Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = piezoelectric rod

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2113 KiB  
Article
Research on Repolarization Characteristic of PVDF Strain Sensor Used in Smart Tires
by Yingxin Han, Yahui Tian, Ruitao Tang, Bo Lu and Mingliang Song
Electronics 2025, 14(11), 2265; https://doi.org/10.3390/electronics14112265 - 31 May 2025
Viewed by 366
Abstract
Piezoelectric polyvinylidene fluoride (PVDF) film sensors embedded in a tire can make the tire have a sense of tactile. Thus, PVDF strain sensors play an important role in smart tires. However, temperature tolerance of PVDF is a key issue limiting its application in [...] Read more.
Piezoelectric polyvinylidene fluoride (PVDF) film sensors embedded in a tire can make the tire have a sense of tactile. Thus, PVDF strain sensors play an important role in smart tires. However, temperature tolerance of PVDF is a key issue limiting its application in smart tire as the embedding process needs high temperature vulcanization. This paper proposes a film repolarization method to treat PVDF film materials after high temperature vulcanization, which can be implemented to apply in smart tire. Variation in piezoelectric properties and its changing mechanism of PVDF film are analyzed with the methods of X-Ray Diffraction Spectroscopy (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). Vulcanization process that PVDF film sensors undergo in tire applications are simulated. Furthermore, properties of the PVDF sensors with different process stages are simulated based on finite element model. An experimental platform of the PVDF sensors is set up and the drop rod experiments are conducted. Results verify the performance improvement of the repolarization strategy on embedded PVDF sensors. The effectiveness of the repolarization in the PVDF film shows a great significance for the application of strain sensors in smart tire. Full article
Show Figures

Figure 1

14 pages, 1854 KiB  
Article
Design and Optimization of a Piezoelectric Stick-Slip Actuator with Distributed Compliance
by Tingting Ye, Zhao Feng and Yangmin Li
Machines 2025, 13(6), 460; https://doi.org/10.3390/machines13060460 - 27 May 2025
Viewed by 475
Abstract
With increasing demand for high-precision motion control systems, high operational speed and load capacity are imposed with piezoelectric stick-slip actuators based on compliant mechanisms, yet their performances are often constrained by the step size and move speed. In this paper, a novel piezoelectric [...] Read more.
With increasing demand for high-precision motion control systems, high operational speed and load capacity are imposed with piezoelectric stick-slip actuators based on compliant mechanisms, yet their performances are often constrained by the step size and move speed. In this paper, a novel piezoelectric stick-slip actuator featuring flexure beams and a trapezoidal driving foot is proposed for high dynamic performance and load requirements. The trapezoidal structure consists of a trapezoidal driving foot to differentiate the friction in the stick and slip phases, four flexure beams for the high resonant frequency due to distributed compliance and the high load capacity due to structural geometry, and a rigid rod for motion transmission. At first, the mechanism design and the working principle are described in detail. Then, its dominant performances are predicted through finite element analysis, including the step size and the first natural frequency. On this basis, the structural parameters are optimized through the genetic algorithm. As a result, the forward displacement in the stick phase can be obtained as 4.8 μm through FEA simulations, where the first natural frequency can be observed as 627 Hz. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

13 pages, 5645 KiB  
Article
Morphology-Dependent Behavior of PVDF/ZnO Composites: Their Fabrication and Application in Pressure Sensors
by Binbin Zhang, Wenhui Zhang, Wei Luo, Zhijie Liang, Yan Hong, Jianhui Li, Guoyun Zhou and Wei He
Sensors 2025, 25(9), 2936; https://doi.org/10.3390/s25092936 - 7 May 2025
Viewed by 746
Abstract
This study investigated the impact of zinc oxide’s (ZnO’s) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through direct ink writing (DIW). [...] Read more.
This study investigated the impact of zinc oxide’s (ZnO’s) morphology on the piezoelectric performance of polyvinylidene fluoride (PVDF) composites for flexible sensors. Rod-like (NR) and sheet-like (NS) ZnO nanoparticles were synthesized via hydrothermal methods and incorporated into PVDF through direct ink writing (DIW). The structural analyses confirmed the successful formation of wurtzite ZnO and enhanced β-phase content in the PVDF/ZnO composites. At a degree of 15 wt% loading, the ZnO-NS nanoparticles achieved the highest β-phase fraction (81.3%) in PVDF due to their high specific surface area, facilitating dipole alignment and strain-induced crystallization. The optimized PVDF/ZnO-NS-15 sensor demonstrated superior piezoelectric outputs (4.75 V, 140 mV/N sensitivity) under a 27 N force, outperforming its ZnO-NR counterparts (3.84 V, 100 mV/N). The cyclic tests revealed exceptional durability (<5% signal attenuation after 1000 impacts) and a rapid response (<100 ms). The application trials validated their real-time motion-monitoring capabilities, including finger joint flexion detection. This work highlights the morphology-dependent interfacial polarization as a critical factor for high-performance flexible sensors, offering a scalable DIW-based strategy for wearable electronics. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Sensing)
Show Figures

