Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (148)

Search Parameters:
Keywords = planetary boundary layer (PBL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 16060 KiB  
Article
Synergic Lidar Observations of Ozone Episodes and Transport During 2023 Summer AGES+ Campaign in NYC Region
by Dingdong Li, Yonghua Wu, Thomas Ely, Thomas Legbandt and Fred Moshary
Remote Sens. 2025, 17(13), 2303; https://doi.org/10.3390/rs17132303 - 4 Jul 2025
Viewed by 385
Abstract
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island [...] Read more.
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island Sound (LIS) areas. The results highlight significant ozone formation within the planetary boundary layer (PBL) and the concurrent transport of ozone/aerosol plumes aloft and mixing into the PBL during 26–28 July 2023. Especially, 26 July experienced the highest ozone concentration within the PBL during the three-day ozone episode despite having a lower temperature than the following two days. In addition, the onset of the afternoon sea breeze contributed to increased ozone levels in the PBL. A mobile ozone DIAL was also deployed at Columbia University’s Lamont–Doherty Earth Observatory (LDEO) in Palisades, NY, 29 km north of NYC, from 11 August to 8 September 2023. A notable high-ozone episode was observed by both ozone DIALs at the CCNY and the LDEO site during an unusual heatwave event in early September. On 7 September, the peak ozone concentration at the LDEO reached 120 ppb, exceeding the ozone levels observed in NYC. This enhancement was associated with urban plume transport, as indicated by wind lidar measurements, the HRRR (High-Resolution Rapid Refresh) model, and the Copernicus Sentinel-5 TROPOMI (TROPOspheric Monitoring Instrument) tropospheric column NO2 product. The results also show that, during both heatwave events, those days with slow southeast to southwest winds experienced significantly higher ozone pollution. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

22 pages, 6138 KiB  
Article
Simulating Near-Surface Winds in Europe with the WRF Model: Assessing Parameterization Sensitivity Under Extreme Wind Conditions
by Minkyu Lee, Donggun Oh, Jin-Young Kim and Chang Ki Kim
Atmosphere 2025, 16(6), 665; https://doi.org/10.3390/atmos16060665 - 31 May 2025
Viewed by 381
Abstract
Accurately simulating near-surface wind speeds is indispensable for wind energy development, particularly under extreme weather conditions. This study utilizes the Weather Research and Forecasting (WRF) model with a 6 km resolution to evaluate 80 m wind speed simulations over Europe, using the ECMWF [...] Read more.
Accurately simulating near-surface wind speeds is indispensable for wind energy development, particularly under extreme weather conditions. This study utilizes the Weather Research and Forecasting (WRF) model with a 6 km resolution to evaluate 80 m wind speed simulations over Europe, using the ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis version 5 (ERA5) as initial and lateral boundary conditions. Two cases were analyzed: a normal case with relatively weak winds, and an extreme case with intense cyclonic activity over 7 days, focusing on offshore wind farm regions and validated against Forschungsplattformen in Nord- und Ostsee (FINO) observational data. Sensitivity experiments were conducted by modifying key physical parameterizations associated with wind simulation to assess their impact on accuracy. Results reveal that while the model realistically captured temporal wind speed variations, errors were significantly amplified in extreme cases, with overestimation in weak wind regimes and underestimation in strong winds (approximately 1–3 m/s). The Asymmetrical Convective Model 2 (ACM2) planetary boundary layer (PBL) scheme demonstrated superior performance in extreme cases, while there were no significant differences among experiments under normal cases. These findings emphasize the critical role of physical parameterizations and the need for improved modeling approaches under extreme wind conditions. This research contributes to developing reliable wind speed simulations, supporting the operational stability of wind energy systems. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 8847 KiB  
Article
Characteristics of Eddy Dissipation Rates in Atmosphere Boundary Layer Using Doppler Lidar
by Yufei Chu, Guo Lin, Min Deng and Zhien Wang
Remote Sens. 2025, 17(9), 1652; https://doi.org/10.3390/rs17091652 - 7 May 2025
Viewed by 685
Abstract
The eddy dissipation rate (EDR, or turbulence dissipation rate) is a crucial parameter in the study of the atmospheric boundary layer (ABL). However, the existing Doppler lidar-based estimates of EDR seldom offer long-term comparisons that span the entire ABL. Building upon prior research [...] Read more.
The eddy dissipation rate (EDR, or turbulence dissipation rate) is a crucial parameter in the study of the atmospheric boundary layer (ABL). However, the existing Doppler lidar-based estimates of EDR seldom offer long-term comparisons that span the entire ABL. Building upon prior research utilizing Doppler lidar wind-field data, we optimized the EDR retrieval algorithm using a genetic adaptive approach. The newly developed algorithm demonstrates enhanced accuracy in EDR estimation. The daily evolution of EDR reveals a distinct diurnal pattern in its variation. A detailed four consecutive days study of turbulence generated via low-level jets (LLJs) indicated that EDR driven by heat flux (~10−2 m2/s3) is significantly stronger than that produced through wind shear (~10−3 m2/s3). Subsequently, we examined seasonal variations in EDR at different mixing layer heights (MLH, Zi): elevated EDR values in summer (~7 × 10−3 m2/s3 at 0.1Zi) contrasted with reduced levels in winter (~6 × 10−4 m2/s3 at 0.1Zi). In the early morning, EDR decreases with height for 1 magnitude, while in later stages, it remains relatively stable within 0.1 order of magnitude across 0.1Zi to 0.9Zi. Notably, the EDR during DJF exceeds that of MAM and SON in the afternoon. This suggests that ML turbulence is not solely dependent on surface fluxes (SHF + LHF) but may also be influenced by MLH. A lower MLH (smaller volume), even with reduced surface fluxes, could potentially result in a stronger EDR. Finally, we compared the evolution of the EDR and MLH in the boundary layer using Doppler lidar data from ARM sites and the PBL (Planetary Boundary Layer) Moving Active Profiling System (PBLMAPS) Airborne Doppler Lidar (ADL). The results show that the vertical wind data exhibit strong consistency (R = 0.96) when the ADL is positioned near ARM Southern Great Plains (SGP) sites C1 or E37. The ADL’s mobility and flexibility provide significant advantages for future field experiments, particularly in challenging environments such as mountainous or complex terrains. This study not only highlights the potential of utilizing Doppler lidar alone for EDR calculations but also extensively explores the development patterns of EDR within the ABL. Full article
Show Figures

