Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = piezoelectric catalytic effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
81 pages, 10454 KiB  
Review
Glancing Angle Deposition in Gas Sensing: Bridging Morphological Innovations and Sensor Performances
by Shivam Singh, Kenneth Christopher Stiwinter, Jitendra Pratap Singh and Yiping Zhao
Nanomaterials 2025, 15(14), 1136; https://doi.org/10.3390/nano15141136 - 21 Jul 2025
Viewed by 390
Abstract
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic [...] Read more.
Glancing Angle Deposition (GLAD) has emerged as a versatile and powerful nanofabrication technique for developing next-generation gas sensors by enabling precise control over nanostructure geometry, porosity, and material composition. Through dynamic substrate tilting and rotation, GLAD facilitates the fabrication of highly porous, anisotropic nanostructures, such as aligned, tilted, zigzag, helical, and multilayered nanorods, with tunable surface area and diffusion pathways optimized for gas detection. This review provides a comprehensive synthesis of recent advances in GLAD-based gas sensor design, focusing on how structural engineering and material integration converge to enhance sensor performance. Key materials strategies include the construction of heterojunctions and core–shell architectures, controlled doping, and nanoparticle decoration using noble metals or metal oxides to amplify charge transfer, catalytic activity, and redox responsiveness. GLAD-fabricated nanostructures have been effectively deployed across multiple gas sensing modalities, including resistive, capacitive, piezoelectric, and optical platforms, where their high aspect ratios, tailored porosity, and defect-rich surfaces facilitate enhanced gas adsorption kinetics and efficient signal transduction. These devices exhibit high sensitivity and selectivity toward a range of analytes, including NO2, CO, H2S, and volatile organic compounds (VOCs), with detection limits often reaching the parts-per-billion level. Emerging innovations, such as photo-assisted sensing and integration with artificial intelligence for data analysis and pattern recognition, further extend the capabilities of GLAD-based systems for multifunctional, real-time, and adaptive sensing. Finally, current challenges and future research directions are discussed, emphasizing the promise of GLAD as a scalable platform for next-generation gas sensing technologies. Full article
Show Figures