Graphical abstract

13 pages, 4833 KiB  
Article
Research on the Characteristics of High-Performance Textured Ceramic Materials and Their Application in Composite Rod Transducers
by Fenghua Tian, Yiming Liu, Wenqiang Tian, Lei Wang, Baoan Hao and Shuai Yang
Actuators 2024, 13(11), 437; https://doi.org/10.3390/act13110437 - 1 Nov 2024
Cited by 1 | Viewed by 1276
Abstract
Recently, textured piezoelectric ceramics have become a hot topic in the field of piezoelectric materials. Due to their high cost-effectiveness, textured ceramics are expected to be the material of choice for the next generation of acoustic transducers. In this study, we investigated the [...] Read more.
Recently, textured piezoelectric ceramics have become a hot topic in the field of piezoelectric materials. Due to their high cost-effectiveness, textured ceramics are expected to be the material of choice for the next generation of acoustic transducers. In this study, we investigated the coercive field (Ec), piezoelectric constant (d33), and dielectric constant (ε33) of textured PIN-PSN-PT ceramics under different torques, in response to the demand for the development of composite rod transducer technology for transmitting and receiving. Based on the obtained data, a wideband composite rod transducer was designed and fabricated using textured PIN-PSN-PT ceramics with high performance. Compared with conventional PZT piezoelectric ceramic transducers of the same size, the wideband composite rod transducer made with textured ceramics extends the frequency band to a lower frequency of 6.5 kHz, improves the emission performance by 2 dB, and enhances the reception performance by 2 dB. Compared with conventional PZT piezoelectric ceramics in the same frequency band, the acoustic performance is comparable, but there is a volume reduction of 59.23% and a weight reduction of 49.7%, solving the technical bottleneck of developing composite rod transducers that are miniaturized and lightweight. The research results of this study have important reference value for the engineering application of textured ceramic materials in acoustic transducers. Full article
(This article belongs to the Special Issue Ultrasonic Transducers for Biomedical Applications)
Show Figures

