The Effects of Air Quality and the Impact of Climate Conditions on the First COVID-19 Wave in Wuhan and Four European Metropolitan Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Quality
2.2. Study Test Metropolitan Areas
2.3. Data Used
2.4. Statistical Methods
3. Results and Discussion
3.1. Air Pollutants Impacts on COVID-19 Disease in the Metropolitan Areas
3.1.1. Air Pollutants and Air Quality Index Variability
3.1.2. Aerosol Optical Depth Temporal Pattern in Metropolitan Areas
3.2. Air Pollution and Climate Variability Impact on the First COVID-19 Wave
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, B.; Chen, X.; Rich, S.; Mo, Q.; Yan, H. Dynamics of the coronavirus disease 2019 (COVID-19) epidemic in Wuhan City, Hubei Province and China: A second derivative analysis of the cumulative daily diagnosed cases during the first 85 days. Glob. Health J. 2021, 5, 4–11. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report—51. 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 15 April 2023).
- Liu, H.; Knight, D.W. Short- and long-term destination resilience in Wuhan, China under COVID-19: Differences in scenic spot type and origin market structure. Int. J. Disaster Risk Reduct. 2024, 110, 104614. [Google Scholar] [CrossRef]
- Pullano, G.; Pinotti, F.; Valdano, E.; Boëlle, P.-Y.; Poletto, C.; Colizza, V. Novel coronavirus (2019-nCoV) early-stage importation risk to Europe, January 2020. Euro Surveill. 2020, 25, 2000057. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment—A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Wang, T.; Du, Z.; Zhu, F.; Cao, Z.; An, Y.; Gao, Y.; Jiang, B. Comorbidities and multiorgan injuries in the treatment of COVID-19. Lancet 2020, 395, e52. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef]
- Chen, J.; Hu, H.; Wang, F.; Zhang, M.; Zhou, T.; Yuan, S.; Bai, R.; Chen, N.; Xu, K.; Huang, H. Air quality characteristics in Wuhan (China) during the 2020 COVID-19 pandemic. Environ. Res. 2021, 195, 110879. [Google Scholar] [CrossRef]
- Ma, Y.; Nobile, F.; Marb, A.; Dubrow, R.; Kinney, P.L.; Peters, A.; Stafoggia, M.; Breitner, S.; Chen, K. Air pollution changes due to COVID-19 lockdowns and attributable mortality changes in four countries. Environ. Int. 2024, 187, 108668. [Google Scholar] [CrossRef]
- Shen, S.; He, L.; Chen, W.; Chen, S.; Ma, W. Spatial and Temporal Distribution Characteristics of Ozone Concentration and Source Analysis during the COVID-19 Lockdown Period in Shanghai. Atmosphere 2023, 14, 1563. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Chen, X.; Tang, K.; Qin, Y. Does COVID-19 lockdown matter for air pollution in the short and long run in China? A machine learning approach to policy evaluation. J. Environ. Manag. 2024, 370, 122615. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Taha, B.A.; Al Mashhadany, Y.; Al-Jubouri, Q.; Haider, A.J.; Chaudhary, V.; Apsari, R.; Arsad, N. Uncovering the morphological differences between SARS-CoV-2 and SARS-CoV based on transmission electron microscopy images. Microbes Infect. 2023, 25, 105187. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef]
- Seposo, X.; Ueda, K.; Sugata, S.; Yoshino, A.; Takami, A. Short-term effects of air pollution on daily single- and co-morbidity cardiorespiratory outpatient visits. Sci. Total Environ. 2020, 729, 138934. [Google Scholar] [CrossRef]
- Sugiyama, T.; Ueda, K.; Seposo, X.T.; Nakashima, A.; Kinoshita, M.; Matsumoto, H.; Ikemori, F.; Honda, A.; Takano, H.; Michikawa, T.; et al. Health effects of PM2.5 sources on children’s allergic and respiratory symptoms in Fukuoka. Sci. Total Environ. 2020, 709, 136023. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Feng, B.; Lian, J.; Yu, F.; Zhang, D.; Chen, W.; Wang, Q.; Shen, Y.; Xie, G.; Wang, R.; Teng, Y.; et al. Impact of short-term ambient air pollution exposure on the risk of severe COVID-19. J. Environ. Sci. 2024, 135, 610–618. [Google Scholar] [CrossRef]
- Cohen, J.; Kupferschmidt, K. Countries test tactics in “war” against COVID-19. Science 2020, 367, 1287–1288. [Google Scholar] [CrossRef]
- Romano, S.; Perrone, M.R.; Becagli, S.; Pietrogrande, M.C.; Russo, M.; Caricato, R.; Lionetto, M.G. Ecotoxicity, genotoxicity, and oxidative potential tests of atmospheric PM10 particles. Atmos. Environ. 2020, 221, 117085. [Google Scholar] [CrossRef]
