Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = pile axial bearing capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7618 KiB  
Article
A Comparative Analysis of Axial Bearing Behaviour in Steel Pipe Piles and PHC Piles for Port Engineering
by Runze Zhang, Yizhi Liu, Lei Wang, Weiming Gong and Zhihui Wan
Buildings 2025, 15(15), 2738; https://doi.org/10.3390/buildings15152738 - 3 Aug 2025
Viewed by 192
Abstract
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the [...] Read more.
This paper addresses the critical challenge of selecting suitable pile foundations in port engineering by systematically investigating the axial bearing behavior of large-diameter steel pipe piles and prestressed high-strength concrete (PHC) piles. The study integrates both numerical simulations and field tests within the context of the Yancheng Dafeng Port Security Facilities Project. A self-balanced static load numerical model for PHC piles was developed using Plaxis 3D, enabling the simulation of load-displacement responses, axial force transfer, and side resistance distribution. The accuracy of the model was verified through a comparison with field static load test data. With the verified model parameters, the internal force distribution of steel pipe piles was analysed by modifying material properties and adjusting boundary conditions. A comparative analysis of the two pile types was conducted under identical working conditions. The results reveal that the ultimate bearing capacities of the 1# steel pipe pile and the 2# PHC pile are 6734 kN and 6788 kN, respectively. Despite the PHC pile having a 20% larger diameter, its ultimate bearing capacity is comparable to that of the steel pipe pile, suggesting a more efficient utilisation of material strength in the latter. Further numerical simulations indicate that, under the same working conditions, the ultimate bearing capacity of the steel pipe pile exceeds that of the PHC pile by 18.43%. Additionally, the axial force distribution along the steel pipe pile shaft is more uniform, and side resistance is mobilised more effectively. The reduction in side resistance caused by construction disturbances, combined with the slenderness ratio (L/D = 41.7) of the PHC pile, results in 33.87% of the pile’s total bearing capacity being attributed to tip resistance. The findings of this study provide crucial insights into the selection of optimal pile types for terminal foundations, considering factors such as bearing capacity, environmental conditions, and economic viability. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 2145 KiB  
Article
Assessment of Experimental Data and Analytical Method of Helical Pile Capacity Under Tension and Compressive Loading in Dense Sand
by Ali Asgari, Mohammad Ali Arjomand, Mohsen Bagheri, Mehdi Ebadi-Jamkhaneh and Yashar Mostafaei
Buildings 2025, 15(15), 2683; https://doi.org/10.3390/buildings15152683 - 30 Jul 2025
Viewed by 284
Abstract
This study presents the results of axial tension (uplift) and compression tests evaluating the capacity of helical piles installed in Shahriyar dense sand using the UTM apparatus. Thirteen pile load experiments involving single-, double-, or triple-helix piles with shaft diameters of 13 mm [...] Read more.
This study presents the results of axial tension (uplift) and compression tests evaluating the capacity of helical piles installed in Shahriyar dense sand using the UTM apparatus. Thirteen pile load experiments involving single-, double-, or triple-helix piles with shaft diameters of 13 mm were performed, including six compression tests and seven tension tests with different pitches (Dh =13, 20, and 25 mm). The tested helical piles with a helix diameter of 51 mm were considered, and the interhelix spacing approximately ranged between two and four times the helix diameter. Through laboratory testing techniques, the Shahriyar dense sand properties were identified. Alongside theoretical analyses of helical piles, the tensile and compressive pile load tests outcomes in dense sand with a relative density of 70% are presented. It was found that the maximum capacities of the compressive and tensile helical piles were up to six and eleven times that of the shaft capacity, respectively. With an increasing number of helices, the settlement reduced, and the bearing capacity increased. Consequently, helical piles can be manufactured in smaller sizes compared to steel piles. Overall, the compressive capacities of helical piles were higher than the tensile capacities under similar conditions. Single-helices piles with a pitch of 20 mm and double-helices piles with a pitch of 13 mm were more effective than others. Therefore, placing helices at the shallower depths and using smaller pitches result in better performance. In this study, when compared to values from the L1–L2 method, the theoretical method slightly underestimates the ultimate compression capacity and both overestimates and underestimates the uplift capacity for single- and double-helical piles, respectively, due to the individual bearing mode and cylindrical shear mode. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 9506 KiB  
Article
The Influence of Plate Geometry on the Cyclic Bearing Behavior of Single Helical Piles in Silty Sand
by Faxiang Gong, Wenni Deng, Xueliang Zhao, Xiaolong Wang and Kanmin Shen
J. Mar. Sci. Eng. 2025, 13(8), 1416; https://doi.org/10.3390/jmse13081416 - 25 Jul 2025
Viewed by 229
Abstract
Helical piles are widely used in geotechnical engineering, and their rapid installation and service reliability have attracted significant interest from the offshore wind industry. These piles are frequently subjected to cyclic loading in complex marine environments. Although the cyclic bearing behavior of helical [...] Read more.
Helical piles are widely used in geotechnical engineering, and their rapid installation and service reliability have attracted significant interest from the offshore wind industry. These piles are frequently subjected to cyclic loading in complex marine environments. Although the cyclic bearing behavior of helical piles has been studied, most research has focused on soil properties and loading conditions, with a limited systematic analysis of plate parameters. Moreover, the selection of plate parameters is not explicitly defined. As a crucial preliminary step in the capacity calculation, it is vital for the design of helical piles. To address this gap, the present study combines physical modeling tests and finite element simulations to systematically evaluate the influence of plate parameters on their cyclic bearing behavior. The parameters investigated include the plate depth, the plate diameter, plate spacing, and the number of plates. The results indicate that, under the same embedment conditions, cumulative displacement increases with the plate depth, with a critical embedment depth ratio of Hcr/D = 6 under cyclic loading conditions, but decreases with the number of plates. Axial stiffness increases with the plate depth, diameter, and number of plates, with an increase ranging from 0.5 to 3.0. However, the normalized axial stiffness decreases with these parameters, reaching a minimum value of 1.63. The plate spacing has a minimal influence on cyclic bearing behavior. Additionally, this study examines the evolution of displacement and stiffness parameters over repeated cycles in numerical simulations, as well as the post-cyclic pullout capacity of the helical pile foundation, which varies between −5% and +12%. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