Figure 1

25 pages, 2706 KiB  
Article
Spatiotemporal Analysis of Air Pollution and Climate Change Effects on Urban Green Spaces in Bucharest Metropolis
by Maria Zoran, Dan Savastru, Marina Tautan, Daniel Tenciu and Alexandru Stanciu
Atmosphere 2025, 16(5), 553; https://doi.org/10.3390/atmos16050553 - 7 May 2025
Viewed by 736
Abstract
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban [...] Read more.
Being an essential issue in global climate warming, the response of urban green spaces to air pollution and climate variability because of rapid urbanization has become an increasing concern at both the local and global levels. This study explored the response of urban vegetation to air pollution and climate variability in the Bucharest metropolis in Romania from a spatiotemporal perspective during 2000–2024, with a focus on the 2020–2024 period. Through the synergy of time series in situ air pollution and climate data, and derived vegetation biophysical variables from MODIS Terra/Aqua satellite data, this study applied statistical regression, correlation, and linear trend analysis to assess linear relationships between variables and their pairwise associations. Green spaces were measured with the MODIS normalized difference vegetation index (NDVI), leaf area index (LAI), photosynthetically active radiation (FPAR), evapotranspiration (ET), and net primary production (NPP), which capture the complex characteristics of urban vegetation systems (gardens, street trees, parks, and forests), periurban forests, and agricultural areas. For both the Bucharest center (6.5 km × 6.5 km) and metropolitan (40.5 km × 40.5 km) test areas, during the five-year investigated period, this study found negative correlations of the NDVI with ground-level concentrations of particulate matter in two size fractions, PM2.5 (city center r = −0.29; p < 0.01, and metropolitan r = −0.39; p < 0.01) and PM10 (city center r = −0.58; p < 0.01, and metropolitan r = −0.56; p < 0.01), as well as between the NDVI and gaseous air pollutants (nitrogen dioxide—NO2, sulfur dioxide—SO2, and carbon monoxide—CO. Also, negative correlations between NDVI and climate parameters, air relative humidity (RH), and land surface albedo (LSA) were observed. These results show the potential of urban green to improve air quality through air pollutant deposition, retention, and alteration of vegetation health, particularly during dry seasons and hot summers. For the same period of analysis, positive correlations between the NDVI and solar surface irradiance (SI) and planetary boundary layer height (PBL) were recorded. Because of the summer season’s (June–August) increase in ground-level ozone, significant negative correlations with the NDVI (r = −0.51, p < 0.01) were found for Bucharest city center and (r = −76; p < 0.01) for the metropolitan area, which may explain the degraded or devitalized vegetation under high ozone levels. Also, during hot summer seasons in the 2020–2024 period, this research reported negative correlations between air temperature at 2 m height (TA) and the NDVI for both the Bucharest city center (r = −0.84; p < 0.01) and metropolitan scale (r = −0.90; p < 0.01), as well as negative correlations between the land surface temperature (LST) and the NDVI for Bucharest (city center r = −0.29; p< 0.01) and the metropolitan area (r = −0.68, p < 0.01). During summer seasons, positive correlations between ET and climate parameters TA (r = 0.91; p < 0.01), SI (r = 0.91; p < 0.01), relative humidity RH (r = 0.65; p < 0.01), and NDVI (r = 0.83; p < 0.01) are associated with the cooling effects of urban vegetation, showing that a higher vegetation density is associated with lower air and land surface temperatures. The negative correlation between ET and LST (r = −0.92; p < 0.01) explains the imprint of evapotranspiration in the diurnal variations of LST in contrast with TA. The decreasing trend of NPP over 24 years highlighted the feedback response of vegetation to air pollution and climate warming. For future green cities, the results of this study contribute to the development of advanced strategies for urban vegetation protection and better mitigation of air quality under an increased frequency of extreme climate events. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