- Bowe, B.; Xie, Y.; Gibson, A.K.; Cai, M.; van Donkelaar, A.; Martin, R.V.; Burnett, R.; Al-Aly, Z. Ambient fine particulate matter air pollution and the risk of hospitalization among COVID-19 positive individuals: Cohort study. Environ. Int. 2021, 154, 106564. [Google Scholar] [CrossRef] [PubMed]
- Zoran, A.M.; Savastru, S.R.; Savastru, M.D.; Tautan, N.M. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 40, 140005. [Google Scholar] [CrossRef] [PubMed]
- Rossnerova, A.; Elzeinova, F.; Chvojkova, I.; Honkova, K.; Sima, M.; Milcova, A.; Pastorkova, A.; Schmuczerova, J.; Rossner, P.; Topinka, J.; et al. Effects of various environments on epigenetic settings and chromosomal damage. Environ. Pollut. 2023, 323, 121290. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Costabile, F.; Gualtieri, M.; Rinaldi, M.; Paglione, M.; Busetto, M.; Di Iulio, G.; Di Liberto, L.; Gherardi, M.; Pelliccioni, A.; et al. Associations between fine particulate matter, gene expression, and promoter methylation in human bronchial epithelial cells exposed within a classroom under air-liquid interface. Environ. Pollut. 2024, 358, 124471. [Google Scholar] [CrossRef]
- Bayram, H.; Konyalilar, N.; Elci, M.A.; Rajabi, H.; Aksoy, G.T.; Mortazavi, D.; Kayalar, Ö.; Dikensoy, Ö.; Taborda-Barata, L.; Viegi, G. Issue 4-Impact of air pollution on COVID-19 mortality and morbidity: An epidemiological and mechanistic review. Pulmonology 2024, 1–14. [Google Scholar] [CrossRef]
- Guan, Y.; Xiao, Y.; Chu, C.; Zhang, N.; Yu, L. Trends and characteristics of ozone and nitrogen dioxide related health impacts in Chinese cities. Ecotoxicol. Environ. Saf. 2022, 241, 113808. [Google Scholar] [CrossRef]
- Bronte, O.; García-García, F.; Lee, D.-J.; Urrutia, I.; Uranga, A.; Nieves, M.; Martínez-Minaya, J.; Quintana, J.; Arostegui, I.; Zalacain, R.; et al. Impact of outdoor air pollution on severity and mortality in COVID-19 pneumonia. Sci. Total Environ. 2023, 894, 164877. [Google Scholar] [CrossRef]
- Aboura, S. The influence of climate factors and government interventions on the COVID-19 pandemic: Evidence from 134 countries. Environ. Res. 2022, 8, 112484. [Google Scholar] [CrossRef]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef]
- Bontempi, E. First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): The case of Lombardy (Italy). Environ. Res. 2020, 186, 109639. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, Q.; Yang, X.; Li, G.; Zhang, J.; Zhou, X.; Jiang, W. Cytotoxicity of the soluble and insoluble fractions of atmospheric fine particulate matter. J. Environ. Sci. 2020, 91, 105–116. [Google Scholar] [CrossRef] [PubMed]
- de Diego-Castell, M.C.; García-López, E.; Álvarez-Gregori, J.A.; Mohedano-Moriano, A.; Criado-Álvarez, J.J.; González-González, J. Enfermedad cardiovascular previa y posterior a la infección por COVID-19. Supervivencia a un año. Medicina de Familia. Emergen 2024, 50, 102090. [Google Scholar]
- Mun, S.-K.; Chang, M.; Hwang, B.S.; Hong, S.J.; Lee, S.Y.; Park, S.J.; Lee, H.-J. Social distancing during the COVID-19 pandemic: Potential impact and correlation with asthma. Heart Lung 2024, 68, 18–22. [Google Scholar] [CrossRef]
- Fröhlich-Nowoisky, J.; Kampf, C.J.; Weber, B.; Huffman, J.A.; Pöhlker, C.; Andreae, M.O.; Lang-Yona, N.; Burrows, S.M.; Gunthe, S.S.; Elbert, W.; et al. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmos. Res. 2016, 182, 346–376. [Google Scholar] [CrossRef]
- Tastassa, A.C.; Sharaby, Y.; Lang-Yona, N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. Sci. Total Environ. 2024, 912, 168478. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, X.; Liu, Q.; Maki, T.; Alam, K.; Wang, Y.; Xue, F.; Tang, S.; Du, P.; Dong, Q.; et al. Bioaerosols in the atmosphere: A comprehensive review on detection methods, concentration and influencing factors. Sci. Total Environ. 2024, 912, 168818. [Google Scholar] [CrossRef]
- Zoran, M.; Savastru, R.; Savastru, D.; Tautan, M.; Tenciu, D. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Microorganisms 2023, 11, 2531. [Google Scholar] [CrossRef]