16 pages, 2659 KiB  
Article
Influence of Roughness Factor on the Bearing Characteristics of Rock-Socketed Piles
by Zhilin Wang, Qingye Shi, Hongming Li, Tao Xiao, Zhihao Tang, Xiang Huang and Bai Yang
Buildings 2025, 15(11), 1785; https://doi.org/10.3390/buildings15111785 - 23 May 2025
Viewed by 345
Abstract
With the rapid development of the national economy, the construction of super high-rise buildings, long-span bridges, high-speed railways, and transmission towers has become increasingly common. It is also more frequent to build structures on karst foundations, which imposes higher demands on foundation engineering, [...] Read more.
With the rapid development of the national economy, the construction of super high-rise buildings, long-span bridges, high-speed railways, and transmission towers has become increasingly common. It is also more frequent to build structures on karst foundations, which imposes higher demands on foundation engineering, especially pile foundations. To study the influence of the roughness factor (RF) on the bearing characteristics of rock-socketed pile, model pile load tests were conducted with different RF values (0.0, 0.1, 0.2, and 0.3) to reveal the failure modes of the test pile, analyze the characteristics of the load–displacement curves and the axial force and resistance exertion law of the pile, and discuss the influence of the RF on the ultimate bearing capacity of the test pile. Based on the load transfer law of test piles, a load transfer model considering the relative pile–soil displacement and the shear dilatancy effect of pile–rock is established to analyze its load transfer characteristics. The results show that the failure mode of the test pile is splitting failure. The load–displacement curves are upward concave and slowly varying. The pile side resistance and the pile tip resistance mainly bear the load on the pile top. As the load on the pile top increases, the pile tip resistance gradually comes into play, and when the ultimate load is reached, the pile tip resistance bears 72.12% to 79.22% of the upper load. The pile side resistance is mainly borne by the rock-socketed section, and the pile side resistance increases sharply after entering the rock layer, but it decreases slightly with increasing depth, and the peak point is located in the range of 1.25D below the soil–rock interface. Increasing the roughness of the pile can greatly improve the ultimate bearing capacity. In this study, the ultimate bearing capacity of the test pile shows a trend of increasing and then decreasing with the gradual increase in RF from 0.0 to 0.3, and the optimal RF is 0.2. The load transfer model of pile–soil relative displacement and pile–rock shear dilatancy effect, as well as the pile tip load calculation model, were established. The calculation results were compared with the test results and engineering measured data, respectively, and they are in good agreement. Full article
(This article belongs to the Special Issue Advances in Building Foundation Engineering)
Show Figures

