Research on Repolarization Characteristic of PVDF Strain Sensor Used in Smart Tires
Abstract
1. Introduction
2. Temperature Characteristics and Depolarization Mechanism of PVDF Films
2.1. Sample Preparation and Characterization
2.2. Analysis of PVDF Depolarization Mechanism
2.2.1. Temperature-Dependent Effect
2.2.2. Time-Dependent Effect
2.2.3. Structure Change in the PVDF Depolarization
2.3. Repolarization Method and Implementation
3. Performance Verification of PVDF Sensor
3.1. Simulation Analysis of PVDF Sensor
3.2. Experimental Set Up of PVDF Sensor
3.3. Verification of Sensor Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xing, C.; Zhang, Q.; Wang, Z.; Guo, J.; Li, M.; Yu, D.; Wang, Y.; Zhou, Q.; Tang, W.; Li, Z.; et al. Soft-metal bonding-enabled recyclable and anti-interference flexible multilayer piezoelectric sensor for tractor tire strain monitoring. Nano Energy 2024, 127, 13. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, J.; Luo, X.; Yin, Y.; Yang, B.; Ni, S.; Jiang, Z. An intelligent tire force estimation correction method based on wheel spoke strain. Sens. Actuators A Phys. 2024, 380, 116023. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, H.; Yang, B.; Ni, S.; Huo, R.; Lian, C. A spoke strain-based method to estimate tire condition parameters for intelligent tires. Sens. Actuators A Phys. 2024, 367, 11. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, C.; Zhang, J. Continuous measurement of tire deformation using long-gauge strain sensors. Mech. Syst. Signal Process. 2020, 142, 106782. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, Q. Development of a flexible belt on an elastic multi-stiffness foundation tire model for a heavy load radial tire with a large section ratio. Mech. Syst. Signal Process. 2019, 123, 43–67. [Google Scholar] [CrossRef]
- Vázquez, V.F.; Hidalgo, M.E.; García-Hoz, A.M.; Camara, A.; Terán, F.; Ruiz-Teran, A.M.; Paje, S.E. Tire/road noise, texture, and vertical accelerations: Surface assessment of an urban road. Appl. Acoust. 2020, 160, 107153. [Google Scholar] [CrossRef]
- Tang, Y.; Tao, L.; Li, Y.; Zhang, D.; Zhang, X. Estimation of tire side-slip angles based on the frequency domain lateral acceleration characteristics inside tires. Machines 2024, 12, 229. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, X.; Obrien, E.J.; Peng, J.; Deng, L. Noncontact measurement of tire deformation based on computer vision and Tire-Net semantic segmentation. Measurement 2023, 217, 14. [Google Scholar] [CrossRef]
- Xiong, Y.; Tuononen, A. A laser-based sensor system for tire tread deformation measurement. Meas. Sci. Technol. 2014, 25, 115103. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Hiraoka, N.; Todoroki, A.; Mizutani, Y. Analysis of applied load estimation using stain for intelligent tires. J. Solid Mech. Mater. Eng. 2010, 4, 1496–1510. [Google Scholar] [CrossRef]
- Anghelache, G.; Moisescu, R.; Sorohan, S.; Buretea, D. Measuring system for investigation of tri-axial stress distribution across the tyre-road contact patch. Measurement 2011, 44, 559–568. [Google Scholar] [CrossRef]
- Cornejo, A.; Mataix, V.; Wriggers, P.; Barbu, L.G.; Onate, E. A numerical framework for modelling tire mechanics accounting for composite materials, large strains and frictional contact. Comput. Mech. 2024, 73, 1–25. [Google Scholar] [CrossRef]
- Armstrong, E.G.; Sandu, C.; Taheri, S. Investigation into use of piezoelectric sensors in a wheeled robottire for surface characterization. J. Teramechanics 2015, 62, 75–90. [Google Scholar] [CrossRef]
- Liu, W.; Qin, Z.; Lyu, S.K. Design and Verification of a Novel Energy Harvester for Tire Pressure Monitoring Systems. Machines 2023, 11, 562. [Google Scholar] [CrossRef]
- Nguyen, K.; Bryant, M.; Song, I.-H.; You, B.H.; Khaleghian, S. The Application of PVDF-Based Piezoelectric Patches in Energy Harvesting from Tire Deformation. Sensors 2022, 22, 9995. [Google Scholar] [CrossRef]
- Pandiyan, A.; Vengudusamy, R.; Veeramuthu, L.; Muthuraman, A.; Wang, Y.C.; Lee, H. Synergistic effects of size-confined mxene nanosheets in self-powered sustainable smart textiles for environmental remediation. Nano Energy 2024, 133, 110426. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, Z.; Huang, Z.; Yu, H.; Wang, C.; Zhang, H.; Li, T.; Huang, Q.; Yuan, Z.; Jiang, Y.; et al. Constructing a high-power self-powered electrochemical pressure sensor for multimode pressure detections. Nano Energy 2025, 136, 110747. [Google Scholar] [CrossRef]
