific to C. argentea is less extensive compared with that on species such as Beta vulgaris and Hylocereus polyrhizus, this review analyzes its biosynthetic pathways, diverse biological properties, and wide-ranging applications. This is achieved by integrating available C. argentea-specific data with relevant insights drawn from these more broadly studied betalain sources. Furthermore, the review discusses perspectives on future research directions aimed at optimizing yield and exploring the full potential of betalains, specifically within C. argentea. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants—2nd Edition)
Show Figures

Figure 1

37 pages, 4654 KiB  
Article
Age-Specific Physiological Adjustments of Spirodela polyrhiza to Sulfur Deficiency
by Vesna Peršić, Anja Melnjak, Lucija Domjan, Günther Zellnig and Jasenka Antunović Dunić
Plants 2025, 14(13), 1907; https://doi.org/10.3390/plants14131907 - 20 Jun 2025
Viewed by 562
Abstract
Spirodela polyrhiza is a suitable model organism for investigating plant developmental influences due to its intracolonial variations in response to various environmental fluctuations, like nutrient deficiency. In this study, transmission electron microscopy was used to examine age-dependent variation in chloroplast ultrastructure, while pigment [...] Read more.
Spirodela polyrhiza is a suitable model organism for investigating plant developmental influences due to its intracolonial variations in response to various environmental fluctuations, like nutrient deficiency. In this study, transmission electron microscopy was used to examine age-dependent variation in chloroplast ultrastructure, while pigment levels (chlorophyll and anthocyanins), starch accumulation, and metabolic activity (photosynthetic and respiratory rates) were measured to determine metabolic responses to sulfur deficiency. For a comprehensive insight into electron transport efficiency and the redox states of the photosynthetic apparatus, rapid light curves, chlorophyll fluorescence (JIP test parameters), and modulated reflection at 820 nm were analyzed. Under S deficit, mother fronds relied on stored reserves to maintain functional PSII but accumulated reduced PQ pools, slowing electron flow beyond PSII. The first-generation daughter fronds, despite having higher baseline photosynthetic capacity, exhibited the largest decline in photosynthetic indicators (e.g., rETR fell about 50%), limitations in the water-splitting complex, and reduced PSI end-acceptor capacity that resulted in donor- and acceptor-side bottlenecks of electron transport. The youngest granddaughter fronds avoided these bottlenecks by absorbing less light per PSII, channeling electrons through the alternative pathway to balance PQ pools and redox-stable PSI while diverting more carbon into starch and anthocyanin production up to 5-fold for both. These coordinated and age-specific adjustments that provide response flexibility may help maintain photosynthetic function of the colony and facilitate rapid recovery when sulfur becomes available again. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications—2nd Edition)
Show Figures

Figure 1

15 pages, 6554 KiB  
Article
Study on the Effects of Planting Alfalfa (Medicago sativa L.) and Adding Biochar on Soil Fertility in Jujube Orchards
by Tingrui Jing, Shuang Liang, Chubo Liu, Shipeng Liu and Luanzi Sun
Agronomy 2025, 15(6), 1462; https://doi.org/10.3390/agronomy15061462 - 16 Jun 2025
Viewed by 454
Abstract
Soil fertility has an important impact on orchard yield and quality, and sandy soil limits the economic yield of orchards due to its low water and fertilizer retention capacity. Although biochar and alfalfa planting have been widely utilized separately in soil improvement, few [...] Read more.
Soil fertility has an important impact on orchard yield and quality, and sandy soil limits the economic yield of orchards due to its low water and fertilizer retention capacity. Although biochar and alfalfa planting have been widely utilized separately in soil improvement, few studies have examined the effects of combined alfalfa planting and biochar application on jujube orchard soils. This study investigates the effects of alfalfa planting alone and alfalfa planting combined with different levels of biocarbon addition on soil properties. A field experiment was conducted in a jujube orchard in Yanchuan County, Shaanxi Province, with four treatments: clear tillage control (CK), alfalfa planting only (B1), alfalfa planting + 1.5 kg·m−2 biocarbon (B2), and alfalfa planting + 3 kg·m−2 biocarbon (B3). The results show that planting alfalfa significantly increased soil moisture content (SMC) and soil organic matter (SOM) content by 27.79% and 17.65%, respectively, and biochar addition significantly increased soil carbon, nitrogen, and phosphorus content by 8.11–37.7%, enhanced the soil moisture content (SMC) by 98.13–100.22%, promoted the growth of alfalfa, and increased vegetation cover (p < 0.05). The combination of biochar and alfalfa improves soil fertility more effectively than alfalfa alone. It can increase the soil N and P nutrient contents, improve soil available nutrients, promote alfalfa growth in a short period, and provide a feasible solution for soil improvement in the future. Full article
Show Figures