Figure 1

21 pages, 8412 KiB  
Article
Experimental Study on the Vertical Bearing Characteristic Model of Pile Groups in Complex Interactive Karst Pile Foundations
by Xinquan Wang, Yongle Tian, Haibo Hu, Chen Liu, Haitao Chen and Jun Hong
Buildings 2025, 15(11), 1772; https://doi.org/10.3390/buildings15111772 - 22 May 2025
Viewed by 402
Abstract
In order to study the bearing characteristics of pile groups under the coupling of multiple caves, the influence of the interaction between the crossing cave, the underlying inclined cave, the pile-side cave, and the underlying cave on the ultimate bearing capacity, axial force, [...] Read more.
In order to study the bearing characteristics of pile groups under the coupling of multiple caves, the influence of the interaction between the crossing cave, the underlying inclined cave, the pile-side cave, and the underlying cave on the ultimate bearing capacity, axial force, lateral friction, and load sharing ratio of the pile group was analyzed based on the model test. The research results show the following: (1) Due to the existence of the underlying cave, the Q-S curves of the pile groups are all steep drop types, and they show the characteristics of end-bearing piles. The influence of other caves is not obvious; the existence of beaded caves, lower crossing caves, underlying inclined caves, upper crossing caves, and pile-side caves will reduce the ultimate bearing capacity of the pile group. The reduction in the ultimate bearing capacity is 7.38%, 4.94% for the lower crossing cave, 2.59% for the underlying inclined cave, 2.27% for the upper crossing cave, and 0.74% for the pile-side cave. (2) When the pile body passes through the cave, the axial force changes slightly in the overburden layer, changes greatly in the limestone layer, and remains unchanged in the cave; under the same load level, the axial force of the pile close to the underlying inclined cave and the pile-side cave is smaller than that of the pile farther away. (3) Under the same load level, the lateral friction of the pile foundation shows a decreasing trend in the sand layer and limestone layer. The friction inside the sand layer is small. After entering the lime layer, the lateral friction increases sharply. The lateral friction is approximately 0 within the cave range. After passing through the cave, the lateral friction increases sharply. (4) The underlying inclined cave and the pile-side cave do not affect the position of the peak point of the pile foundation. The existence of the cave makes the pile foundation increase the peak point at the exit of the cave; under the same load level, the lateral friction of the pile close to the underlying inclined cave and the pile-side cave is larger than that of the pile farther away. (5) The existence of beaded caves, lower crossing caves, underlying inclined caves, upper crossing caves, and pile-side caves will increase the proportion of pile end resistance by 6.95%, 4.23%, 0.94%, 0.77%, and 0.62%, respectively. (6) This study systematically analyzed the differences in the degree of influence of different types of caves (including crossing caves, underlying inclined caves, and pile-side caves) on the bearing characteristics of pile foundations under the condition of the existence of underlying caves. It was found that beaded caves > lower crossing caves > underlying inclined caves > upper crossing caves > pile-side caves, which provides a priority decision-making basis for the optimal design of cave treatment schemes in engineering practice. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 16814 KiB  
Article
Research on Vertical Bearing Characteristics of Single Pile in Complex Interactive Karst Area
by Xinquan Wang, Chen Liu, Haibo Hu, Yongle Tian, Haitao Chen and Jun Hong
Buildings 2025, 15(9), 1530; https://doi.org/10.3390/buildings15091530 - 2 May 2025
Viewed by 531
Abstract
This study investigates the vertical bearing characteristics of single-pile foundations in complex karst areas, focusing on the influence of underlying cavities, eccentric cavities, and beaded cavities. Using both indoor model tests and numerical simulations with ABAQUS/CAE 2020, the load–settlement behavior, pile axial force, [...] Read more.
This study investigates the vertical bearing characteristics of single-pile foundations in complex karst areas, focusing on the influence of underlying cavities, eccentric cavities, and beaded cavities. Using both indoor model tests and numerical simulations with ABAQUS/CAE 2020, the load–settlement behavior, pile axial force, and side friction distribution under these conditions are explored. The results reveal that the presence of eccentric cavities (eccentricity 2.5 d) significantly enhances the ultimate bearing capacity by 53% compared to concentric cavities. In contrast, beaded cavities reduce the bearing capacity by 12% due to increased pile instability and larger settlements. The study also examines the effects of backfilling on the bearing characteristics, finding that backfilling underlying cavities increases the ultimate bearing capacity by 111.8% and prevents shear failure of the cavity roof. Backfilling beaded cavities improves stability by reducing top settlement and increasing the ultimate bearing capacity by 4.5%. The novelty of this research lies in the comprehensive consideration of both eccentric and beaded cavities, which are often overlooked in existing studies. These findings provide valuable insights for the design of pile foundations in karst regions, offering practical guidance on how to mitigate the adverse effects of cavities and optimize foundation stability. Full article
(This article belongs to the Topic Disaster Risk Management and Resilience)
Show Figures