- Penache, M.C.; Zoran, M. Temporal patterns of surface ozone levels in relation with radon (222Rn) and air quality. AIP Conf. Proc. 2019, 2075, 120021. [Google Scholar] [CrossRef]
- Penache, M.C.; Zoran, M. Seasonal trends of surface carbon monoxide concentrations in relation with air quality. AIP Conf. Proc. 2019, 2075, 130007. [Google Scholar] [CrossRef]
- Burns, J.; Boogaard, H.; Polus, S.; Pfadenhauer, L.; Rohwer, A.; van Erp, A.; Turley, R.; Rehfuess, E. Interventions to reduce ambient air pollution and their effects on health: An abridged Cochrane systematic review. Environ. Int. 2020, 135, 105400. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event. Environ. Sci. Technol. 2014, 48, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Chen, M.; Dong, D.; Xie, S.; Liu, M. Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases. Thorac. Cancer 2020, 11, 505–510. [Google Scholar] [CrossRef]
- Carugno, M.; Dentali, F.; Mathieu, G.; Fontanella, A.; Mariani, J.; Bordini, L.; Milani, G.P.; Consonni, D.; Bonzini, M.; Bollati, V.; et al. PM10 exposure is associated with increased hospitalizations for respiratory syncytial virus bronchiolitis among infants in Lombardy, Italy. Environ. Res. 2018, 166, 452–457. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Qin, Y.M.; Sun, C.Z.; Li, D.; Zhang, H.; Wang, H.Y.; Duan, D. Does urban air pollution have an impact on public health? Empirical evidence from 288 prefecture-level cities in China. Urban Clim. 2023, 51, 101660. [Google Scholar] [CrossRef]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co- factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. [Google Scholar] [CrossRef]
- Khan, F.; Hamid, A.H.; Bari, A.; Tajudin, A.B.A.; Latif, M.T.; Nadzir, M.S.M.; Sahani, M.; Wahab, M.I.A.; Yusup, Y.; Maulud, K.N.A.; et al. Airborne particles in the city center of Kuala Lumpur: Origin, potential driving factors, and deposition flux in human respiratory airways. Sci. Total Environ. 2019, 650 Pt 1, 1195–1206. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and airway disease. Clin. Exp. Allergy 2011, 41, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Moonwiriyaki, A.; Dinsuwannakol, S.; Sontikun, J.; Timpratueang, K.; Muanprasat, C.; Khemawoot, P. Fine particulate matter PM2.5 and its constituent, hexavalent chromium induce acute cytotoxicity in human airway epithelial cells via inflammasome-mediated pyroptosis. Environ. Toxicol. Pharmacol. 2024, 107, 104416. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Samoli, E.; Alessandrini, E.; Cadum, E.; Ostro, B.; Berti, G.; Faustini, A.; Jacquemin, B.; Linares, C.; Pascal, M.; et al. Shortterm associations between fine and coarse particulate matter and hospitalizations in southern Europe: Results from theMED-PARTICLES project. Environ. Health Perspect. 2013, 121, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, X.; Wang, Y.; Wang, Z.; Pang, Y.; He, C.; Liu, F. An unexpected increase in PM2.5 levels in Xi’an during the COVID-19 pandemic restrictions: The interplay of anthropogenic and natural factors. J. Environ. Sci. 2024. [Google Scholar] [CrossRef]
- Wang, Y.; Zu, Y.; Huang, L.; Zhang, H.; Wang, C.; Hu, J. Associations between daily outpatient visits for respiratory diseases and ambient 428 fine particulate matter and ozone levels in Shanghai, China. Environ. Pollut. 2018, 40, 754–763. [Google Scholar] [CrossRef]
- Prabhu, V.; Shridhar, V. Investigation of potential sources, transport pathway, and health risks associated with respirable suspended particulate matter in Dehradun city, situated in the foothills of the Himalayas. Atmos. Pollut. Res. 2019, 10, 187–196. [Google Scholar] [CrossRef]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- Zou, Y.; Jin, C.; Su, Y.; Li, J.; Zhu, B. Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro. Environ. Pollut. 2016, 212, 627–635. [Google Scholar] [CrossRef]
- Yao, M. Bioaerosol: A bridge and opportunity for many scientific research fields. J. Aerosol Sci. 2018, 115, 108–112. [Google Scholar] [CrossRef]