18 pages, 3381 KiB  
Article
Sea Breeze-Driven Variations in Planetary Boundary Layer Height over Barrow: Insights from Meteorological and Lidar Observations
by Hui Li, Wei Gong, Boming Liu, Yingying Ma, Shikuan Jin, Weiyan Wang, Ruonan Fan, Shuailong Jiang, Yujie Wang and Zhe Tong
Remote Sens. 2025, 17(9), 1633; https://doi.org/10.3390/rs17091633 - 5 May 2025
Viewed by 653
Abstract
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from [...] Read more.
The planetary boundary layer height (PBLH) in coastal Arctic regions is influenced by sea breeze circulation. However, the specific mechanisms through which sea breeze affects PBLH evolution remain insufficiently explored. This study uses meteorological data, micro-pulse lidar (MPL) data, and sounding profiles from 2014 to 2021 to investigate the annual and polar day PBLH evolution driven by sea breezes in the Barrow region of Alaska, as well as the specific mechanisms. The results show that sea breeze events significantly suppress PBLH, especially during the polar day, when prolonged solar radiation intensifies the thermal contrast between land and ocean. The cold, moist sea breeze stabilizes the atmospheric conditions, reducing net radiation and sensible heat flux. All these factors inhibit turbulent mixing and PBLH development. Lidar and sounding analyses further reveal that PBLH is lower during sea breeze events compared to non-sea-breeze conditions, with the peak of its probability density distribution occurring at a lower PBLH range. The variable importance in projection (VIP) analysis identifies relative humidity (VIP = 1.95) and temperature (VIP = 1.1) as the primary factors controlling PBLH, highlighting the influence of atmospheric stability in regulating PBLH. These findings emphasize the crucial role of sea breeze in modulating PBL dynamics in the Arctic, with significant implications for improving climate models and studies on pollutant dispersion in polar regions. Full article
Show Figures