Figure 1

16 pages, 6076 KiB  
Article
Research on the Vertical Bearing Capacity of Concrete-Filled Steel Tube Composite Piles by Mixing Method
by Chaosen Tian, Ping Li, Rongxi Yv, Yixin Li and Bohan Li
Appl. Sci. 2025, 15(9), 5022; https://doi.org/10.3390/app15095022 - 30 Apr 2025
Viewed by 361
Abstract
To address the issues of low shear strength, susceptibility to eccentricity, and alignment difficulties in post-inserted core piles, a new type of steel tube concrete integrated mixing composite pile has been independently developed. This pile type replaces the conventional mixing pile shaft with [...] Read more.
To address the issues of low shear strength, susceptibility to eccentricity, and alignment difficulties in post-inserted core piles, a new type of steel tube concrete integrated mixing composite pile has been independently developed. This pile type replaces the conventional mixing pile shaft with a larger diameter steel tube equipped with mixing blades. After forming the external annular cement mixing pile, the steel tube is retained, and the hollow core is filled with concrete. To thoroughly explore the vertical compressive bearing characteristics of the steel tube concrete mixing composite pile and clarify its vertical compressive behavior, static load field tests and PLAXIS 3D finite element numerical simulations were conducted on four test piles of different sizes to analyze the vertical bearing performance of the steel tube concrete mixing composite pile. The research results indicate that for a composite pile with a length of 40 m, an outer diameter of 1000 mm, and a steel tube diameter of 273 mm, the ultimate bearing capacity of a single pile is 7200 kN, with the steel tube concrete core contributing approximately 81% of the vertical bearing capacity, while the cement mixing pile contributes around 19%. Based on the characteristic that the maximum axial force is concentrated in the upper half of the pile length, an innovative variable-diameter design with a reduced wall thickness of the steel pipe in the lower part of the pile was proposed. Practical verification has shown that, despite the reduced material usage, the load-bearing capacity remains largely unchanged. This effectively validates the feasibility of the “strong upper part and weak lower part” design concept and provides an effective way to reduce construction costs. Full article
Show Figures