- Yang, W.; Elankumaran, S.; Marr, L.C. Concentrations and size distributions of airborne influenza A viruses measured indoors at a health centre, a day-care centre and on aeroplanes. J. R. Soc. Interface 2011, 8, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Chen, R.; Wang, L.; Meng, X.; Liu, C.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J.; et al. Ambient ozone pollution and daily mortality: A nationwide study in 272 Chinese cities. Environ. Health Perspect. 2017, 125, 117006. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.; Zhang, J.; Andersen, Z.J.; Cruickshank, S.; Møller, P.; Daras, K.; Williams, R.; Topping, D.; Lim, Y.H. Long-term exposure to air pollution and COVID-19 severity: A cohort study in Greater Manchester, United Kingdom. Environ. Pollut. 2023, 327, 121594. [Google Scholar] [CrossRef]
- Sicard, P.; Serra, R.; Rossello, P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ. Res. 2016, 149, 122–144. [Google Scholar] [CrossRef]
- Ding, S.; Wei, Z.; Liu, S.; Zhao, R. Uncovering the evolution of ozone pollution in China: A spatiotemporal characteristics reconstruction from 1980 to 2021. Atmos. Res. 2024, 307, 107472. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Faustini, A.; Rapp, R.; Forastiere, F. Nitrogen dioxide and mortality: Review and meta—Analysis of long-term studies. Eur. Respir. J. 2014, 44, 744–753. [Google Scholar] [CrossRef]
- He, M.Z.; Kinney, P.L.; Li, T.; Chen, C.; Sun, Q.; Ban, J.; Wang, J.; Liu, S.; Goldsmith, J.; Kioumourtzoglou, M.-A. Short- and intermediate-term exposure to NO2 and mortality: A multi-county analysis in China. Environ. Pollut. 2020, 261, 114165. [Google Scholar] [CrossRef]
- EEA. The European Environment State and Outlook; EEA: Luxembourg, 2020; Available online: https://www.eea.europa.eu/soer/2020 (accessed on 6 April 2023).
- Wilson, A.; Reich, B.J.; Nolte, C.G.; Spero, T.L.; Hubbell, B.; Rappold, A.G. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces. J. Expo Sci. Environ. Epidemiol. 2017, 27, 118–124. [Google Scholar] [CrossRef]
- Mele, M.; Magazzino, C.; Schneider, N.; Strezov, V. NO2 levels as a contributing factor to COVID-19 deaths: The first empirical estimate of threshold values. Environ. Res. 2021, 194, 110663. [Google Scholar] [CrossRef]
- Wu, C.-F.; Shen, F.-H.; Li, Y.-R.; Tsao, T.-M.; Tsai, M.-J.; Chen, C.-C.; Hwang, J.-S.; Hsu, S.H.-J.; Chao, H.; Chuang, K.-J.; et al. Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects. Sci. Total Environ. 2016, 569–570, 300–305. [Google Scholar] [CrossRef]
- Xiao, Y.; Lan, G.; Ou, Y.; Zhang, L.; Xia, J. Impact of urbanization on the spatial and temporal evolution of the water system pattern: A study of the Wuhan metropolitan area in China. Ecol. Indic. 2023, 153, 110408. [Google Scholar] [CrossRef]
- EEA. EEA Report. No 10/2019—Air Quality in Europe 2019; EEA: Copenhagen, Denmark, 2019; Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 10 April 2023).
- Núñez-Peiró, M.; Sánchez, C.; González, F.J.N. Hourly evolution of intra-urban temperature variability across the local climate zones. The case of Madrid. Urban Clim. 2021, 39, 100921. [Google Scholar] [CrossRef]
- Zhang, C.; Stevenson, D. Characteristic changes of ozone and its precursors in London during COVID-19 lockdown and the ozone surge reason analysis. Atmos. Environ. 2022, 273, 118980. [Google Scholar] [CrossRef] [PubMed]
- World Population. 2024. Available online: https://worldpopulationreview.com/countries/cities/romania (accessed on 21 July 2024).
- Worldometer Info. 2024. Available online: https://www.worldometers.info/ (accessed on 20 January 2024).
- WHO. 2024. Available online: https://covid19.who.int/WHO-COVID-19-global-data.csv (accessed on 25 January 2024).
- Giovanni. 2024. Available online: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 25 January 2024).
- MERRA. 2024. Available online: http://www.soda-pro.com/web-services/meteo-data/merra (accessed on 25 January 2024).
- Copernicus. 2024. Available online: https://cds.climate.copernicus.eu/ (accessed on 20 January 2024).
- AQICN. 2024. Available online: https://www.iqair.com/world-air-quality-ranking?srsltid=AfmBOoreBIWuvMsL-7NgA9WQn1P02TIWRwCJaPItNXwQVaJz7O2QnEKQ (accessed on 20 January 2024).
- Air Qualiy Hystorical Data. 2024. Available online: https://www.aqistudy.cn (accessed on 20 January 2024).
- EURAD 2024. Available online: https://environment.ec.europa.eu/topics/air/air-quality/eu-air-quality-standards_en (accessed on 10 April 2023).