Figure 1

32 pages, 13377 KiB  
Article
Research on Output Characteristics of a Non-Contact Piezoelectric Actuator’s Micro-Displacement Amplifying Mechanism
by Huaiyong Li, Dongya Zhang, Yusheng Lin, Zhong Chen, Zhiwei Shi, Chong Li and Liang Zhao
Actuators 2024, 13(8), 309; https://doi.org/10.3390/act13080309 - 10 Aug 2024
Viewed by 1425
Abstract
A non-contact piezoelectric actuator is proposed. The non-contact power transfer between stator and rotor is realized by pneumatic transmission, characterized by fast response, long life, compact structure, and easy miniaturization and control. The structure of the non-contact piezoelectric actuator is designed and its [...] Read more.
A non-contact piezoelectric actuator is proposed. The non-contact power transfer between stator and rotor is realized by pneumatic transmission, characterized by fast response, long life, compact structure, and easy miniaturization and control. The structure of the non-contact piezoelectric actuator is designed and its working principle is elucidated. The equation of the relationship between the output displacements of the non-contact piezoelectric actuator’s micro-displacement amplifying mechanism and the input displacements of piezoelectric stack is deduced, and the simulation analysis method of output displacement of the micro-displacement amplifying mechanism is established. Using the equation and the simulation analysis, the output characteristics of micro-displacement amplifying mechanism for the non-contact piezoelectric actuator and their changes along with the system parameters are investigated. The detailed process of optimal design of the micro-displacement amplifying mechanism is given by means of mathematical statistics. The prototype is made and the performance test is carried out. The correctness of the theoretical calculation and simulation analysis is verified by comparing the experimental values with the theoretical and simulated values of the output displacement of the micro-displacement amplifying mechanism. The results show that the initial angle of bridge structure I has an obvious effect on the output characteristics of the micro-displacement amplifying mechanism in the range of 5°–15°. When the lever’s rod length is 13 mm–15 mm, the bridge structure II’s rod length is 6 mm–7 mm, and the power arm length of bridge structure I’s driving lever is 5 mm–7 mm, the bridge structure II’s rod horizontal projection length is 5 mm–6 mm and the output displacement of the micro-displacement amplifying mechanism is larger. Through the optimal design, it is obtained that the bridge structure I’s initial angle is 8°, the lever’s rod length is 15 mm, the bridge structure II’s rod length is 7 mm, and the power arm length of bridge structure I driving lever is 5 mm, the bridge structure II’s rod horizontal projection length is 6 mm, and the simulated output displacement of the micro-displacement amplifying mechanism is 0.1415 mm. The prototype test reveals that as the input excitation displacement decreases, the error increases, while as the input excitation displacement increases, the error decreases. Specifically, when the input excitation displacement is 0.005 mm, the measured output displacement of the micro-displacement amplifying mechanism is 0.1239 mm, resulting in a 19.8% deviation from the theoretical value and a 12.44% deviation from the simulated value. The research work in this paper enriches the research achievements of non-contact piezoelectric actuators, and also provides a reference for designing small structure and large travel micro-displacement amplifying mechanisms of this type of actuator. Full article
(This article belongs to the Special Issue Piezoelectric Actuators in MEMS)
Show Figures

Figure 1

14 pages, 10353 KiB  
Article
Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers
by Marco Antonio Islas-Herrera, David Sánchez-Luna, Jorge Miguel Jaimes-Ponce, Daniel Andrés Córdova-Córdova, Christopher Iván Lorenzo-Alfaro and Daniel Hernández-Rivera
Clean Technol. 2024, 6(3), 907-920; https://doi.org/10.3390/cleantechnol6030046 - 10 Jul 2024
Cited by 2 | Viewed by 1815
Abstract
Energy harvesting is a clean technique for obtaining electrical energy from environmental energy. Mechanical vibrations are an energy source that can be used to produce electricity using piezoelectric energy harvesters. Vibrations and wind in bridges have the potential to produce clean energy that [...] Read more.
Energy harvesting is a clean technique for obtaining electrical energy from environmental energy. Mechanical vibrations are an energy source that can be used to produce electricity using piezoelectric energy harvesters. Vibrations and wind in bridges have the potential to produce clean energy that can be employed to supply energy to electronic devices with low consumption. The purpose of this paper was to validate the functioning of an energy harvester and test the electrical power generation potential of a system based on the oscillation of a rod with a tip mass to stimulate piezoelectric transducers by impact. The obtained results showed the electric energy productions for different test conditions. Experimentally, the proposed structure produced 0.337 µJ of energy after 14 s of testing. In addition, after one hour of operation, an estimated production of 10.4 mJ was obtained, considering four stacks of 25 piezoelectric disks each when periodic impacts of 50 N at 5.7 Hz stimulated the transducers. In future work, we will focus on taking advantage of the vibrations produced in the proposed structure induced by the mechanical vibration of bridges and vortex-induced vibration (VIV) through interaction with wind to produce clean energy that is useful for low-power applications. Full article
(This article belongs to the Collection Brilliant Young Researchers in Clean Technologies)
Show Figures