Graphical abstract

138 pages, 31774 KiB  
Review
Green Ammonia, Nitric Acid, Advanced Fertilizer and Electricity Production with In Situ CO2 Capture and Utilization by Integrated Intensified Nonthermal Plasma Catalytic Processes: A Technology Transfer Review for Distributed Biorefineries
by Galip Akay
Catalysts 2025, 15(2), 105; https://doi.org/10.3390/catal15020105 - 22 Jan 2025
Cited by 2 | Viewed by 3651
Abstract
An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H2, NH3, HNO3 and symbiotic advanced (SX) fertilizers [...] Read more.
An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H2, NH3, HNO3 and symbiotic advanced (SX) fertilizers with CO2 mineralization capacity to achieve negative CO2 emission. Such a production platform is an integrated intensified biorefinery (IIBR), used as an alternative to large-scale centralized production which relies on green electricity and CCUS. Hence, the capacity and availability of the renewable biomass and unavoidable waste were examined. The critical elements of the IIBR include gasification/syngas production; syngas cleaning; electricity generation; and the conversion of clean syngas (which contains H2, CO, CH4, CO2 and N2) to the primary products using nonthermal plasma catalytic reactors with in situ NH3 sequestration for SA fertilizers. The status of these critical elements is critically reviewed with regard to their techno-economics and suitability for industrial applications. Using novel gasifiers powered by a combination of CO2, H2O and O2-enhanced air as the oxidant, it is possible to obtain syngas with high H2 concentration suitable for NH3 synthesis. Gasifier performances for syngas generation and cleaning, electricity production and emissions are evaluated and compared with gasifiers at 50 kWe and 1–2 MWe scales. The catalyst and plasma catalytic reactor systems for NH3 production with or without in situ reactive sequestration are considered in detail. The performance of the catalysts in different plasma reactions is widely different. The high intensity power (HIP) processing of perovskite (barium titanate) and unary/binary spinel oxide catalysts (or their combination) performs best in several syntheses, including NH3 production, NOx from air and fertigation fertilizers from plasma-activated water. These catalysts can be represented as BaTi1−vO3−x{#}yNz (black, piezoelectric barium titanate, bp-{BTO}) and M(1)3−jM(2)kO4−m{#}nNr/SiO2 (unary (k = 0) or a binary (k > 0) silane-coated SiO2-supported spinel oxide catalyst, denoted as M/Si = X) where {#} infers oxygen vacancy. HIP processing in air causes oxygen vacancies, nitrogen substitution, the acquisition of piezoelectric state and porosity and chemical/morphological heterogeneity, all of which make the catalysts highly active. Their morphological evaluation indicates the generation of dust particles (leading to porogenesis), 2D-nano/micro plates and structured ribbons, leading to quantum effects under plasma catalytic synthesis, including the acquisition of high-energy particles from the plasma space to prevent product dissociation as a result of electron impact. M/Si = X (X > 1/2) and bp-{BTO} catalysts generate plasma under microwave irradiation (including pulsed microwave) and hence can be used in a packed bed mode in microwave plasma reactors with plasma on and within the pores of the catalyst. Such reactors are suitable for electric-powered small-scale industrial operations. When combined with the in situ reactive separation of NH3 in the so-called Multi-Reaction Zone Reactor using NH3 sequestration agents to create SA fertilizers, the techno-economics of the plasma catalytic synthesis of fertilizers become favorable due to the elimination of product separation costs and the quality of the SA fertilizers which act as an artificial root system. The SA fertilizers provide soil fertility, biodiversity, high yield, efficient water and nutrient use and carbon sequestration through mineralization. They can prevent environmental damage and help plants and crops to adapt to the emerging harsh environmental and climate conditions through the formation of artificial rhizosphere and rhizosheath. The functions of the SA fertilizers should be taken into account when comparing the techno-economics of SA fertilizers with current fertilizers. Full article
(This article belongs to the Special Issue Catalysis for CO2 Conversion, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 2775 KiB  
Proceeding Paper
Advancement of Electrospun Carbon Nanofiber Mats in Sensor Technology for Air Pollutant Detection
by Al Mamun, Mohamed Kiari, Abdelghani Benyoucef and Lilia Sabantina
Eng. Proc. 2024, 67(1), 82; https://doi.org/10.3390/engproc2024067082 - 3 Jan 2025
Cited by 1 | Viewed by 1017
Abstract
The use of electrospun carbon nanofibers (ECNs) has been the focus of considerable interest due to their potential implementation in sensing. These ECNs have unique structural and morphological features such as high surface area-to-volume ratio, cross-linked pore structure, and good conductivity, making them [...] Read more.
The use of electrospun carbon nanofibers (ECNs) has been the focus of considerable interest due to their potential implementation in sensing. These ECNs have unique structural and morphological features such as high surface area-to-volume ratio, cross-linked pore structure, and good conductivity, making them well suited for sensing applications. Electrospinning technology, in which polymer solutions or melts are electrostatically deposited, enables the production of high-performance nanofibers with tailored properties, including fiber diameter, porosity, and composition. This controllability enables the use of ECNs to optimize sensing applications, resulting in improved sensor performance and sensitivity. While carbon nanofiber mats have potential for sensor applications, several challenges remain to improve selectivity, sensitivity, stability and scalability. Sensor technologies play a critical role in the global sharing of environmental data, facilitating collaboration to address transboundary pollution issues and fostering international cooperation to find solutions to common environmental challenges. The use of carbon nanofibers for the detection of air pollutants offers a variety of possibilities for industrial applications in different sectors, ranging from healthcare to materials science. For example, optical, piezoelectric and resistive ECNs sensors effectively monitor particulate matter, while chemoresistive and catalytic ECNs sensors are particularly good at detecting gaseous pollutants. For heavy metals, electrochemical ECNF sensors offer accurate and reliable detection. This brief review provides in-sights into the latest developments and findings in the fabrication, properties and applications of ECNs in the field of sensing. The efficient utilization of these resources holds significant potential for meeting the evolving needs of sensing technologies in various fields, with a particular focus on air pollutant detection. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