Figure 1

20 pages, 39543 KiB  
Article
Management of Pile End Sediment and Its Influence on the Bearing Characteristics of Bored Pile
by Weibin Song, Zhengzhen Wang, Wentao Zhu, Junping Yang and Jianming Zeng
Buildings 2025, 15(8), 1389; https://doi.org/10.3390/buildings15081389 - 21 Apr 2025
Viewed by 481
Abstract
In order to study the influence of pile end sediment on the bearing characteristics of bored piles, the on-site bearing capacity test was conducted on a single pile. A mathematical model of bearing capacity and the settlement response of a single pile considering [...] Read more.
In order to study the influence of pile end sediment on the bearing characteristics of bored piles, the on-site bearing capacity test was conducted on a single pile. A mathematical model of bearing capacity and the settlement response of a single pile considering sediment effects and a finite element model of a single pile with pile end sediment were established. In addition, the influence of sediment thickness on the bearing capacity of bored piles was systematically analyzed. The results show that the compaction of sediment at the pile end could significantly improve the ultimate bearing capacity of the single pile. Compared with the single pile that did not consider the compaction of the sediment at the pile end, the load required to reach the ultimate bearing capacity of the pile after compaction of the sediment increases by 900 KN. The settlement of the pile under a maximum vertical load increases with an increase in the thickness of the sediment. The influence of sediment thickness on axial force transmission is mainly reflected in the linear to nonlinear transformation of axial force distribution from low to high during the process of load. The slight decrease in axial force at the bottom of the pile could also be caused by the increase in the thickness of sediment. The increase in sediment layer thickness means that the transfer efficiency of the pile end resistance decreases. However, with an increase in load, the compression effect of the pile end sediment becomes obvious, which will further change the distribution of load between the pile side resistance and the pile end resistance. Full article
(This article belongs to the Special Issue Recycling of Waste in Material Science and Building Engineering)
Show Figures

Figure 1

13 pages, 4612 KiB  
Article
Analysis of the Influence of Bearing Plate Position on the Uplift Bearing Capacity of Low-Header CEP Single-Pile Foundations
by Yongmei Qian, Deshun Qi, Yu Mou, Xihui Wang, Ziyu Wang, Lin Sun and Zhongwei Ma
Buildings 2025, 15(8), 1353; https://doi.org/10.3390/buildings15081353 - 18 Apr 2025
Viewed by 355
Abstract
This study investigates the impact of the bearing plate position on the uplift bearing capacity of low-header concrete expanded pile (CEP) foundations using the ANSYS finite element simulation method. Nine models of low-header CEP single piles with varying bearing plate positions are constructed. [...] Read more.
This study investigates the impact of the bearing plate position on the uplift bearing capacity of low-header concrete expanded pile (CEP) foundations using the ANSYS finite element simulation method. Nine models of low-header CEP single piles with varying bearing plate positions are constructed. Incremental loading is applied to obtain relevant data, including load–displacement curves for vertical tensile forces, displacement contours, and shear stress distributions. The study analyzes the characteristics of load–displacement curves under different loading conditions, the axial force distribution along the pile shaft, the failure state of the surrounding soil, and how the uplift bearing capacity varies with changes in the bearing plate position. Based on the findings, a calculation model for the uplift bearing capacity of low-header CEP single-pile foundations is proposed. Given that the uplift bearing capacity decreases to varying degrees depending on the bearing plate position, the slip-line theory from previous studies is applied to refine the corresponding calculation formula for uplift bearing capacity. The results from the ANSYS finite element simulation confirm that the bearing plate position significantly influences the uplift bearing performance of low-header CEP single-pile foundations. The uplift bearing capacity increases with the distance between the bearing plate and the low header, reaching a peak before decreasing beyond a certain threshold. Considering the influence of the bearing plate position on bearing capacity, the affected area of soil beneath the foundation, and the time required for the system to enter its working state, the optimal bearing plate position is found to be at a distance of d1 = 4R0 to 5R0 from the top of the pile. Full article
(This article belongs to the Special Issue Research on Recent Developments in Building Structures)
Show Figures