Figure 1

25 pages, 18349 KiB  
Article
Surface-Dependent Meteorological Responses to a Taklimakan Dust Event During Summer near the Northern Slope of the Tibetan Plateau
by Binrui Wang, Hongyu Ji, Zhida Zhang, Jiening Liang, Lei Zhang, Mengqi Li, Rui Qiu, Hongjing Luo, Weiming An, Pengfei Tian and Mansur O. Amonov
Remote Sens. 2025, 17(9), 1561; https://doi.org/10.3390/rs17091561 - 28 Apr 2025
Viewed by 491
Abstract
The northern slope of the Tibetan Plateau (TP) is the crucial affected area for dust originating from the Taklimakan Desert (TD). However, few studies have focused on the meteorological element responses to TD dust over different surface types near the TP. Satellite data [...] Read more.
The northern slope of the Tibetan Plateau (TP) is the crucial affected area for dust originating from the Taklimakan Desert (TD). However, few studies have focused on the meteorological element responses to TD dust over different surface types near the TP. Satellite data and the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) were used to analyze the dust being transported from the TD to the TP and its effect from 30 July to 2 August 2016. In the TD, the middle-upper dust layer weakened the solar radiation reaching the lower dust layer, which reduced the temperature within the planetary boundary layer (PBL) during daytime. At night, the dust’s thermal preservation effect increased temperatures within the PBL and decreased temperatures at approximately 0.5 to 2.5 km above PBL. In the TP without snow cover, dust concentration was one-fifth of the TD, while the cooling layer intensity was comparable to the TD. However, within the PBL, the lower concentration and thickness of dust allowed dust to heat atmospheric continuously throughout the day. In the TP with snow cover, dust diminished planetary albedo, elevating temperatures above 6 km, hastening snow melting, which absorbed latent heat and increased the atmospheric water vapor content, consequently decreasing temperatures below 6 km. Surface meteorological element responses to dust varied significantly across different surface types. In the TD, 2 m temperature (T2) decreased by 0.4 °C during daytime, with the opposite nighttime variation. In the TP without snow cover, T2 was predominantly warming. In the snow-covered TP, T2 decreased throughout the day, with a maximum cooling of 1.12 °C and decreased PBL height by up to 258 m. Additionally, a supplementary simulation of a dust event from 17 June to 19 June 2016 further validated our findings. The meteorological elements response to dust is significantly affected by the dust concentration, thickness, and surface type, with significant day–night differences, suggesting that surface types and dust distribution should be considered in dust effect studies to improve the accuracy of climate predictions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

20 pages, 40338 KiB  
Article
Evaluation of Different Methods for Retrieving Temperature and Humidity Profiles in the Lower Atmosphere Using the Atmospheric Sounder Spectrometer by Infrared Spectral Technology
by Yue Wang, Wei Xiong, Hanhan Ye, Hailiang Shi, Xianhua Wang, Chao Li, Shichao Wu and Chen Cheng
Remote Sens. 2025, 17(8), 1440; https://doi.org/10.3390/rs17081440 - 17 Apr 2025
Viewed by 387
Abstract
The temperature and humidity profiles within the planetary boundary layer (PBL) are crucial for Earth’s climate research. The Atmospheric Sounder Spectrometer by Infrared Spectral Technology (ASSIST) measures downward thermal radiation in the atmosphere with high temporal and spectral resolution continuously during day and [...] Read more.
The temperature and humidity profiles within the planetary boundary layer (PBL) are crucial for Earth’s climate research. The Atmospheric Sounder Spectrometer by Infrared Spectral Technology (ASSIST) measures downward thermal radiation in the atmosphere with high temporal and spectral resolution continuously during day and night. The physics-based retrieval method, utilizing iterative optimization, can obtain solutions that align with the true atmospheric state. However, the retrieval is typically an ill-posed problem and is affected by noise, necessitating the introduction of regularization. To achieve high-precision detection, a systematic evaluation was conducted on the retrieval performance of temperature and humidity profiles using ASSIST by regularization methods based on the Gauss–Newton framework, which include Fixed regularization factor (FR), L-Curve (LC), Generalized Cross-Validation (GCV), Maximum Likelihood Estimation (MLE), and Iterative Regularized Gauss–Newton (IRGN) methods, and the Levenberg–Marquardt (LM) method based on a damping least squares strategy. A five-day validation experiment was conducted under clear-sky conditions at the Anqing radiosonde station in China. The results indicate that for temperature profile retrieval, the IRGN method demonstrates superior performance, particularly below 1.5 km altitude, where the mean BIAS, mean RMSE, mean Degrees of Freedom for Signal (DFS), and mean residual reach 0.42 K, 0.80 K, 3.37, and 3.01×1013 W/cm2 sr cm1, respectively. In contrast, other regularization methods exhibit over-regularization, leading to degraded information content. For humidity profile retrieval, below 1.5 km altitude, the LM method outperforms all regularization-based methods, with the mean BIAS, mean RMSE, mean DFS, and mean residual of 3.65%, 5.62%, 2.05, and 4.36×1012 W/cm2 sr cm1, respectively. Conversely, other regularization methods exhibit strong prior dependence, causing retrieval to converge results toward the initial guess. Full article
Show Figures