14 pages, 5070 KiB  
Article
Magnetically Assembled Electrode Incorporating Self-Powered Tourmaline Composite Particles: Exploiting Waste Energy in Electrochemical Wastewater Treatment
by Bo Zhang, Dan Shao, Yaru Wang, Hao Xu and Haojie Song
Catalysts 2025, 15(1), 2; https://doi.org/10.3390/catal15010002 - 24 Dec 2024
Viewed by 685
Abstract
A magnetically assembled electrode (MAE) is a modular electrode format in electrochemical oxidation wastewater treatment. MAE utilizes magnetic forces to attract the magnetic catalytic auxiliary electrodes (AEs) on the main electrode (ME), which has the advantages of high efficiency and flexible adjustability. However, [...] Read more.
A magnetically assembled electrode (MAE) is a modular electrode format in electrochemical oxidation wastewater treatment. MAE utilizes magnetic forces to attract the magnetic catalytic auxiliary electrodes (AEs) on the main electrode (ME), which has the advantages of high efficiency and flexible adjustability. However, the issue of the insufficient polarization of the AEs leaves the potential of this electrode underutilized. In this study, natural tourmaline (Tml) particles with pyroelectric and piezoelectric properties were utilized to solve the above issue by harvesting and converting the waste energy (i.e., the joule heating energy and the bubble striking mechanical energy) from the electrolysis environment into additional electrical energy applied on the AEs. Different contents of Tml particles were composited with Fe3O4/Sb-SnO2 particles as novel AEs, and the structure–activity relationship of the novel MAE was investigated by various electrochemical measurements and orthogonal tests of dye wastewater treatment. The results showed that Tml could effectively enhance all electrochemical properties of the electrode. The optimal dye removal rate was obtained by loading the AEs with 0.2 g·cm−2 when the Tml content was 4.5 wt%. The interaction of current density and Tml content had a significant effect on the COD removal rate, and the mineralization capacity of the electrode was significantly enhanced. The findings of this study have unveiled the potential application of minerals and energy conversion materials in the realm of electrochemical oxidation wastewater treatment. Full article
Show Figures

Graphical abstract

14 pages, 3587 KiB  
Review
Progress in the Synthesis and Applications of C3N5-Based Catalysts in the Piezoelectric Catalytic Degradation of Organics
by Shupeng Yin, Huiguo Yu, Haifeng Fu, Yinglong Wang and Fanqing Meng
Catalysts 2024, 14(12), 854; https://doi.org/10.3390/catal14120854 - 25 Nov 2024
Cited by 3 | Viewed by 1241
Abstract
Piezoelectric catalysis has shown great potential for application in green chemistry due to its “clean” properties. By applying external mechanical force, this method can induce rapid charge transfer, providing an important reaction pathway for carbon neutrality and carbon peaking. Carbon nitride (C3 [...] Read more.
Piezoelectric catalysis has shown great potential for application in green chemistry due to its “clean” properties. By applying external mechanical force, this method can induce rapid charge transfer, providing an important reaction pathway for carbon neutrality and carbon peaking. Carbon nitride (C3N5)-based catalysts, as a novel material, have received widespread attention for their synthesis and application in the piezoelectric catalytic degradation of organic compounds. This review summarizes the latest research progress of C3N5-based catalysts, covering their applications in environmental governance and resource utilization, including the removal of organic pollutants in water. We focused on the synthesis strategy, characterization methods, and application progress of C3N5-based catalysts in the degradation of organic pollutants. The quantitative results show that some C3N5-based catalysts had removal efficiencies of over 85% in the treatment of specific pollutants. In addition, this article also discusses the piezoelectric effect and its degradation mechanism, providing direction for future research. Finally, the application prospects and potential development directions of C3N5-based catalysts in environmental governance are discussed. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