Figure 1

13 pages, 2357 KiB  
Article
Effect of Coal Gangue Powder Addition on Hydraulic Properties of Aeolian Sandy Soil and Plant Growth
by Xiaoyun Ding, Ruimin He, Zhenguo Xing, Haoyan Wei, Jiping Niu, Shi Chen and Min Li
Horticulturae 2025, 11(6), 634; https://doi.org/10.3390/horticulturae11060634 - 5 Jun 2025
Viewed by 451
Abstract
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) [...] Read more.
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) was added to aeolian sandy soil. We compared the soil hydraulic properties and plant growth of original aeolian sandy soil (CK) and different CGP application rates (10% and 20%). The results indicated that the application of CGP transformed the soil texture from sandy to loamy, significantly reduced soil bulk density and saturated hydraulic conductivity (Ks) values, altered the soil water characteristic curve, enhanced soil water-holding capacity, and increased plant-available water. Compared with the CK group, the emergence rate of alfalfa seeds increased from approximately 50% to over 70% after CGP application. During the growth process, CGP application significantly elevated the net photosynthetic rate, transpiration rate, and stomatal conductance of alfalfa leaves. Rapid fluorescence kinetics monitoring of leaves demonstrated that alfalfa treated with CGP had a higher efficiency in light energy utilization. However, the photosynthetic capacity of leaves did not improve as the CGP application rate increased from 10% to 20%, suggesting that excessive CGP addition did not continuously benefit plant gas exchange. In conclusion, CGP application can improve the soil hydraulic properties of aeolian sandy soil and support plant growth and development, which is conducive to reducing the accumulated amount of coal gangue, alleviating plant water stress, and promoting ecological restoration in arid mining areas. We recommend a 10% addition of coal gangue powder as the optimal amount for similar soils. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

25 pages, 2444 KiB  
Review
Climate on the Edge: Impacts and Adaptation in Ethiopia’s Agriculture
by Hirut Getachew Feleke, Tesfaye Abebe Amdie, Frank Rasche, Sintayehu Yigrem Mersha and Christian Brandt
Sustainability 2025, 17(11), 5119; https://doi.org/10.3390/su17115119 - 3 Jun 2025
Cited by 1 | Viewed by 2402
Abstract
Climate change poses a significant threat to Ethiopian agriculture, impacting both cereal and livestock production through rising temperatures, erratic rainfall, prolonged droughts, and increased pest and disease outbreaks. These challenges intensify food insecurity, particularly for smallholder farmers and pastoralists who rely on climate-sensitive [...] Read more.
Climate change poses a significant threat to Ethiopian agriculture, impacting both cereal and livestock production through rising temperatures, erratic rainfall, prolonged droughts, and increased pest and disease outbreaks. These challenges intensify food insecurity, particularly for smallholder farmers and pastoralists who rely on climate-sensitive agricultural systems. This systematic review aims to synthesize the impacts of climate change on Ethiopian agriculture, with a specific focus on cereal production and livestock feed quality, while exploring effective adaptation strategies that can support resilience in the sector. The review synthesizes 50 peer-reviewed publications (2020–2024) from the Climate Change Effects on Food Security project, which supports young African academics and Higher Education Institutions (HEIs) in addressing Sustainable Development Goals (SDGs). Using PRISMA guidelines, the review assesses climate change impacts on major cereal crops and livestock feed in Ethiopia and explores adaptation strategies. Over the past 30 years, Ethiopia has experienced rising temperatures (0.3–0.66 °C), with future projections indicating increases of 0.6–0.8 °C per decade resulting in more frequent and severe droughts, floods, and landslides. These shifts have led to declining yields of wheat, maize, and barley, shrinking arable land, and deteriorating feed quality and water availability, severely affecting livestock health and productivity. The study identifies key on-the-ground adaptation strategies, including adjusted planting dates, crop diversification, drought-tolerant varieties, soil and water conservation, agroforestry, supplemental irrigation, and integrated fertilizer use. Livestock adaptations include improved breeding practices, fodder enhancement using legumes and local browse species, and seasonal climate forecasting. These results have significant practical implications: they offer a robust evidence base for policymakers, extension agents, and development practitioners to design and implement targeted, context-specific adaptation strategies. Moreover, the findings support the integration of climate resilience into national agricultural policies and food security planning. The Climate Change Effects on Food Security project’s role in generating scientific knowledge and fostering interdisciplinary collaboration is vital for building institutional and human capacity to confront climate challenges. Ultimately, this review contributes actionable insights for promoting sustainable, climate-resilient agriculture across Ethiopia. Full article
Show Figures