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N. (Eds.) Chapter 5—Kinetics and Atmospheric Chemistry. In Chemistry of the Upper and Lower Atmosphere; Academic Press: San Diego, CA, USA, 2000; pp. 130–178. [Google Scholar]
- Silva, J.S.; Rojas, J.P.; Norabuena, M.; Seguel, R.J. Ozone and volatile organic compounds in the metropolitan area of Lima-Callao, Peru. Air Quality. Atmos. Health 2018, 11, 993–1008. [Google Scholar] [CrossRef]
- Moreno-Cegarra, J.-L.; Pérez, I.A.; García, M.Á. Air Quality in the Cartagena Basin in South-Western Europe and the Impact of the COVID-19 Pandemic. Atmosphere 2024, 15, 783. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Huang, L.; Liu, Z.; Zhu, Y.; Li, L.; Wang, Y.; Lv, K. The casual effects of COVID-19 lockdown on air quality and short-term health impacts in China. Environ. Pollut. 2021, 290, 117988. [Google Scholar]
- Silva, A.K.T.; Branco, P.T.B.S.; Sousa, S.I.V. Health and economic burden avoided due to air pollution reduction during the COVID-19 Lockdown: Portugal case study. Sustain. Cities Soc. 2024, 106, 105371. [Google Scholar] [CrossRef]
- Adams, M.D. Air pollution in Ontario, Canada during the COVID-19 State of Emergency. Sci. Total Environ. 2020, 742, 140516. [Google Scholar] [CrossRef]
- Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the COVID-19 outbreak risk in Italy. Environ. Pollut. 2020, 264, 114732. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Zhang, L. Comparison of Air Pollutants during the Two COVID-19 Lockdown Periods in Winter 2019 and Spring 2022 in Shanghai, China. Atmosphere 2024, 15, 443. [Google Scholar] [CrossRef]
- Mokgoja, B.; Mhangara, P.; Shikwambana, L. Assessing the Impacts of COVID-19 on SO2, NO2, and CO Trends in Durban Using TROPOMI, AIRS, OMI, and MERRA-2 Data. Atmosphere 2023, 14, 1304. [Google Scholar] [CrossRef]
- Begou, P.; Evagelopoulos, V.; Charisiou, N.D. Variability of Air Pollutant Concentrations and Their Relationships with Meteorological Parameters during COVID-19 Lockdown in Western Macedonia. Atmosphere 2023, 14, 1398. [Google Scholar] [CrossRef]
- Bai, Y.-Q.; Wang, Y.; Kong, S.-F.; Zhao, T.-L.; Zhi, X.-F.; Zheng, H.; Sun, X.-Y.; Hu, W.-Y.; Zhou, Y.; Xiong, J. Modelling the effect of local and regional emissions on PM2.5 concentrations in Wuhan, China during the COVID-19 lockdown. Adv. Clim. Change Res. 2021, 12, 871–880. [Google Scholar] [CrossRef]
- Gopikrishnan, G.S.; JKuttippurath, J. Four years of National Clean Air Programme (NCAP) in Indian cities: Assessment of the impact on surface ozone during the period 2018–2022. Sustain. Cities Soc. 2024, 101, 105207. [Google Scholar] [CrossRef]
- Yan, D.; Jin, Z.; Zhou, Y.; Li, M.; Zhang, Z.; Wang, T.; Zhuang, B.; Li, S.; Xie, M. Anthropogenically and meteorologically modulated summertime ozone trends and their health implications since China’s clean air actions. Environ. Pollut. 2024, 343, 123234. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Torboli, V.; Fontana, F.; et al. SARS-CoV-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environ. Res. 2020, 188, 109754. [Google Scholar] [CrossRef]
- Zorn, J.; Simões, M.; Velders, G.J.; Gerlofs-Nijland, M.; Strak, M.; Jacobs, J.; Dijkema, M.B.; Hagenaars, T.J.; Smit, L.A.; Vermeulen, R.; et al. Effects of long-term exposure to outdoor air pollution on COVID-19 incidence: A population-based cohort study accounting for SARS-CoV-2 exposure levels in the Netherlands. Environ. Res. 2024, 252 Pt 1, 118812. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, Q.; Liao, H.; Yang, W.; Lu, C. Effects of short-term and long-term exposure to ambient air pollution and temperature on long recovery duration in COVID-19 patients. Environ. Res. 2023, 216 Pt 4, 114781. [Google Scholar] [CrossRef]