Figure 1

26 pages, 6939 KiB  
Article
Influence of Groundwater Level Rising on Mechanical Properties of Pile Foundations Under a Metro Depot in Loess Areas
by Xuewen Rong, Mingze Li, Hongjian Liao, Ao Zhang, Tao Dang, Hangzhou Li and Zheng Wu
Buildings 2025, 15(8), 1341; https://doi.org/10.3390/buildings15081341 - 17 Apr 2025
Viewed by 374
Abstract
The span of pile foundations beneath metro depots typically ranges from 10 to 20 m, exhibiting a notably large span. This structural characteristic results in the pile foundations bearing a more concentrated upper load, while the interstitial soil between the piles bears minimal [...] Read more.
The span of pile foundations beneath metro depots typically ranges from 10 to 20 m, exhibiting a notably large span. This structural characteristic results in the pile foundations bearing a more concentrated upper load, while the interstitial soil between the piles bears minimal force. Concurrently, global climate change and enhanced urban greening initiatives have led to a significant increase in rainfall in northwest China, a region traditionally characterized by arid and semi-arid conditions. This climatic shift has precipitated a continuous rise in groundwater levels. Furthermore, the extensive distribution of collapsible loess in this region exacerbates the situation, as the rising groundwater levels induce loess collapse, thereby adversely affecting the mechanical behavior of the pile foundations. In light of these factors, this study utilized the pile foundations of a metro depot in Xi’an as a prototype to conduct static load model tests under conditions of rising groundwater levels. The experimental results reveal that the load–settlement curve of the pile foundations in the absence of groundwater exhibited a steep decline with distinct three-stage characteristics, and the ultimate bearing capacity was determined to be 5 kN. When the groundwater level is situated below the loess stratum, the settlement of both the pile foundations and the foundation soil, as well as the axial force, skin friction, and pile tip force, remains relatively stable. However, when the groundwater level rises to the loess stratum, there is a significant increase in the settlement of the pile foundations and foundation soil. Negative skin friction emerges along the pile shaft, and the bearing type of the pile foundation transitions gradually from a friction pile to an end-bearing pile. The influence range of the pile foundation on the settlement of the foundation soil is approximately three times the pile diameter. Full article
(This article belongs to the Special Issue Structural Analysis of Underground Space Construction)
Show Figures

Figure 1

29 pages, 7936 KiB  
Article
Dynamic Response of a 15 MW Jacket-Supported Offshore Wind Turbine Excited by Different Loadings
by Renqiang Xi, Lijie Yu, Xiaowei Meng and Wanli Yu
Energies 2025, 18(7), 1738; https://doi.org/10.3390/en18071738 - 31 Mar 2025
Viewed by 847
Abstract
This study investigates the dynamic behavior of a jacket-supported offshore wind turbine (JOWT) by developing its substructure and controller tailored for the IEA 15 MW reference wind turbine. A fully coupled numerical model integrating the turbine, jacket, and pile is established to analyze [...] Read more.
This study investigates the dynamic behavior of a jacket-supported offshore wind turbine (JOWT) by developing its substructure and controller tailored for the IEA 15 MW reference wind turbine. A fully coupled numerical model integrating the turbine, jacket, and pile is established to analyze the natural frequencies and dynamic responses of the system under wind–wave–current loading and seismic excitations. Validation studies confirm that the proposed 15 MW JOWT configuration complies with international standards regarding natural frequency constraints, bearing capacity requirements, and serviceability limit state criteria. Notably, the fixed-base assumption leads to overestimations of natural frequencies by 32.4% and 13.9% in the fore-aft third- and fourth-order modes, respectively, highlighting the necessity of soil–structure interaction (SSI) modeling. During both operational and extreme wind–wave conditions, structural responses are governed by first-mode vibrations, with the pile-head axial forces constituting the primary resistance against jacket overturning moments. In contrast, seismic excitations conversely trigger significantly higher-mode activation in the support structure, where SSI effects substantially influence response magnitudes. Comparative analysis demonstrates that neglecting SSI underestimates peak seismic responses under the BCR (Bonds Corner Record of 1979 Imperial Valley Earthquake) ground motion by 29% (nacelle acceleration), 21% (yaw-bearing bending moment), 42% (yaw-bearing shear force), and 17% (tower-base bending moment). Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