Figure 1

17 pages, 4321 KiB  
Article
Developing and Validating an Intelligent Mouth-Opening Training Device: A New Solution for Restricted Mouth Opening
by Hao Wu, Zilin Wang, Jing Han, Tianchi Wu, Guangtao Zhai, Chenping Zhang and Jiannan Liu
Sensors 2024, 24(6), 1988; https://doi.org/10.3390/s24061988 - 20 Mar 2024
Cited by 2 | Viewed by 2613
Abstract
Restricted mouth opening (trismus) is one of the most common complications following head and neck cancer treatment. Early initiation of mouth-opening exercises is crucial for preventing or minimizing trismus. Current methods for these exercises predominantly involve finger exercises and traditional mouth-opening training devices. [...] Read more.
Restricted mouth opening (trismus) is one of the most common complications following head and neck cancer treatment. Early initiation of mouth-opening exercises is crucial for preventing or minimizing trismus. Current methods for these exercises predominantly involve finger exercises and traditional mouth-opening training devices. Our research group successfully designed an intelligent mouth-opening training device (IMOTD) that addresses the limitations of traditional home training methods, including the inability to quantify mouth-opening exercises, a lack of guided training resulting in temporomandibular joint injuries, and poor training continuity leading to poor training effect. For this device, an interactive remote guidance mode is introduced to address these concerns. The device was designed with a focus on the safety and effectiveness of medical devices. The accuracy of the training data was verified through piezoelectric sensor calibration. Through mechanical analysis, the stress points of the structure were identified, and finite element analysis of the connecting rod and the occlusal plate connection structure was conducted to ensure the safety of the device. The findings support the effectiveness of the intelligent device in rehabilitation through preclinical experiments when compared with conventional mouth-opening training methods. This intelligent device facilitates the quantification and visualization of mouth-opening training indicators, ensuring both the comfort and safety of the training process. Additionally, it enables remote supervision and guidance for patient training, thereby enhancing patient compliance and ultimately ensuring the effectiveness of mouth-opening exercises. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 7497 KiB  
Article
A Single Oscillator-Excited Piezoelectric Actuator with Internal Contact Teeth
by Die Fang, Zhiyi Wen, Zhixin Geng, Xiaopin Hu, Leon Kaswango, Jia Cao, Xiaoniu Li and Dawei Wu
Micromachines 2024, 15(1), 47; https://doi.org/10.3390/mi15010047 - 26 Dec 2023
Cited by 1 | Viewed by 1830
Abstract
The tail rotor of a helicopter, a crucial component, traditionally relies on a complex drive mode involving reducers and transmission gears. This conventional setup, with its lengthy transmission chain and numerous components, hinders miniaturization efforts. In response to this challenge, our paper presents [...] Read more.
The tail rotor of a helicopter, a crucial component, traditionally relies on a complex drive mode involving reducers and transmission gears. This conventional setup, with its lengthy transmission chain and numerous components, hinders miniaturization efforts. In response to this challenge, our paper presents a novel piezoelectric drive approach. Our objective was to suggest an innovative design capable of minimizing the components involved in the tail rotor drive. This design can be adjusted in size according to specific requirements and is effective up to a specified speed. Moreover, it facilitates the process of miniaturization and integration. The piezoelectric actuator’s stator comprises an ultrasonic amplitude transformer, a ring, and three drive teeth. Utilizing the rod-like structure of the tail brace, the actuator is simplified by adhering ceramic sheets to it. The rotary piezoelectric actuator combines the first longitudinal mode of a rod with torus bending modes. The drive teeth then amplify the ring’s displacement, facilitating rotor rotation. The resonant frequency and modal shape of the actuator were determined using the finite element method. Furthermore, an investigation was conducted to analyze the influence of the drive teeth positioning on the motion trajectory at the contact point. Theoretically, we infer that the declination angle of the drive tooth is a crucial parameter for achieving high speeds. To test our idea, we built three prototype stators with different drive tooth declination angles. Our actuator stands out for its cost-effectiveness, structural simplicity, compatibility with harmonic signals, and ease of miniaturization. It can be considered for the drive of the tail rotor of a microhelicopter. Full article
(This article belongs to the Collection Piezoelectric Transducers: Materials, Devices and Applications)
Show Figures