- Zoran, M.; Radvan, R.; Savastru, D.; Tautan, M. Urban Air Pollution Exposure Impact on COVID-19 Transmission in a Few Metropolitan Regions. Sustainability 2024, 16, 6119. [Google Scholar] [CrossRef]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, P.; Raizada, P.; Hussain, C.M. Impact of COVID-19 on greenhouse gases emissions: A critical review. Sci. Total Environ. 2022, 806, 150349. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.F.; Jiang, B.; Komal, B.; Bashir, M.A.; Farooq, T.H.; Iqbal, N.; Bashir, M. Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environ. Res. 2020, 187, 109652. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Li, T.; Fang, C. Analysis of Air Quality Changes and Influencing Factors in Changchun During the COVID-19 Pandemic in 2020. Aerosol Air Qual. Res. 2021, 21, 210055. [Google Scholar] [CrossRef]
- Kovács, K.D. Determination of the human impact on the drop in NO2 air pollution due to total COVID-19 lockdown using Human-Influenced Air Pollution Decrease Index (HIAPDI). Environ. Pollut. 2022, 306, 119441. [Google Scholar] [CrossRef]
- Chauhan, A.; Gupta, S.K.; Liou, Y.-A. Rising surface ozone due to anthropogenic activities and its impact on COVID-19 related deaths in Delhi, India. Heliyon 2023, 9, e14975. [Google Scholar] [CrossRef]
- Campbell, P.C.; Tong, D.; Tang, Y.; Baker, B.; Lee, P.; Saylor, R.; Stein, A.; Ma, S.; Lamsal, L.; Qu, Z. Impacts of the COVID-19 economic slowdown on ozone pollution in the U.S. Atmos. Environ. 2021, 264, 118713. [Google Scholar] [CrossRef]
- Liang, Y.; Gui, K.; Che, H.; Li, L.; Zheng, Y.; Zhang, X.; Zhang, X.; Zhang, P.; Zhang, X. Changes in aerosol loading before, during and after the COVID-19 pandemic outbreak in China: Effects of anthropogenic and natural aerosol. Sci. Total Environ. 2023, 857 Pt 3, 159435. [Google Scholar] [CrossRef]
- Afifa, Y.; Arshad, K.; Hussain, N.; Ashraf, M.H.; Saleem, M.Z. Air pollution and climate change as grand challenges to sustainability. Sci. Total Environ. 2024, 928, 172370. [Google Scholar] [CrossRef]
- Lee, H.J.; Kuwayama, T.; FitzGibbon, M. Simultaneous decreases in NO2 levels and disparities in California during the COVID-19 pandemic. Atmos. Environ. 2024, 318, 120214. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, Z.; Shen, Y.; Li, R.; Fu, Y.; Liu, J.; Han, H.; Liao, H.; Cheng, X.; Jones, D.B.; et al. Chinese Regulations are working-why is surface ozone over industrialized areas still high? Applying lessons from northeast US air quality evolution. Geophys. Res. Lett. 2021, 48, e2021GL092816. [Google Scholar] [CrossRef]
- Chen, C.; Li, T.; Sun, Q.; Shi, W.; He, M.Z.; Wang, J.; Liu, J.; Zhang, M.; Jiang, Q.; Wang, M.; et al. Short-term exposure to ozone and cause-specific mortality risks and thresholds in China: Evidence from nationally representative data, 2013–2018. Environ. Int. 2023, 171, 107666. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.R.; Sahni, B.K.; Mishra, I.; Izhar, S. COVID-19 lockdown impact on air quality and associated health benefit in two contrasting urban cities in Eastern Indo Gangetic Plain. Atmos. Environ. 2024, 23, 100290. [Google Scholar] [CrossRef]
- Das, R.D.; Bandopadhyay, S.; Ghosh, S.; Das, M.; Chowdhury, M.; Cotrina-Sanchez, A.; Kumar, C.; Mitra, C. Have COVID lockdowns really improved global air quality?—Hierarchical observations from the perspective of urban agglomerations using atmospheric reanalysis data. Phys. Chem. Earth Parts A/B/C 2023, 132, 103452. [Google Scholar] [CrossRef]
- Zheng, H.; Kong, S.; Chen, N.; Yan, Y.; Liu, D.; Zhu, B.; Xu, K.; Cao, W.; Ding, Q.; Lan, B.; et al. Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Sci. Total Environ. 2020, 739, 140000. [Google Scholar] [CrossRef]