9 pages, 5849 KiB  
Proceeding Paper
Interfacial Action of Co-Doped MoS2 Nanosheets on Directional Piezoelectric Catalytic Generation of Reactive Oxygen Species
by Win Thi Yein, Dong-Su Kim and Qun Wang
Chem. Proc. 2024, 15(1), 3; https://doi.org/10.3390/chemproc2024015003 - 18 Nov 2024
Viewed by 915
Abstract
Molybdenum disulfide (MoS2) with single- and odd-numbered layers is a novel piezocatalyst, and its piezocatalytic molecular oxygen activation is considered a promising and low-cost strategy for environmental remediation. In this study, the odd-numbered layers of Co-doped MoS2 ultrathin nanosheets were [...] Read more.
Molybdenum disulfide (MoS2) with single- and odd-numbered layers is a novel piezocatalyst, and its piezocatalytic molecular oxygen activation is considered a promising and low-cost strategy for environmental remediation. In this study, the odd-numbered layers of Co-doped MoS2 ultrathin nanosheets were successfully fabricated, which decomposed tetracycline by 99.8% in 15 min through shaking vibration. Moreover, to verify the enhanced piezoelectric catalytic activity of MoS2 via the doping effect, molecular oxygen activation properties were predicted through DFT calculation and monitored by generated reactive oxygen species (ROS) evolution. In addition, the primary reactive species responsible for the degradation of tetracycline pollutants were also investigated in detail. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Crystals)
Show Figures

Figure 1

26 pages, 6753 KiB  
Review
A Review: Recent Advances of Piezoelectric Photocatalysis in the Environmental Fields
by Zhengjie Ye, Ru Zheng, Shuangjun Li, Qing Wang, Rui Zhang, Chenjing Yu, Jia Lei, Xiaoyan Liu and Dieqing Zhang
Nanomaterials 2024, 14(20), 1641; https://doi.org/10.3390/nano14201641 - 12 Oct 2024
Cited by 4 | Viewed by 3120
Abstract
Piezoelectric photocatalysis can effectively suppress the recombination of electron holes during the course of photocatalysis, which has been widely applied in environmental and energy catalysis. Its advantage is that when the piezoelectric effect happens, a built-in electric field is formed inside the catalyst, [...] Read more.
Piezoelectric photocatalysis can effectively suppress the recombination of electron holes during the course of photocatalysis, which has been widely applied in environmental and energy catalysis. Its advantage is that when the piezoelectric effect happens, a built-in electric field is formed inside the catalyst, which improves the separation efficiency of photogenerated charge carriers and obtains more excellent photocatalytic performance. The efficient conversion of mechanical energy to chemical energy can be realized through the synergistic effect of the piezoelectric effect, and photocatalysis is greatly significant in solving the energy crisis and providing environmental protection. Therefore, we organized a more complete review to better understand the mechanism and system of piezoelectric photocatalysis. We briefly introduce the principle of the piezoelectric effect, the existing types of piezoelectric photocatalysts, the practical application scenarios, and the future challenges and feasible methods to improve catalytic efficiency. The purpose of this review is to help us broaden the idea of designing piezoelectric photocatalysts, clarify the future research direction, and put it into more fields of environmental protection and energy reuse. Full article
Show Figures

Figure 1

12 pages, 3638 KiB  
Article
Hybridization of Polymer-Encapsulated MoS2-ZnO Nanostructures as Organic–Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation
by Gowthami Palanisamy, Mrunal Bhosale, Sahil S. Magdum, Sadhasivam Thangarasu and Tae-Hwan Oh
Polymers 2024, 16(15), 2213; https://doi.org/10.3390/polym16152213 - 2 Aug 2024
Cited by 1 | Viewed by 1377
Abstract
The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An [...] Read more.
The development of environmentally friendly technology is vital to effectively address the issues related to environmental deterioration. This work integrates ZnO-decorated MoS2 (MZ) to create a high-performing PVDF-based PVDF/MoS2-ZnO (PMZ) hybrid polymer composite film for sonocatalytic organic pollutant degradation. An efficient synergistic combination of MZ was identified by altering the ratio, and its influence on PVDF was assessed using diverse structural, morphological, and sonocatalytic performances. The PMZ film demonstrated very effective sonocatalytic characteristics by degrading rhodamine B (RhB) dye with a degradation efficiency of 97.23%, whereas PVDF only degraded 17.7%. Combining MoS2 and ZnO reduces electron–hole recombination and increases the sonocatalytic degradation performance. Moreover, an ideal piezoelectric PVDF polymer with MZ enhances polarization to improve redox processes and dye degradation, ultimately increasing the degradation efficiency. The degradation efficiency of RhB was seen to decrease while employing isopropanol (IPA) and p-benzoquinone (BQ) due to the presence of reactive oxygen species. This suggests that the active species •O2 and •OH are primarily responsible for the degradation of RhB utilizing PMZ2 film. The PMZ film exhibited improved reusability without substantially decreasing its catalytic activity. The superior embellishment of ZnO onto MoS2 and effective integration of MZ into the PVDF polymer film results in improved degrading performance. Full article
Show Figures