14 pages, 3072 KiB  
Article
Research on the Time-Dependent Behavior of Uplift Piles in Structured Clay Foundations in Zhanjiang Formation
by Yonghui Yang, Tang Bin, Yinchuan Wang, Xingyun Huang and Zuyuan Yu
Appl. Sci. 2025, 15(7), 3814; https://doi.org/10.3390/app15073814 - 31 Mar 2025
Viewed by 360
Abstract
The structural clay of the Zhanjiang Formation exhibits significant thixotropy, and there are considerable differences in the ultimate bearing capacity of pulled-out piles under different resting times. Using the structural clay from the Zhanjiang Formation as the foundation, direct shear tests on the [...] Read more.
The structural clay of the Zhanjiang Formation exhibits significant thixotropy, and there are considerable differences in the ultimate bearing capacity of pulled-out piles under different resting times. Using the structural clay from the Zhanjiang Formation as the foundation, direct shear tests on the soil surrounding nine groups of model single piles of different sizes were conducted at various resting times, along with static pullout tests on the pile foundations. The results indicate that the cohesion and internal friction angle of the surrounding soil increase following a logarithmic function with increasing resting time; specifically, the growth rate is rapid in the early resting period and gradually slows down in the later period. A quantitative relationship describing the variation of cohesion and internal friction angle over time was established. The load–displacement curves for single piles at different resting times exhibit a distinct steep drop. The uplift single pile exhibits significant time-dependency, with the ultimate uplift bearing capacity increasing more rapidly in the early stages and gradually stabilizing in the later stages. Under different resting times, for each load level, the maximum side friction resistance of the pile gradually shifts to the middle and lower parts of the pile body, while the ultimate side friction resistance is evenly distributed along the lower part of the pile body, with the side friction resistance of the pile bearing the uplift load. Based on the quantitative relationship of the cohesion and internal friction angle of the surrounding soil around the pile varying with time, a predictive formula for the axial pullout ultimate bearing capacity of a single pile in the Zhanjiang Group structured clay foundation has been established. Using existing pile foundation projects, model experiments were designed to verify the validity of the formula; however, there is a lack of field-scale validation. The research findings can provide a reference for predicting the axial pullout ultimate bearing capacity of single piles in practical engineering applications. Full article
Show Figures