- Jacobs, J.H.; Strak, M.; Velders, G.J.; Zorn, J.; Hogerwerf, L.; Simões, M.; Mijnen-Visser, S.; Wesseling, J.; Gerlofs-Nijland, M.E.; Smit, L.A.; et al. Short-term exposure to ambient air pollution and severe COVID-19: Mortality and hospital admission to COVID-19 in the Netherlands from february to december 2020. Environ. Adv. 2024, 17, 100592. [Google Scholar] [CrossRef]
- Prada, L.S.-D.; Eiros-Bachiller, J.M.; Tamayo-Velasco, Á.; Martín-Fernández, M.; Álvarez, F.J.; Giner-Baixauli, C.; Tamayo, E.; Resino, S.; Alvaro-Meca, A. Environmental factors are associated to hospital outcomes in COVID-19 patients during lockdown and post-lockdown in 2020: A nationwide study. Environ. Res. 2023, 229, 115904. [Google Scholar] [CrossRef]
- Guo, C.; Kwok, S.W.H.; Xu, Y.; Wang, G. Machine learning analysis of government’s public risk communication during COVID-19 lockdown in Wuhan, China. Int. J. Disaster Risk Reduct. 2023, 99, 104119. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, C.; Zou, W. A tale of lockdown policies on the transmission of COVID-19 within and between Chinese cities: A study based on heterogeneous treatment effect. Econ. Hum. Biol. 2024, 53, 101365. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Shi, X.; Zuo, J.; Yabo, S.D.; Li, J.; Li, B.; Li, H.; Lu, L.; Tang, B.; Qi, H.; et al. Why did air quality experience little improvement during the COVID-19 lockdown in megacities, northeast China? Environ. Res. 2023, 221, 115282. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, W.; Liu, S.; Wang, W.; Ji, X.; Zhao, Y.; Shima, M.; Yoda, Y.; Yang, D.; Huang, J.; et al. Cardiorespiratory effects of indoor ozone exposure during sleep and the influencing factors: A prospective study among adults in China. Sci. Total Environ. 2024, 924, 171561. [Google Scholar] [CrossRef] [PubMed]
AQI | <10 | 10–20 | 20–30 | 30–50 | 50–80 | >80 |
---|---|---|---|---|---|---|
Class | Very good | Good | Satisfactory | Sufficiently | Poor | Very poor |
Average Daily Mean Value | Period | Wuhan | Milan | Madrid | London | Bucharest |
---|---|---|---|---|---|---|
PM2.5 | Pre-lockdown | (63.55 ± 24.21) In the range (22–104) (µg/m3) | (49.07 ± 17.82) In the range (10–100) (µg/m3) | (28.64 ± 12.24) In the range (10–52) (µg/m3) | (21.93 ± 10.01) In the range (9–44) (µg/m3) | - |
Lockdown and beyond | 50.67 ± 15.56 In the range (17–88) (µg/m3) | (21.60 ± 12.78) In the range (4–65) (µg/m3) | (20.43 ± 10.57) In the range (8–65) (µg/m3) | (21.60 ± 8.69) In the range (10–54) (µg/m3) | - | |
PM10 | Pre-lockdown | (147.09 ± 38.64) In the range (70–194) (µg/m3) | (118.91 ± 38.30) In the range (30–89) (µg/m3) | (71.44 ± 23.44) In the range (32–126) (µg/m3) | (50.76 ± 20.80) In the range (24–116) (µg/m3) | (23.41 ± 11.02) In the range (7–54) (µg/m3) |
Lockdown and beyond | (117.46 ± 28.55) In the range (47–184) (µg/m3) | (58.03 ± 24.99) In the range (13–51) (µg/m3) | (51.70 ± 17.28) In the range (23–109) (µg/m3) | (47.15 ± 15.13) In the range (20–15) (µg/m3) | (26.03 ± 17.76) In the range (7–140) (µg/m3) | |
O3 | Pre-lockdown | (17.09 ± 9.38) In the range (2–32) (µg/m3) | (11.59 ± 9.19) In the range (2–32) (µg/m3) | (15.54 ± 7.56) In the range (1–30) (µg/m3) | (21.63 ± 8.43) In the range (0–33) (µg/m3) | (17.07 ± 6.08) In the range (3–29) (µg/m3) |
Lockdown and beyond | (48.39 ± 20.37) In the range (17–117) (µg/m3) | (37.09 ± 10.28) In the range (12–57) (µg/m3) | (31.89 ± 7.03) In the range (13–51) (µg/m3) | (31.49 ± 6.68) In the range (10–49) (µg/m3) | (26.59 ± 7.03) In the range (10–46) (µg/m3) | |
NO2 | Pre-lockdown | (23.73 ± 6.53) In the range (15–44) (µg/m3) | (33.93 ± 7.96) In the range (17–57) (µg/m3) | (28.07 ± 10.03) In the range (14–62) (µg/m3) | (28.72 ± 7.49) In the range (9–42) (µg/m3) | (15.70 ± 5.69) In the range (6–30) (µg/m3) |