Figure 1

16 pages, 5671 KiB  
Article
Piezo-Photocatalytic Degradation of Tetracycline by 3D BaTiO3 Nanomaterials: The Effect of Crystal Structure and Catalyst Loadings
by Qingqing Guo, Ting Gao, Mohsen Padervand, Diyuan Du, Ke Zhao, Yanqin Zhang, Tingting Jia and Chuanyi Wang
Processes 2023, 11(12), 3323; https://doi.org/10.3390/pr11123323 - 29 Nov 2023
Cited by 8 | Viewed by 2026
Abstract
Piezoelectric photocatalysis improves catalytic activity by preventing photogenerated carrier recombination. Hence, three morphologies of BaTiO3 (BTO) were successfully prepared for the piezoelectric photocatalytic degradation of tetracycline (TC, C(TC) = 40 mg/L). The tetragonal-phase BaTiO3 nanoparticles (BTO-NPs) showed the best performance [...] Read more.
Piezoelectric photocatalysis improves catalytic activity by preventing photogenerated carrier recombination. Hence, three morphologies of BaTiO3 (BTO) were successfully prepared for the piezoelectric photocatalytic degradation of tetracycline (TC, C(TC) = 40 mg/L). The tetragonal-phase BaTiO3 nanoparticles (BTO-NPs) showed the best performance in comparison with cubic-phase nanoflowers (BTO-Nf) and cubic-phase coral-like structures (BTO-Nc) under the same conditions (C(BTO) = 0.6 g/L). When the loading of BTO-NPs was reduced to 0.2 g/L, the photocatalytic degradation efficiency was lowered from 64.2% to 50.1%. However, the 0.6 g/L BTO-NPs increased by only 12.8% after piezoelectricity induction. On the contrary, the BTO-NPs’ degradation effect of 0.2 g/L with the piezoelectric effect was greatly improved from 50.1% to 78.0%, with an increase rate of 27.9%. As the quantity of catalyst was decreased, the increased inter-particle voids made the lattice more susceptible to deformation by external forces, producing a more pronounced piezoelectric effect. These findings indicate that crystal structure and catalyst loading are critical factors in increasing piezoelectric photocatalytic performance. This article emphasizes the application value of piezoelectric photocatalysis in degrading organic pollutants, and provides practical guidelines for optimizing its performance. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Graphical abstract