Figure 1

27 pages, 10720 KiB  
Article
Evaluation of the Sensitivity of PBL and SGS Treatments in Different Flow Fields Using the WRF-LES at Perdigão
by Erkan Yılmaz, Şükran Sibel Menteş and Gokhan Kirkil
Energies 2025, 18(6), 1372; https://doi.org/10.3390/en18061372 - 11 Mar 2025
Viewed by 693
Abstract
This study investigates the effectiveness of the large eddy simulation version of the Weather Research and Forecasting model (WRF-LES) in reproducing the atmospheric conditions observed during a Perdigão field experiment. When comparing the results of the WRF-LES with observations, using LES settings can [...] Read more.
This study investigates the effectiveness of the large eddy simulation version of the Weather Research and Forecasting model (WRF-LES) in reproducing the atmospheric conditions observed during a Perdigão field experiment. When comparing the results of the WRF-LES with observations, using LES settings can accurately represent both large-scale events and the specific characteristics of atmospheric circulation at a small scale. Six sensitivity experiments are performed to evaluate the impact of different planetary boundary layer (PBL) schemes, including the MYNN, YSU, and Shin and Hong (SH) PBL models, as well as large eddy simulation (LES) with Smagorinsky (SMAG), a 1.5-order turbulence kinetic energy closure (TKE) model, and nonlinear backscatter and anisotropy (NBA) subgrid-scale (SGS) stress models. Two case studies are selected to be representative of flow conditions. In the northeastern flow, the MYNN NBA simulation yields the best result at a height of 100 m with an underestimation of 3.4%, despite SH generally producing better results than PBL schemes. In the southwestern flow, the MYNN TKE simulation at station Mast 29 is the best result, with an underestimation of 1.2%. The choice of SGS models over complex terrain affects wind field features in the boundary layer more than above the boundary layer. The NBA model generally produces better results in complex terrain when compared to other SGS models. In general, the WRF-LES can model the observed flow with high-resolution topographic maps in complex terrain with different SGS models for both flow regimes. Full article
(This article belongs to the Special Issue Computational and Experimental Fluid Dynamics for Wind Energy)
Show Figures

Figure 1

24 pages, 7022 KiB  
Article
Evaluation of the Sensitivity of the Weather Research and Forecasting Model to Changes in Physical Parameterizations During a Torrential Precipitation Event of the El Niño Costero 2017 in Peru
by Alejandro Sánchez Oliva, Matilde García-Valdecasas Ojeda and Raúl Arasa Agudo
Water 2025, 17(2), 209; https://doi.org/10.3390/w17020209 - 14 Jan 2025
Cited by 2 | Viewed by 1065
Abstract
This study evaluates the sensitivity of the Weather Research and Forecasting (WRF-ARW) model in its version 4.3.3 during different experiments on a torrential precipitation event associated with the 2017 El Niño Costero in Peru. The results are compared with two reference datasets: precipitation [...] Read more.
This study evaluates the sensitivity of the Weather Research and Forecasting (WRF-ARW) model in its version 4.3.3 during different experiments on a torrential precipitation event associated with the 2017 El Niño Costero in Peru. The results are compared with two reference datasets: precipitation estimations from CHIRPS satellite data and SENAMHI meteorological station values. The event, which had significant economic and social impacts, is simulated using two nested domains with resolutions of 9 km (d01) and 3 km (d02). A total of 22 experiments are conducted, resulting from the combination of two planetary boundary layer (PBL) schemes: Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ), with five cumulus parameterization schemes: Betts–Miller–Janjic (BMJ), Grell–Devenyi (GD), Grell–Freitas (GF), Kain–Fritsch (KF), and New Tiedtke (NT). Additionally, the effect of turning off cumulus parameterization in the inner domain (d02) or in both (d01 and d02) is explored. The results show that the YSU scheme generally provides better results than the MYJ scheme in detecting the precipitation patterns observed during the event. Furthermore, it is concluded that turning off cumulus parameterization in both domains produces satisfactory results for certain regions when it is combined with the YSU PBL scheme. However, the KF cumulus parameterization is considered the most effective for intense precipitation events in this region, although it tends to overestimate precipitation in high mountain areas. In contrast, for lighter rains, combinations of the YSU PBL scheme with the GD or NT parameterization show a superior performance. It is worth nothing that for all experiments here used, there is a clear underestimation in terms of precipitation, except in high mountain regions, where the model tends to overestimate rainfall. Full article
Show Figures