Lockdown and beyond | (18.27 ± 8.02) In the range (18–42) (µg/m3) | (19.96 ± 9.85) In the range (4–39) (µg/m3) | (13.07 ± 8.62) In the range (12–43) (µg/m3) | (21.41 ± 8.33) In the range (6–42) (µg/m3) | (9.11 ± 5.22) In the range (2–25) (µg/m3) | |
AQI | Pre-lockdown | (88.45 ± 34.25) In the range (42–142) | (48.35 ± 24.90) In the range (17–114) | (30.39 ± 10.48) In the range (16–62) | (24.95 ± 7.70) In the range (16–44) | (36.59 ± 15.10) In the range (14–71) |
Lockdown and beyond | (66.27 ± 22.46) In the range (20–128) | (29.91 ± 10.20) In the range (15–69) | (30.56 ± 6–59) In the range (16–50) | (26.81 ± 7.43) In the range (16–57) | (29.72 ± 6.26) In the range (19–48) | |
AOD | Pre-lockdown | (0.19 ± 0.08) In the range (0.08–0.33) | (0.24 ± 0.12) In the range (0.04–0.65) | (0.14 ± 0.07) In the range (0.05–0.43) | (0.12 ± 0.04) In the range (0.05–0.25) | (0.13 ± 0.05) In the range (0.6–0.29) |
Lockdown and beyond | (0.29 ± 0.14) In the range (0.08–0.80) | (0.29 ± 0.11) In the range (0.14–0.73) | (0.20 ± 0.11) In the range (0.07–0.61) | (0.20 ± 0.09) In the range (0.07–0.61) | (0.26 ± 0.14) In the range (0.06–0.68) |
Daily Average Variable | Wuhan | Milan | Madrid | London | Bucharest |
---|---|---|---|---|---|
DNC | DNC | DNC | DNC | DNC | |
Air Quality Index (AQI) | 0.37 * | 0.32 * | 0.35 * | 0.39 * | 0.56 * |
Aerosol Optical Depth (AOD) | 0.31 * | 0.27 * | 0.42 * | 0.37 * | 0.14 |
O3 (Ozone) (µg/m3) | −0.57 * | −0.32 * | −0.42 * | −0.37 * | −0.29 * |
NO2 (µg/m3) | 0.45 * | 0.42 * | 0.65 * | 0.12 | 0.49 * |
T (air temperature at 2 m height) (°C) | −0.89 * | −0.39 * | −0.76 * | −0.73 * | −0.57 * |
RH (relative humidity) (%) | 0.15 | 0.39 * | 0.53 * | 0.64 * | 0.36 * |
w (wind intensity) (m/s) | −0.25 * | −0.24 * | −0.12 | −0.49 * | −0.18 |
PBL (Planetary Boundary Layer height) (m) | −0.49 * | −0.35 * | −0.14 | −0.11 | −0.60 * |
Average Daily Mean Value | Period | Wuhan | Milan | Madrid | London | Bucharest |
---|---|---|---|---|---|---|
PBL (m) | Pre-lockdown | 453.59 | 445.82 | 686.83 | 1103.83 | 727.02 |
Lockdown and beyond | 585.8 | 1300.76 | 1768.04 | 1215.25 | 1749.23 |
Metropolis | Wuhan | Milan | Madrid | London | Bucharest |
---|---|---|---|---|---|
Population size (million inhabitants) | 13.65 | 3.24 | 6.98 | 14.4 | 1.88 |
Total COVID-19 cases (DNCs) during March 1 January 2020–15 June 2020 | 50,441 | 23,919 | 74,836 | 27,875 | 2420 |
Total COVID-19 deaths (DNDs) during March 1 January 2020–15 June 2020 | 3869 | 3465 | 6974 | 3919 | 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tautan, M.; Zoran, M.; Radvan, R.; Savastru, D.; Tenciu, D.; Stanciu, A. The Effects of Air Quality and the Impact of Climate Conditions on the First COVID-19 Wave in Wuhan and Four European Metropolitan Regions. Atmosphere 2024, 15, 1230. https://doi.org/10.3390/atmos15101230
Tautan M, Zoran M, Radvan R, Savastru D, Tenciu D, Stanciu A. The Effects of Air Quality and the Impact of Climate Conditions on the First COVID-19 Wave in Wuhan and Four European Metropolitan Regions. Atmosphere. 2024; 15(10):1230. https://doi.org/10.3390/atmos15101230
Chicago/Turabian StyleTautan, Marina, Maria Zoran, Roxana Radvan, Dan Savastru, Daniel Tenciu, and Alexandru Stanciu. 2024. "The Effects of Air Quality and the Impact of Climate Conditions on the First COVID-19 Wave in Wuhan and Four European Metropolitan Regions" Atmosphere 15, no. 10: 1230. https://doi.org/10.3390/atmos15101230
APA StyleTautan, M., Zoran, M., Radvan, R., Savastru, D., Tenciu, D., & Stanciu, A. (2024). The Effects of Air Quality and the Impact of Climate Conditions on the First COVID-19 Wave in Wuhan and Four European Metropolitan Regions. Atmosphere, 15(10), 1230. https://doi.org/10.3390/atmos15101230