13 pages, 4348 KiB  
Article
Enhanced Catalytic Performance of Ag NP/0.95AgNbO3-0.05LiTaO3 Heterojunction from the Combination of Surface Plasma Resonance Effect and Piezoelectric Effect Using Facile Mechanical Milling
by Tianxiang Ren, Tufeng He, Zhenzhu Cao, Pengyue Xing, Xinglong Teng and Guorong Li
Nanomaterials 2023, 13(22), 2972; https://doi.org/10.3390/nano13222972 - 18 Nov 2023
Cited by 2 | Viewed by 1567
Abstract
An internal built electric field can suppress the recombination of electron–hole pairs and distinctly enhance the catalytic activity of a photocatalyst. Novel t-Ag/0.95AgNbO3-0.05LiTaO3 heterojunction was prepared by reducing silver nanoparticles (Ag NPs) on the surface of the piezoelectric powder 0.95AgNbO [...] Read more.
An internal built electric field can suppress the recombination of electron–hole pairs and distinctly enhance the catalytic activity of a photocatalyst. Novel t-Ag/0.95AgNbO3-0.05LiTaO3 heterojunction was prepared by reducing silver nanoparticles (Ag NPs) on the surface of the piezoelectric powder 0.95AgNbO3-0.05LiTaO3 (0.05-ANLT) using a simple mechanical milling method. The effects of milling time and excitation source used for the degradation of organic dye by heterojunction catalysts were investigated. The results demonstrate that the optimized 1.5-Ag/0.05-ANLT heterojunction removes 97% RhB within 40 min, which is 7.8 times higher than that of single piezoelectric catalysis and 25.4 times higher than that of single photocatalysis. The significant enhancement of photocatalytic activity can be attributed to the synergistic coupling of the surface plasmon resonance (SPR) effect and the piezoelectric effect. Full article
Show Figures

Figure 1

16 pages, 4831 KiB  
Article
Fabrication of Piezoelectric ZnO Nanowires on Laser Textured Copper Substrate to Enhance Catalytic Properties
by Hongbin Wang, Rui Zhou, Huangping Yan and Hongjun Liu
Coatings 2023, 13(11), 1963; https://doi.org/10.3390/coatings13111963 - 17 Nov 2023
Cited by 2 | Viewed by 1939
Abstract
In this work, 3D periodic “grid-type” CuO/Cu2O layers were fabricated on a copper sheet using laser processing techniques, and the laser processing parameters were optimized for favorable ZnO nanowire growth. It was found that ZnO nanowires could be successfully prepared to [...] Read more.
In this work, 3D periodic “grid-type” CuO/Cu2O layers were fabricated on a copper sheet using laser processing techniques, and the laser processing parameters were optimized for favorable ZnO nanowire growth. It was found that ZnO nanowires could be successfully prepared to form a CuO-Cu2O-ZnO heterojunction structure without an extra catalyst or seed layer coating, which could be attributed to the copper oxide active sites induced via laser texturing. ZnO nanowires on laser textured “grid-type” copper substrates demonstrated an effective piezocatalytic performance with different morphologies and the generation of abundant reactive oxygen species in the CuO-Cu2O-ZnO catalytic system, providing a fundamental mechanism for the degradation of organic dye in water. This simple and low-cost method could provide a useful guide for the large-scale efficient and versatile synthesis of immobilized piezoelectric catalysts. Full article
Show Figures

Graphical abstract

109 pages, 17939 KiB  
Review
Hydrogen, Ammonia and Symbiotic/Smart Fertilizer Production Using Renewable Feedstock and CO2 Utilization through Catalytic Processes and Nonthermal Plasma with Novel Catalysts and In Situ Reactive Separation: A Roadmap for Sustainable and Innovation-Based Technology
by Galip Akay
Catalysts 2023, 13(9), 1287; https://doi.org/10.3390/catal13091287 - 8 Sep 2023
Cited by 14 | Viewed by 6556
Abstract
This multi-disciplinary paper aims to provide a roadmap for the development of an integrated, process-intensified technology for the production of H2, NH3 and NH3-based symbiotic/smart fertilizers (referred to as target products) from renewable feedstock with CO2 sequestration [...] Read more.
This multi-disciplinary paper aims to provide a roadmap for the development of an integrated, process-intensified technology for the production of H2, NH3 and NH3-based symbiotic/smart fertilizers (referred to as target products) from renewable feedstock with CO2 sequestration and utilization while addressing environmental issues relating to the emerging Food, Energy and Water shortages as a result of global warming. The paper also discloses several novel processes, reactors and catalysts. In addition to the process intensification character of the processes used and reactors designed in this study, they also deliver novel or superior products so as to lower both capital and processing costs. The critical elements of the proposed technology in the sustainable production of the target products are examined under three-sections: (1) Materials: They include natural or synthetic porous water absorbents for NH3 sequestration and symbiotic and smart fertilizers (S-fertilizers), synthesis of plasma interactive supported catalysts including supported piezoelectric catalysts, supported high-entropy catalysts, plasma generating-chemical looping and natural catalysts and catalysts based on quantum effects in plasma. Their performance in NH3 synthesis and CO2 conversion to CO as well as the direct conversion of syngas to NH3 and NH3—fertilizers are evaluated, and their mechanisms investigated. The plasma-generating chemical-looping catalysts (Catalysts, 2020, 10, 152; and 2016, 6, 80) were further modified to obtain a highly active piezoelectric catalyst with high levels of chemical and morphological heterogeneity. In particular, the mechanism of structure formation in the catalysts BaTi1−rMrO3−x−y{#}xNz and M3O4−x−y{#}xNz/Si = X was studied. Here, z = 2y/3, {#} represents an oxygen vacancy and M is a transition metal catalyst. (2) Intensified processes: They include, multi-oxidant (air, oxygen, CO2 and water) fueled catalytic biomass/waste gasification for the generation of hydrogen-enriched syngas (H2, CO, CO2, CH4, N2); plasma enhanced syngas cleaning with ca. 99% tar removal; direct syngas-to-NH3 based fertilizer conversion using catalytic plasma with CO2 sequestration and microwave energized packed bed flow reactors with in situ reactive separation; CO2 conversion to CO with BaTiO3−x{#}x or biochar to achieve in situ O2 sequestration leading to higher CO2 conversion, biochar upgrading for agricultural applications; NH3 sequestration with CO2 and urea synthesis. (3) Reactors: Several patented process-intensified novel reactors were described and utilized. They are all based on the Multi-Reaction Zone Reactor (M-RZR) concept and include, a multi-oxidant gasifier, syngas cleaning reactor, NH3 and fertilizer production reactors with in situ NH3 sequestration with mineral acids or CO2. The approach adopted for the design of the critical reactors is to use the critical materials (including natural catalysts and soil additives) in order to enhance intensified H2 and NH3 production. Ultimately, they become an essential part of the S-fertilizer system, providing efficient fertilizer use and enhanced crop yield, especially under water and nutrient stress. These critical processes and reactors are based on a process intensification philosophy where critical materials are utilized in the acceleration of the reactions including NH3 production and carbon dioxide reduction. When compared with the current NH3 production technology (Haber–Bosch process), the proposed technology achieves higher ammonia conversion at much lower temperatures and atmospheric pressure while eliminating the costly NH3 separation process through in situ reactive separation, which results in the production of S-fertilizers or H2 or urea precursor (ammonium carbamate). As such, the cost of NH3-based S-fertilizers can become competitive with small-scale distributed production platforms compared with the Haber–Bosch fertilizers. Full article
(This article belongs to the Special Issue Application of Catalysts in CO2 Capture, Production and Utilization)
Show Figures

Graphical abstract

13 pages, 4431 KiB  
Article
Comparison of Synchrotron and Laboratory X-ray Sources in Photoelectron Spectroscopy Experiments for the Study of Nitrogen-Doped Carbon Nanotubes
by Marina V. Il’ina, Soslan A. Khubezhov, Maria R. Polyvianova, Oleg I. Il’in and Yuriy Dedkov
Quantum Beam Sci. 2023, 7(3), 25; https://doi.org/10.3390/qubs7030025 - 7 Aug 2023
Cited by 4 | Viewed by 3016
Abstract
The chemical composition and stoichiometry of vertically aligned arrays of nitrogen-doped multi-walled carbon nanotubes (N-CNTs) were studied by photoelectron spectroscopy using laboratory and synchrotron X-ray sources. We performed careful deconvolution of high-resolution core-level spectra to quantify pyridine/pyrrole-like defects in N-CNTs, which are a [...] Read more.
The chemical composition and stoichiometry of vertically aligned arrays of nitrogen-doped multi-walled carbon nanotubes (N-CNTs) were studied by photoelectron spectroscopy using laboratory and synchrotron X-ray sources. We performed careful deconvolution of high-resolution core-level spectra to quantify pyridine/pyrrole-like defects in N-CNTs, which are a key factor in the efficiency of the piezoelectric response for this material. It is shown that the XPS method makes it possible to estimate the concentration and type of nitrogen incorporation (qualitatively and quantitatively) in the “N-CNT/Mo electrode” system using both synchrotron and laboratory sources. The obtained results allow us to study the effect of the nickel catalytic layer thickness on the concentration of pyridine/pyrrole-like nitrogen and piezoelectric response in the nanotubes. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2023)
Show Figures

Figure 1

9 pages, 1773 KiB  
Article
Enhanced Piezo-Photocatalytic Performance of Na0.5Bi4.5Ti4O15 by High-Voltage Poling
by Shuang Lan, Mupeng Zheng, Fangping Zhuo, Mankang Zhu and Yudong Hou
Materials 2023, 16(14), 5122; https://doi.org/10.3390/ma16145122 - 20 Jul 2023
Cited by 1 | Viewed by 1489
Abstract
The internal electric field within a piezoelectric material can effectively inhibit the recombination of photogenerated electron–hole pairs, thus serving as a means to enhance photocatalytic efficiency. Herein, we synthesized a Na0.5Bi4.5Ti4O15 (NBT) catalyst by the hydrothermal [...] Read more.
The internal electric field within a piezoelectric material can effectively inhibit the recombination of photogenerated electron–hole pairs, thus serving as a means to enhance photocatalytic efficiency. Herein, we synthesized a Na0.5Bi4.5Ti4O15 (NBT) catalyst by the hydrothermal method and optimized its catalytic performance by simple high-voltage poling. When applying light and mechanical stirring on a 2 kV mm−1 poled NBT sample, almost 100% of Rhodamine B solution could be degraded in 120 min, and the reaction rate constant reached as high as 28.36 × 10−3 min−1, which was 4.2 times higher than that of the unpoled NBT sample. The enhanced piezo-photocatalytic activity is attributed to the poling-enhanced internal electric field, which facilitates the efficient separation and transfer of photogenerated carriers. Our work provides a new option and idea for the development of piezo-photocatalysts for environmental remediation and pollutant treatment. Full article
Show Figures

Figure 1

19 pages, 6183 KiB  
Review
Core–Shell Magnetoelectric Nanoparticles: Materials, Synthesis, Magnetoelectricity, and Applications
by Hyunseok Song, Michael Abraham Listyawan and Jungho Ryu
Actuators 2022, 11(12), 380; https://doi.org/10.3390/act11120380 - 16 Dec 2022
Cited by 20 | Viewed by 6513
Abstract
Nanoparticles with small diameters and large surface areas have potential advantages and are actively utilized in various fields related to biomedical and catalytic applications. Multifunctional applications can be achieved by endowing nanoparticles with piezoelectric, quantum dot, magnetothermal, and piezoluminescent properties. In particular, multiferroic [...] Read more.
Nanoparticles with small diameters and large surface areas have potential advantages and are actively utilized in various fields related to biomedical and catalytic applications. Multifunctional applications can be achieved by endowing nanoparticles with piezoelectric, quantum dot, magnetothermal, and piezoluminescent properties. In particular, multiferroic magnetoelectric nanoparticles (MENPs) can generate electricity by coupling piezoelectric and magnetostrictive properties when an external magnetic field, which is harmless to the human body, is applied. In this regard, magnetoelectricity (ME) induced by a magnetic field makes MENPs useful for various biomedical and electrocatalytic applications. The ME voltage coefficients, which express the efficiency of energy conversion from magnetic field to electricity, show differences depending on the setup for ME measurements of MENPs. Therefore, numerous attempts have been made to optimize the ME characterization method to reduce measurement errors resulting from charge leakages caused by the specimen preparation, as well as to investigate the ME effect of a single nanoparticle. Our review is focused on the structures, syntheses (hydrothermal and sol–gel methods), activation mechanism, and measurement of magnetoelectricity, as well as applications, of core–shell MENPs. Full article
Show Figures

Figure 1

Back to TopTop