Figure 1

21 pages, 8974 KiB  
Article
Seasonal Analysis of Planetary Boundary Layer and Turbulence in Warsaw, Poland Through Lidar and LES Simulations
by Rayonil G. Carneiro, Maciej Karasewicz, Camilla K. Borges, Lucja Janicka, Dongxiang Wang, Gilberto Fisch and Iwona S. Stachlewska
Remote Sens. 2024, 16(24), 4728; https://doi.org/10.3390/rs16244728 - 18 Dec 2024
Viewed by 1248
Abstract
We analyzed the planetary boundary layer (PBL) characteristics in Warsaw, Poland for a day of summer, autumn, winter, and spring of 2021 by integrating and comparing measured and simulated data. Using remote sensing lidar sensor data, the PBLH was calculated using wavelet covariance [...] Read more.
We analyzed the planetary boundary layer (PBL) characteristics in Warsaw, Poland for a day of summer, autumn, winter, and spring of 2021 by integrating and comparing measured and simulated data. Using remote sensing lidar sensor data, the PBLH was calculated using wavelet covariance transform (WCT) and the gradient method (GM). Also, simulations of turbulent fluxes were performed utilizing the large eddy simulation (LES) from the Parallel Large Eddy Simulation Model (PALM) to better understand how turbulence and convection behave across different seasons in Warsaw. The PBLH diurnal cycles showed pronounced changes in their vertical structure as a function of the season: the winter heights were shallow (~0.7 km), while summer heights were deeper (~1.7 km). The spring and autumn presented transient characteristics of PBLH around 1.0 km. This study is crucial for enhancing urban air quality and climate modeling. The PBLH simulations from PALM showed agreement with the measured data, with an underestimation of approximately 10% in both methods. Through PALM, it was possible to observe that summer exhibited increased convection, enhanced mixing efficiency, and a deeper boundary layer compared to other seasons throughout the daily cycle. Winter has a lower sensible heat flux and little convection throughout the day. Spring and autumn showed intermediate characteristics. In this way, the effectiveness of the applicability of the PALM model to obtain flows within the PBL and their heights is highlighted, because correlations ranged from strong to very strong (r ≥ 0.70). Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

33 pages, 45495 KiB  
Article
Peplospheric Influences on Local Greenhouse Gas and Aerosol Variability at the Lamezia Terme WMO/GAW Regional Station in Calabria, Southern Italy: A Multiparameter Investigation
by Francesco D’Amico, Claudia Roberta Calidonna, Ivano Ammoscato, Daniel Gullì, Luana Malacaria, Salvatore Sinopoli, Giorgia De Benedetto and Teresa Lo Feudo
Sustainability 2024, 16(23), 10175; https://doi.org/10.3390/su162310175 - 21 Nov 2024
Cited by 5 | Viewed by 1068
Abstract
One of the keys towards sustainable policies and advanced air quality monitoring is the detailed assessment of all factors that affect the surface concentrations of greenhouse gases (GHGs) and aerosols. While the development of new atmospheric tracers can pinpoint emission sources, the atmosphere [...] Read more.
One of the keys towards sustainable policies and advanced air quality monitoring is the detailed assessment of all factors that affect the surface concentrations of greenhouse gases (GHGs) and aerosols. While the development of new atmospheric tracers can pinpoint emission sources, the atmosphere itself plays a relevant role even at local scales: Its dynamics can increase, or reduce, surface concentrations of pollutants harmful to human health and the environment. PBL (planetary boundary layer), or peplospheric, variability is known to affect such concentrations. In this study, an unprecedented characterization of PBL cycles and patterns is performed at the WMO/GAW regional coastal site of Lamezia Terme (code: LMT) in Calabria, Southern Italy, in conjunction with the analysis of key GHGs and aerosols. The analysis, accounting for five months of 2024 data, indicates that peplospheric variability and wind regimes influence the concentrations of key GHGs and aerosols. In particular, PBLH (PBL height) patterns have been tested to further influence the surface concentrations of carbon monoxide (CO), black carbon (BC), and particulate matter (PM). This research introduces four distinct wind regimes at LMT: breeze, not complete breeze, eastern synoptic, and western synoptic, each with its peculiar influences on the local transport of gases and aerosols. This research demonstrates that peplosphere monitoring needs to be considered when ensuring optimal air quality in urban and rural areas. Full article
(This article belongs to the Special Issue Sustainable Climate Action for Global Health)
Show Figures