Figure 1

8 pages, 2233 KiB  
Proceeding Paper
The Synthesis of Anisotropic 3D Nanomagnets for Magnetic Actuation and Sensing in Piezoelectric Polyvinylidene Fluoride towards Magnetic Nanogenerator Device Fabrication
by Ojodomo J. Achadu, Gideon L. Elizur and Owolabi M. Bankole
Eng. Proc. 2023, 58(1), 101; https://doi.org/10.3390/ecsa-10-16228 - 15 Nov 2023
Viewed by 648
Abstract
The geometry and anisotropic properties of 3D magnetic nanostructures have a direct impact on their magnetization properties and functionalities due to the presence of spatial coordinates. This has stimulated the exploration and synthesis of various types of nanosized magnetic materials for use in [...] Read more.
The geometry and anisotropic properties of 3D magnetic nanostructures have a direct impact on their magnetization properties and functionalities due to the presence of spatial coordinates. This has stimulated the exploration and synthesis of various types of nanosized magnetic materials for use in magnetic energy-harvesting technology. Herein, anisotropic 3D nanomagnets with cubic, spherical, and mixed truncated cubic/rod-like morphologies were prepared and embedded in a polyvinylidene fluoride (PVDF) polymer matrix to derive 3D nanomagnet–PDVF composites. The 3D nanomagnet–PDVF composites were found to exhibit the highly electroactive β-phase of PVDF, indicative of enhanced piezoelectric properties. Furthermore, the thin films of the 3D nanomagnet–PDVF composites displayed remarkable magnetic responsiveness and actuation capacity in the presence of a magnetic force. This work highlights the potential of the prepared 3D nanomagnet–PDVF composites as a magnetic sensing and actuator system towards the design of magnetic nanogenerators for harvesting ambient low-frequency magnetic noise. Full article
Show Figures

Figure 1

17 pages, 7451 KiB  
Article
Rod-Shaped Linear Inertial Type Piezoelectric Actuator
by Andrius Čeponis, Vytautas Jūrėnas, Dalius Mažeika, Vytautas Bakanauskas and Dovilė Deltuvienė
Actuators 2023, 12(10), 379; https://doi.org/10.3390/act12100379 - 7 Oct 2023
Cited by 3 | Viewed by 2133
Abstract
This article presents a numerical and experimental investigation of a novel rod-shaped linear piezoelectric actuator that consists of a square cross-section-shaped rod with eight piezo ceramic plates and a cylindrical guidance rail. The rod has a hollow cut made with an offset from [...] Read more.
This article presents a numerical and experimental investigation of a novel rod-shaped linear piezoelectric actuator that consists of a square cross-section-shaped rod with eight piezo ceramic plates and a cylindrical guidance rail. The rod has a hollow cut made with an offset from the longitudinal axis of the symmetry. A cylindrical guidance rail is placed on one side of the rod, while T-shaped clamping is formed on the opposite side. The slider is mounted on the rail and is moved along it. The actuator is compact, making it possible to mount it directly on a printed circuit board (PCB) or in another device with limited mounting space, restricted mass, or actuator footprint. The operation of the actuator is based on the excitation of the first longitudinal vibration mode of the rod that induces in-plane bending vibration of the nodal zone of the rod due to a hollowed cut asymmetrically placed in the central part of the actuator. The actuator is driven by two sawtooth waveform electric signals with the phase difference of π that allows exciting longitudinal deformations of the rod and controls the reverse motion of the slider. The results of numerical investigations confirmed the operation principle of the actuator at the frequency of 59.72 kHz. The maximum displacement amplitude of the guidance rail in the longitudinal direction reaches up to 152.9 μm while the voltage of 200 Vp-p was applied. An experimental investigation of the actuator was made, and a maximum linear speed of 45.6 mm/s and thrust force of 115.4 mN was achieved. Full article
(This article belongs to the Section Actuator Materials)
Show Figures

Figure 1

17 pages, 1994 KiB  
Article
An Investigation into Thermal Vibrations Caused by a Moving Heat Supply on a Spinning Functionally Graded Isotropic Piezoelectric Bounded Rod
by Ahmed E. Abouelregal, Marin Marin and Sahar M. Abusalim
Mathematics 2023, 11(7), 1739; https://doi.org/10.3390/math11071739 - 5 Apr 2023
Cited by 14 | Viewed by 2035
Abstract
By laminating piezoelectric and flexible materials, we can increase their performance. Therefore, the electrical and mechanical properties of layered piezoelectric materials subjected to electromechanical loads and heat sources must be analyzed theoretically and mechanically. Since the problem of infinite wave propagation cannot be [...] Read more.
By laminating piezoelectric and flexible materials, we can increase their performance. Therefore, the electrical and mechanical properties of layered piezoelectric materials subjected to electromechanical loads and heat sources must be analyzed theoretically and mechanically. Since the problem of infinite wave propagation cannot be addressed using classical thermoelasticity, extended thermoelasticity models have been derived. The thermo-mechanical response of a piezoelectric functionally graded (FG) rod due to a moveable axial heat source is considered in this paper, utilizing the dual-phase-lag (DPL) heat transfer model. It was supposed that the physical characteristics of the FG rod varied exponentially along the axis of the body. Both ends hold the rod, and there is no voltage across them. The Laplace transform and decoupling techniques were used to obtain the physical fields that have been analyzed. A range of heterogeneity, rotation, and heat source velocity measures were used to compare the results presented here and those in the previous literature. Full article
(This article belongs to the Special Issue Finite Element Modeling in Mechanical Systems)
Show Figures