- Zhu, X.; Jie, L.; Wang, G.; Zhou, K.; Yuan, Y.; Sheng, J. Study on Experiment of Tire Strain Sensor. Tract. Farm Transp. 2008. [Google Scholar] [CrossRef]
- Dargaville, T.R.; Celina, M.; Chaplya, P.M. Evaluation of piezoelectric poly (vinylidene fluoride) polymers for use in space environments. I. Temperature limitations. J. Polym. Sci. Part B Polym. Phys. 2010, 43, 1310–1320. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, S.K.; Smith, M.; Williams, F.; Vickers, M.E.; Elliott, J.A.; Narayan, S.K. Unprecedented dipole alignment in α phase nylon-11 nanowires for high-performance energy-harvesting applications. Sci. Adv. 2020, 6, eaay5065. [Google Scholar] [CrossRef]
- Li, Q.L.; Fan, L.C.; Li, T. Determination of thermo-physical properties of rubber and its effect on curing temperature field of tire. Adv. Mater. Res. 2011, 221, 533–539. [Google Scholar] [CrossRef]
- Liang, T. Numerical simulation and temperature measurement research on curing process of all-steel radial truck tire. J. Qingdao Univ. Sci. Technol. 2013. [Google Scholar]
- Yang, H.; Zhou, C.; Liu, X.; Zhou, Q.; Chen, G.; Hua, W.; Li, W. Structural, microstructural and electrical properties of BiFeO3–BaTiO3 ceramics with high thermal stability. Mater. Res. Bull. 2012, 47, 4233–4239. [Google Scholar] [CrossRef]
- Wang, Y.; Gai, Y.; Kang, L.; Qu, J. PVDF piezoelectric film based force measuring system. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 2857–2861. [Google Scholar]
- Shen, J.; Zeng, Y.; Li, Q.; Zhou, J.; Chen, W. Convenient folding-hot-pressing fabrication and enhanced piezoelectric properties of high β-phase-content poly(vinylidene fluoride) films. Interdiscip. Mater. 2024, 3, 715–725. [Google Scholar] [CrossRef]
- Jia, N.; He, Q.; Sun, J.; Xia, G.; Song, R. Crystallization behavior and electroactive properties of PVDF, P(VDF-TrFE) and their blend films. Polym. Test. 2017, 57, 302–306. [Google Scholar] [CrossRef]
- Sharma, A.; Bhaumik, I.; Singh, G.; Tiwari, V.S. Investigation on the correlation between piezoelectricity and its thermal behavior with depolarization temperature and antiferroelectric order in Niobium-Doped (Na0.41K0.09Bi0.5) TiO3: A lead-free piezoelectric. Phys. Status Solidi B 2021, 258, 2100155. [Google Scholar] [CrossRef]
- Esterly, D.M. Manufacturing of Poly(Vinylidene Fluoride) and Evaluation of Its Mechanical Properties. Ph.D. Dissertation, Virginia Tech, Blacksburg, VA, USA, 2002. [Google Scholar]
- Yang, Y.; Pan, H.; Xie, G.; Jiang, Y.; Chen, C.; Su, Y.; Wang, Y.; Tai, H. Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens. Actuators A Phys. 2019, 301, 111789. [Google Scholar] [CrossRef]
- Ting, Y.; Suprapto; Chiu, C.; Gunawan, H. Characteristic analysis of biaxially stretched PVDF thin films. J. Appl. Polym. Sci. 2018, 135, 10. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, X.; Yu, Z.; Zhao, F. Polarization study of poly(vinylidene fluoride) films under cyclic electric fields. Polym. Eng. Sci. 2020, 60, 645–656. [Google Scholar] [CrossRef]
Name | Parameters |
---|---|
Piezoelectric coefficient | d33 = 15.0 pC/N (Repolarization) d33 = 10.5 pC/N(After vulcanization) |
Relative permittivity | 10~15 |
Poisson’s ratio | 0.35 |
Density | 185.4 kg/m3 |
Elastic modulus | ~2000 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Tian, Y.; Tang, R.; Lu, B.; Song, M. Research on Repolarization Characteristic of PVDF Strain Sensor Used in Smart Tires. Electronics 2025, 14, 2265. https://doi.org/10.3390/electronics14112265
Han Y, Tian Y, Tang R, Lu B, Song M. Research on Repolarization Characteristic of PVDF Strain Sensor Used in Smart Tires. Electronics. 2025; 14(11):2265. https://doi.org/10.3390/electronics14112265
Chicago/Turabian StyleHan, Yingxin, Yahui Tian, Ruitao Tang, Bo Lu, and Mingliang Song. 2025. "Research on Repolarization Characteristic of PVDF Strain Sensor Used in Smart Tires" Electronics 14, no. 11: 2265. https://doi.org/10.3390/electronics14112265
APA StyleHan, Y., Tian, Y., Tang, R., Lu, B., & Song, M. (2025). Research on Repolarization Characteristic of PVDF Strain Sensor Used in Smart Tires. Electronics, 14(11), 2265. https://doi.org/10.3390/electronics14112265