Figure 1

20 pages, 1401 KiB  
Article
Optimal Configuration of Physical Process Parameterization Scheme Combination for Simulating Meteorological Variables in Weather Research and Forecasting Model: Based on Orthogonal Experimental Design and Comprehensive Evaluation Method
by Zhengming Li, Hanqing Wang, Xinyu Liu and Da Yuan
Atmosphere 2024, 15(11), 1385; https://doi.org/10.3390/atmos15111385 - 17 Nov 2024
Viewed by 1228
Abstract
The weather research and forecasting (WRF) model is frequently used to investigate the meteorological field around nuclear installations. The configuration of physical process parameterization schemes in the WRF model has a significant impact on the accuracy of the simulation results. Consequently, carrying out [...] Read more.
The weather research and forecasting (WRF) model is frequently used to investigate the meteorological field around nuclear installations. The configuration of physical process parameterization schemes in the WRF model has a significant impact on the accuracy of the simulation results. Consequently, carrying out a pre-experiment to quickly obtain the optimal combination of parameterization schemes is essential before conducting meteorological parameter research. To obtain the optimal combination of physical process parameterization schemes from the planetary boundary layer (PBL), land surface (LSF), microphysical (MP), long-wave (LW), and short-wave (SW) radiation processes of the WRF model for simulating the near-surface meteorological variables near a nuclear power plant in Sanshan Town, Fuqing City, Fujian Province, China on 4 June 2019 were observed. Orthogonal experimental design (OED), a comprehensive evaluation method based on the CRiteria Import Through Intercriteria Correlation (CRITIC) weight analysis, and comprehensive balance method were employed for the first time to conduct the research. The sensitivity of meteorological variables to physical processes was first discussed. The findings revealed that the PBL scheme configuration had a profound impact on simulating wind fields. Furthermore, the LSF scheme configuration had a significant influence on simulating near-surface temperature and relative humidity, which was much greater than that of other physical processes. In addition, the choice of the radiation scheme had a significant impact on how the temperature was distributed close to the ground and how the wind field was simulated. Furthermore, the configuration of the MP scheme was found to exert a certain influence on the simulation of relative humidity; however, it demonstrated a weak influence on other meteorological variables. Secondly, The MYNN3 scheme for PBL process, the NoahMP scheme for LSF process, the WSM5 scheme for MP process, the RRTMG scheme for LW process, and the Dudhia scheme for SW process are found to be the comprehensive optimal physical process parameterization scheme combination for simulating meteorological variables in the research area selected in this study. As evident from the findings, the use of the OED method to obtain the combinations of the optimal physical process parameterization scheme could successfully reproduce the wind field, temperature, and relative humidity in the current study. Thus, this method appears to be highly reliable and effective for use in the WRF models to explore the optimal combinations of the physical process parameterization scheme, which could provide theoretical support to quickly analyzing accurate meteorological field data for longer periods and contribute to deeply investigating the migration and diffusion behavior of airborne pollutants in the atmosphere. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

15 pages, 6823 KiB  
Technical Note
Investigating Tropical Cyclone Warm Core and Boundary Layer Structures with Constellation Observing System for Meteorology, Ionosphere, and Climate 2 Radio Occultation Data
by Xiaoxu Qi, Shengpeng Yang and Li He
Remote Sens. 2024, 16(22), 4257; https://doi.org/10.3390/rs16224257 - 15 Nov 2024
Viewed by 874
Abstract
The Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2) collects data covering latitudes primarily between 40 degrees north and south, providing abundant data for tropical cyclone (TC) research. The radio occultation data provide valuable information on the boundary layer. However, quality [...] Read more.
The Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2) collects data covering latitudes primarily between 40 degrees north and south, providing abundant data for tropical cyclone (TC) research. The radio occultation data provide valuable information on the boundary layer. However, quality control of the data within the boundary layer remains a challenging issue. The aim of this study is to obtain a more accurate COSMIC-2 radio occultation (RO) dataset through quality control (QC) and use this dataset to validate warm core structures and explore the planetary boundary layer (PBL) structures of TCs. In this study, COSMIC-2 data are used to analyze the distribution of the relative local spectral width (LSW) and the confidence parameter characterizing the random error of the bending angle. An LSW less than 20% is set as a data QC threshold, and the warm core and PBL composite structures of TCs at three intensities in the Northwest Pacific Ocean are investigated. We reproduce the warm core intensity and warm core height characteristics of TCs. In the radial direction of the typhoon eyewall, the impact height of the PBL increases from 3.45 km to 4 km, with the tropopause ranging from 160 hPa to 100 hPa. At the bottom of the troposphere, the variations in the positive and negative bias between the RO-detected and background field bending angles correspond well to the PBL heights, and the variations in the positive bias between the RO-detected and background field refractivity reach 14%. This research provides an effective QC method and reveals that the bending angle is sensitive to the PBL height. Full article
Show Figures