Figure 1

16 pages, 6898 KiB  
Article
Study of Pressure Distribution in Floor Tiles with Printed P(VDF:TrFE) Sensors for Smart Surface Applications
by Asier Alvarez Rueda, Philipp Schäffner, Andreas Petritz, Jonas Groten, Andreas Tschepp, Frank Petersen, Martin Zirkl and Barbara Stadlober
Sensors 2023, 23(2), 603; https://doi.org/10.3390/s23020603 - 5 Jan 2023
Cited by 5 | Viewed by 4693
Abstract
Pressure sensors integrated in surfaces, such as the floor, can enable movement, event, and object detection with relatively little effort and without raising privacy concerns, such as video surveillance. Usually, this requires a distributed array of sensor pixels, whose design must be optimized [...] Read more.
Pressure sensors integrated in surfaces, such as the floor, can enable movement, event, and object detection with relatively little effort and without raising privacy concerns, such as video surveillance. Usually, this requires a distributed array of sensor pixels, whose design must be optimized according to the expected use case to reduce implementation costs while providing sufficient sensitivity. In this work, we present an unobtrusive smart floor concept based on floor tiles equipped with a printed piezoelectric sensor matrix. The sensor element adds less than 130 µm in thickness to the floor tile and offers a pressure sensitivity of 36 pC/N for a 1 cm2 pixel size. A floor model was established to simulate how the localized pressure excitation acting on the floor spreads into the sensor layer, where the error is only 1.5%. The model is valuable for optimizing the pixel density and arrangement for event and object detection while considering the smart floor implementation in buildings. Finally, a demonstration, including wireless connection to the computer, is presented, showing the viability of the tile to detect finger touch or movement of a metallic rod. Full article
Show Figures

Figure 1

19 pages, 4476 KiB  
Article
Design and Evaluation of a Low-Cost Electromechanical System to Test Dynamic Performance of Force Sensors at Low Frequencies
by Daniele Esposito, Jessica Centracchio, Emilio Andreozzi, Paolo Bifulco and Gaetano D. Gargiulo
Machines 2022, 10(11), 1017; https://doi.org/10.3390/machines10111017 - 2 Nov 2022
Cited by 4 | Viewed by 2960
Abstract
Piezoresistive or piezoelectric force sensors are widely available today. These sensors are preferred to loadcells because of their extremely reduced size, slimness, and low cost, which allow their easy inclusion in a large variety of devices including wearables. In particular, many applications are [...] Read more.
Piezoresistive or piezoelectric force sensors are widely available today. These sensors are preferred to loadcells because of their extremely reduced size, slimness, and low cost, which allow their easy inclusion in a large variety of devices including wearables. In particular, many applications are devoted to monitoring human body movements, such as those related to breathing, muscle contraction, walking, etc. However, such sensors offer variable performance, and they need to be individually calibrated and tested to ensure accurate measurements. An automated electromechanical system that allows simple mechanical tests of force sensors is proposed. The system by means of an electrical motor; a gear box; a connecting rod-crank mechanism; two pistons, and a coupling spring between them, impress sinusoidal axial forces onto the sensor under test. The system is designed as modular so that it can be customized: the force range to which the sensor is subjected, the frequency range, and the coupler with the sensor can be changed to resemble the actual application context. The actual force (read from a loadcell coupled to the sensor under test), a piston displacement, and the sensor output are simultaneously recorded. The electromechanical system generates nearly pure sinusoidal stresses at varying low frequencies (mean total harmonic distortion of 2.77%). The energy dissipated for a single stress cycle was 3.62 gf mm on average. The developed system was used to test a Force Sensitive Resistor (FSR)-based sensor and a piezoelectric (PZT) sensor. The tests revealed significant differences from the actual force values (particularly at very low frequencies), output drifts of the FSR sensor in measurements, and non-linear behaviors. The system was found to be able to provide dynamic performances, accurate calibration, and non-linear behavior of the individual sensor. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