Figure 1

30 pages, 17519 KiB  
Article
Study on the Lateral Performance of Large-Scale Steel Casing-Reinforced Concrete Pile Composite Members
by Duoyin Wang, Wei Liu, Chenxi Qin, Mingjie Jiang and Baojiang Gao
Buildings 2025, 15(7), 1039; https://doi.org/10.3390/buildings15071039 - 24 Mar 2025
Cited by 1 | Viewed by 315
Abstract
In order to investigate the lateral working performance of large-scale steel casing-reinforced concrete pile composite members, this paper sets up large-scale steel casing-reinforced concrete pile composite members with different slenderness ratios λ, compressive axial force ratios N, and foundation strengths. It conducts quasi-static [...] Read more.
In order to investigate the lateral working performance of large-scale steel casing-reinforced concrete pile composite members, this paper sets up large-scale steel casing-reinforced concrete pile composite members with different slenderness ratios λ, compressive axial force ratios N, and foundation strengths. It conducts quasi-static loading tests to investigate the effects of these factors on the hysteretic performance, bearing capacity, ductile performance, strength degradation, and stiffness degradation of the members. The results show that the hysteresis curves of the members all have a typical inverse S-shape, which is affected by slip and has a poor degree of fullness. The members with larger slenderness ratios exhibit better ductility performance, deformation performance, and energy dissipation performance, but their poorer bearing capacity and effect on stiffness degradation are limited. While members with smaller slenderness ratios exhibit better bearing capacity, their ductile performance is poor. As the compressive axial force ratio increases, the lateral bearing capacity and ductility of the members slightly improve. However, the bearing capacity rapidly decreases when the compressive axial force ratio reaches a critical value. As the strength of the foundation increased, the lateral bearing capacity of the structures continued to improve, but its improvement effect began to decay after reaching a certain value. This paper investigates the lateral working properties of large-scale steel casing-reinforced concrete pile composite members designed for overhead vertical wharves that are subjected to significant water level differences in inland rivers, aiming to provide a reference for their application in practical engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 5117 KiB  
Article
In Situ Study on Vertical Compressive Bearing Characteristics of Rooted Bored Piles
by Chao Yang, Guoliang Dai, Weiming Gong, Shuang Xi, Mingxing Zhu and Shaolei Huo
Buildings 2025, 15(5), 707; https://doi.org/10.3390/buildings15050707 - 23 Feb 2025
Viewed by 557
Abstract
In situ vertical load field tests were carried out on two bored piles used in the Chizhou Highway Bridge across the Yangtze River, both of which were rooted piles. Based on the test results, such as those on the relationship between the load [...] Read more.
In situ vertical load field tests were carried out on two bored piles used in the Chizhou Highway Bridge across the Yangtze River, both of which were rooted piles. Based on the test results, such as those on the relationship between the load and settlement, axial force distribution, and the relationship between shaft friction and pile–soil relative displacement, the vertical load transfer mechanics of the rooted piles were analyzed. The results showed that the load-carrying curves of the rooted piles vary gradually and also that the rooted piles exhibit the bearing characteristics of friction piles because the loads at the pile tips are less than 15% of the total bearing capacity of the piles. The slope of the axial force distribution curve of the rooted piles first increased at the upper interface and then decreased at the lower interface of the root-reinforced zone. The axial force of the rooted piles decreased faster in soil layers where the piles had roots, which can be explained by the fact that roots share the vertical load with piles and that roots improve the bearing properties of piles. Considering the shaft and end resistance of the roots on the piles, the relationship between load and settlement of the rooted piles was calculated by a three-line model based on the load transfer method. The results calculated from the model were in good agreement with the results from the tests. The results from the tests could inform the design and analysis of rooted piles. Full article
Show Figures

Figure 1

22 pages, 8041 KiB  
Article
The Bearing Capacity Model of Pile Foundation with Hole-Drilling and Pile-Inserting Technology in Complex Geological Environments
by Yi Wang, Guoyun Lu, En Zhang, Cheng Zhao, Wei Wang and Fenghui Dong
Buildings 2025, 15(5), 703; https://doi.org/10.3390/buildings15050703 - 23 Feb 2025
Viewed by 770
Abstract
Karst geology creates a complex environment with diverse landforms, blurred boundaries, and multi-factor interactions. This paper presents a new drilling pile installation method: drill to a set depth, clean the hole, insert prefabricated piles, and drive or vibrate them to the target elevation. [...] Read more.
Karst geology creates a complex environment with diverse landforms, blurred boundaries, and multi-factor interactions. This paper presents a new drilling pile installation method: drill to a set depth, clean the hole, insert prefabricated piles, and drive or vibrate them to the target elevation. It suits tough geological conditions well. Pile foundations bear both axial and lateral eccentric loads. To explore prestressed high-strength concrete (PHC) pile foundations under eccentric vertical loads in karst areas, on-site bearing capacity tests were conducted. The results show that as load eccentricity increases, PHC pile foundation-bearing capacity drops notably. A finite element model was developed to analyze the stress and strain behavior of PHC pile foundations under eccentric loading in complex geological conditions, aiming to assess their bearing capacity and stability. Key findings include: (1) Under constant external load, the maximum displacement of the PHC pile foundation increases with greater load eccentricity. (2) Enhanced concrete strength reduces the maximum displacement of the pile foundation, while the peak stress remains stable. (3) The height of karst caves has a minimal impact on the bearing capacity and deformation of PHC pile foundations. These results highlight the importance of considering load eccentricity, concrete strength, and cave height in optimizing the design of PHC pile foundations for safety in complex geological settings. Full article
Show Figures

Figure 1

Back to TopTop