Graphical abstract

22 pages, 6213 KiB  
Article
Simulation of the Neutral Atmospheric Flow Using Multiscale Modeling: Comparative Studies for SimpleFoam and Fluent Solver
by Zihan Zhao, Lingxiao Tang and Yiqing Xiao
Atmosphere 2024, 15(10), 1259; https://doi.org/10.3390/atmos15101259 - 21 Oct 2024
Cited by 1 | Viewed by 1024
Abstract
The reproduced planetary boundary layer (PBL) wind is commonly applied in downscaled simulations using commercial CFD codes with Reynolds-averaged Navier–Stokes (RANS) turbulence modeling. When using the turbulent inlets calculated by numerical weather prediction models (NWP), adjustments of the turbulence eddy viscosity closures and [...] Read more.
The reproduced planetary boundary layer (PBL) wind is commonly applied in downscaled simulations using commercial CFD codes with Reynolds-averaged Navier–Stokes (RANS) turbulence modeling. When using the turbulent inlets calculated by numerical weather prediction models (NWP), adjustments of the turbulence eddy viscosity closures and wall function formulations are concerned with maintaining the fully developed wind profiles specified at the inlet of CFD domains. The impact of these related configurations is worth discussing in engineering applications, especially when commercial codes restrict the internal modifications. This study evaluates the numerical performances of open-source OpenFOAM 2.3.0 and commercial Fluent 17.2 codes as supplementary scientific comparisons. This contribution focuses on the modified turbulence closures to incorporate turbulent profiles produced from mesoscale PBL parameterizations and the modified wall treatments relating to the roughness length. The near-ground flow features are evaluated by selecting the flat terrains and the classical Askervein benchmark case. The improvement in near-ground wind flow under the downscaled framework shows satisfactory performance in the open-source CFD platform. This contributes to engineers realizing the micro-siting of wind turbines and quantifying terrain-induced speed-up phenomena under the scope of wind-resistant design. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 3270 KiB  
Article
The Effects of Air Quality and the Impact of Climate Conditions on the First COVID-19 Wave in Wuhan and Four European Metropolitan Regions
by Marina Tautan, Maria Zoran, Roxana Radvan, Dan Savastru, Daniel Tenciu and Alexandru Stanciu
Atmosphere 2024, 15(10), 1230; https://doi.org/10.3390/atmos15101230 - 15 Oct 2024
Cited by 1 | Viewed by 1476
Abstract
This paper investigates the impact of air quality and climate variability during the first wave of COVID-19 associated with accelerated transmission and lethality in Wuhan in China and four European metropolises (Milan, Madrid, London, and Bucharest). For the period 1 January–15 June 2020, [...] Read more.
This paper investigates the impact of air quality and climate variability during the first wave of COVID-19 associated with accelerated transmission and lethality in Wuhan in China and four European metropolises (Milan, Madrid, London, and Bucharest). For the period 1 January–15 June 2020, including the COVID-19 pre-lockdown, lockdown, and beyond periods, this study used a synergy of in situ and derived satellite time-series data analyses, investigating the daily average inhalable gaseous pollutants ozone (O3), nitrogen dioxide (NO2), and particulate matter in two size fractions (PM2.5 and PM10) together with the Air Quality Index (AQI), total Aerosol Optical Depth (AOD) at 550 nm, and climate variables (air temperature at 2 m height, relative humidity, wind speed, and Planetary Boundary Layer height). Applied statistical methods and cross-correlation tests involving multiple datasets of the main air pollutants (inhalable PM2.5 and PM10 and NO2), AQI, and aerosol loading AOD revealed a direct positive correlation with the spread and severity of COVID-19. Like in other cities worldwide, during the first-wave COVID-19 lockdown, due to the implemented restrictions on human-related emissions, there was a significant decrease in most air pollutant concentrations (PM2.5, PM10, and NO2), AQI, and AOD but a high increase in ground-level O3 in all selected metropolises. Also, this study found negative correlations of daily new COVID-19 cases (DNCs) with surface ozone level, air temperature at 2 m height, Planetary Boundary PBL heights, and wind speed intensity and positive correlations with relative humidity. The findings highlight the differential impacts of pandemic lockdowns on air quality in the investigated metropolises. Full article
Show Figures

Figure 1

Back to TopTop