Figure 1

17 pages, 2927 KiB  
Article
Long-Term Film Mulching with Manure Amendment Drives Trade-Offs Between Spring Maize Nutrient Uptake and Topsoil Carbon Stability on the Loess Plateau
by Fangfang Zhang, Kai Liu, Qilong Song, Linjuan Wang, Renshan Li, Kongyang Wu, Jianming Han and Shiqing Li
Agronomy 2025, 15(6), 1352; https://doi.org/10.3390/agronomy15061352 - 31 May 2025
Cited by 1 | Viewed by 491
Abstract
Film mulching and gravel mulching are effective methods for increasing crop yields in Northwest China but exacerbate soil organic carbon (SOC) mineralisation. Manure amendment is a viable method for offsetting carbon (C) losses from mulching. SOC stability is a key factor in determining [...] Read more.
Film mulching and gravel mulching are effective methods for increasing crop yields in Northwest China but exacerbate soil organic carbon (SOC) mineralisation. Manure amendment is a viable method for offsetting carbon (C) losses from mulching. SOC stability is a key factor in determining the nutrient supply capacity of soils, as it affects the C sources available to microorganisms. However, the synergistic effects of film mulching and manure amendment on SOC stability and crop nutrient uptake are still unclear. Therefore, four treatments—no mulching (CK), gravel mulching (GM), film mulching (FM), and film mulching with manure amendment (FCM)—were established on the Loess Plateau. Experiments were conducted to measure plant and grain nitrogen (N), phosphorus (P), potassium (K) uptake, SOC, labile organic C fractions (LOCFs), stability-based organic C fractions (SOCFs), and the C management index (CMI) in 2019 and 2020. The results showed that the FM and FCM treatments significantly improved crop dry matter accumulation in both years compared to the control. The FCM treatment significantly increased the two-year NPK averages of plants to 44.9%, 50.7%, and 54.5% and significantly increased those of grains to 46.7%, 58.2%, and 30.4%. The FCM treatment significantly increased all LOCFs, water solution C (WSC), hot-water-extractable C (HWC), permanganate oxidisable C (POXC), and particulate organic C (POC) in the topsoil (0–20 cm) in both years. The fractions of the active C pool (AP) in the SOCFs, namely, very labile C (CVL) and labile C (CL), were significantly increased, suggesting that the FCM treatment significantly decreased C stability in the topsoil. The sensitivity index showed that, among all SOC fractions, POC (21.5–72.9%) and less labile C (CLL) (20.8–483.8%) were the most sensitive fractions of LOCFs and SOCFs compared to SOC (1.93–35.8%). A random forest analysis showed that most labile C fractions and the CMI significantly contributed to crop N, P, and K uptake, especially POXC to crop N uptake, the CMI to crop P uptake, and the AP to crop K uptake. It was concluded that the FCM treatment synergistically enhanced SOC lability, crop NPK uptake, and labile C fractions, especially POXC, the AP, and the CMI, which serve as robust indicators for guiding precision nutrient management in semi-arid croplands. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

23 pages, 16269 KiB  
Article
Development of Eco-Friendly Date Palm Biomass-Based Hydrogels for Enhanced Water Retention in Soil
by Faisal S. Alsubaie, Mouyed Srdar, Osama Fayraa, Faris M. Alsulami, Feras Omran and Khalid A. Alamry
Gels 2025, 11(5), 349; https://doi.org/10.3390/gels11050349 - 8 May 2025
Viewed by 1064
Abstract
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. [...] Read more.
The growth of plants highly depends on the soil’s water availability and properties. Hydrogels (HGs) have been used for decades to enhance soil water retention, whereas developing eco-friendly and sustainable HGs for agricultural applications is still necessary to ensure water and food security. In this study, renewable and cost-effective HGs were prepared from all-lignocellulose fibers of date palm biomass after carboxymethylation followed by citric acid (CA) crosslinking. HGs showed high equilibrium swelling capacity (EWC%), even in salty media, whereas purified HGs showed about 700–400 EWC% in deionized water. Further, HGs’ effect on germination was studied on Chico III tomato, mint, Basilico red, and chia seeds. The results revealed that HGs enhanced the soil properties, with taller and healthier plants observed in HG-amended soil. FTIR, thermal analysis, and microscope imaging were utilized to evaluate HGs’ and raw materials’ characteristics. The findings in this study support the idea that all-lignocellulose could be used for HG production without separation. Full article
Show Figures

Graphical abstract

Back to TopTop