11 pages, 4770 KiB  
Article
Fabrication and Characterization of Lead-Free BNT-6BT Ultrasonic Transducers Designed by an Intelligent Optimization Algorithm
by Junshan Zhang, Jianxin Zhao, Yi Quan, Jingrong He, Yi Li, Zhe Wang, Kun Zheng, Jian Zhuang, Zhishui Jiang, Li Wen and Wei Ren
Crystals 2022, 12(8), 1181; https://doi.org/10.3390/cryst12081181 - 22 Aug 2022
Cited by 2 | Viewed by 2751
Abstract
Lead-free piezoelectric material-based ultrasonic transducers have been researched for several years, but the inefficient properties and design difficulties have troubled lead-free ultrasonic transducers for a long time. To improve the performance and design efficiency of lead-free ultrasonic transducers, in this work, an equivalent [...] Read more.
Lead-free piezoelectric material-based ultrasonic transducers have been researched for several years, but the inefficient properties and design difficulties have troubled lead-free ultrasonic transducers for a long time. To improve the performance and design efficiency of lead-free ultrasonic transducers, in this work, an equivalent circuit model and intelligent optimization algorithm were combined for use in a transducer design. Firstly, 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3(BNT-6BT) lead-free piezoelectric ceramics were prepared and characterized. Then, BNT-6BT ceramics were used to fabricate the ultrasonic transducers. An equivalent circuit model-based software, PiezoCAD, and a genetic algorithm-based back-propagation neural network were used to optimize the design of the transducers. A 3.03 MHz center frequency and 60.3% −6 dB bandwidth of the optimized transducers were achieved, which were consistent with the neural networks optimization results. To verify the application potential of the lead-free transducers, tungsten rods phantom imaging and polystyrene spheres with 300 μm diameter manipulation were completed by the transducers, and the experiment results indicate that the BNT-6BT lead-free transducers have great potential in further biological and biomedical applications. Full article
(This article belongs to the Special Issue Lead-free Ferro-/Piezoelectric Ceramics and Thin Films)
Show Figures

Graphical abstract

29 pages, 8164 KiB  
Article
Design and Development of Bladeless Vibration-Based Piezoelectric Energy–Harvesting Wind Turbine
by Adel Younis, Zuomin Dong, Mohamed ElBadawy, Abeer AlAnazi, Hayder Salem and Abdullah AlAwadhi
Appl. Sci. 2022, 12(15), 7769; https://doi.org/10.3390/app12157769 - 2 Aug 2022
Cited by 13 | Viewed by 6922
Abstract
To meet the growing energy demand and increasing environmental concerns, clean and renewable fluid energy, such as wind and ocean energy, has received considerable attention. This study proposes a bladeless wind energy–harvesting device based vortex-induced vibrations (VIV). The proposed design is mainly composed [...] Read more.
To meet the growing energy demand and increasing environmental concerns, clean and renewable fluid energy, such as wind and ocean energy, has received considerable attention. This study proposes a bladeless wind energy–harvesting device based vortex-induced vibrations (VIV). The proposed design is mainly composed of a base, a hollow mast, and an elastic rod. The proposed design takes advantage of vortices generated when the airflow interacts with the mast, and the flow splits and then separates and generates vortices that eventually make the elastic rod oscillate, and out of these oscillations, energy can be harvested. Different airflow disruption geometries are studied and tested numerically and experimentally to identify the most effective shape and orientation for converting wind energy to electric energy. Computational fluid dynamics (CFD) modeling and simulations were performed on the elastic mast, a VIV device’s core wind energy–collecting component, to guide the device’s design. These simulations examined the mast-produced lift coefficient, velocity, pressure, and vorticity contours of different mast geometries. The mast’s vibration energy under different wind intensities was also experimentally tested using a scaled model in the wind tunnel. The level of converted electric power was measured and monitored using piezoelectric sensors mounted at different locations on the mast. The experimental study identified the ideal orientation angle of the mast and the best location for the piezoelectric sensors for harnessing more energy. The experiments confirmed the CFD simulation results that a complex cylinder design produces more power. The combined numerical and experimental studies led to an environmentally friendly, new VIV design with much improved power generation capabilities. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop