Hybridization of Polymer-Encapsulated MoS2-ZnO Nanostructures as Organic–Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MoS2
2.3. Preparation of MoS2-ZnO Nanocomposite
2.4. Fabrication of Hybrid PVDF–MZ Composite Film
2.5. Characterization Techniques
2.6. Sonocatalytic Experiment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Okpara, E.C.; Wojuola, O.B.; Quadri, T.W.; Banks, C.E. An overview of advanced oxidation processes using copper-based catalytic degradation of organic pollutants in water. Appl. Mater. Today 2024, 36, 102053. [Google Scholar] [CrossRef]
- Siddique, A.; Nawaz, H.; Razzaque, S.; Tabasum, A.; Gong, H.; Razzaq, H.; Umar, M. PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification. Polymers 2024, 16, 699. [Google Scholar] [CrossRef] [PubMed]
- Albalawi, M.A.; Hajri, A.K.; Jamoussi, B.; Albalawi, O.A. A Novel Recyclable Magnetic Nano-Catalyst for Fenton-Photodegradation of Methyl Orange and Imidazole Derivatives Catalytic Synthesis. Polymers 2024, 16, 140. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Deng, H.; Lu, F.; Chen, W.; Su, X.; Wang, H. Antibacterial Nanocellulose-TiO2/Polyester Fabric for the Recyclable Photocatalytic Degradation of Dyes. Polymers 2023, 15, 4376. [Google Scholar] [CrossRef] [PubMed]
- Aldebasi, S.M.; Tar, H.; Alnafisah, A.S.; Salmi-Mani, H.; Kouki, N.; Alminderej, F.M.; Lalevée, J. Surface Modification of PP and PBT Nonwoven Membranes for Enhanced Efficiency in Photocatalytic MB Dye Removal and Antibacterial Activity. Polymers 2023, 15, 3378. [Google Scholar] [CrossRef] [PubMed]
- Solayman, H.M.; Hossen, M.A.; Abd Aziz, A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.-D. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Ahmed, D.A.; El-Apasery, M.A.; Aly, A.A.; Ragai, S.M. Green Synthesis of the Effectively Environmentally Safe Metakaolin-Based Geopolymer for the Removal of Hazardous Industrial Wastes Using Two Different Methods. Polymers 2023, 15, 2865. [Google Scholar] [CrossRef] [PubMed]
- Arfa, U.; Alshareef, M.; Nadeem, N.; Javid, A.; Nawab, Y.; Alshammari, K.F.; Zubair, U. Sunlight-Driven Photocatalytic Active Fabrics through Immobilization of Functionalized Doped Titania Nanoparticles. Polymers 2023, 15, 2775. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Gaber, T.A.; Kuo, S.-W.; El-Mahdy, A.F.M. π-Electron-Extended Triazine-Based Covalent Organic Framework as Photocatalyst for Organic Pollution Degradation and H2 Production from Water. Polymers 2023, 15, 1685. [Google Scholar] [CrossRef]
- Yang, N.; Jun, B.-M.; Choi, J.S.; Park, C.M.; Jang, M.; Son, A.; Nam, S.-N.; Yoon, Y. Ultrasonic treatment of dye chemicals in wastewater: A review. Chemosphere 2024, 354, 141676. [Google Scholar] [CrossRef]
- Bößl, F.; Menzel, V.C.; Chatzisymeon, E.; Comyn, T.P.; Cowin, P.; Cobley, A.J.; Tudela, I. Effect of frequency and power on the piezocatalytic and sonochemical degradation of dyes in water. Chem. Eng. J. Adv. 2023, 14, 100477. [Google Scholar] [CrossRef]
- Zou, L.; Qu, R.; Gao, H.; Guan, X.; Qi, X.; Liu, C.; Zhang, Z.; Lei, X. MoS2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalytic for sonocatalytic degradation of methylene blue. Results Phys. 2019, 14, 102458. [Google Scholar] [CrossRef]
- Mohammed, R.; Ali, M.E.M.; Abdel-Moniem, S.M.; Ibrahim, H.S. Reusable and highly stable MoS2 nanosheets for photocatalytic, sonocatalytic and thermocatalytic degradation of organic dyes: Comparative study. Nano-Struct. Nano-Objects 2022, 31, 100900. [Google Scholar] [CrossRef]
- Ahani, F.; Jalaly, M.; Moghaddam, J.; Rasoulifard, M.H. Enhancing sonocatalytic dye pollutant degradation using MoS2/RGO nanocomposites: An optimization study. Water Resour. Ind. 2023, 30, 100223. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z. Comparative study on the process behavior and reaction kinetics in sonocatalytic degradation of organic dyes by powder and nanotubes TiO2. Ultrason. Sonochem. 2012, 19, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Khataee, A.; Saadi, S.; Safarpour, M.; Joo, S.W. Sonocatalytic performance of Er-doped ZnO for degradation of a textile dye. Ultrason. Sonochem. 2015, 27, 379–388. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, H.; Xian, T.; Li, R.S.; Zhang, H.M.; Wang, X.X. Sonocatalytic degradation of RhB over LuFeO3 particles under ultrasonic irradiation. J. Hazard. Mater. 2015, 289, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Abdurahman, M.H.; Abdullah, A.Z.; Shoparwe, N.F. A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: Synergistic mechanism and degradation pathway. Chem. Eng. J. 2021, 413, 127412. [Google Scholar] [CrossRef]
- Nie, C.; Wang, J.; Cai, B.; Lai, B.; Wang, S.; Ao, Z. Multifunctional roles of MoS2 in persulfate-based advanced oxidation processes for eliminating aqueous organic pollutants: A review. Appl. Catal. B Environ. 2024, 340, 123173. [Google Scholar] [CrossRef]
- Thi Yein, W.; Wang, Q.; Kim, D.-S. Piezoelectric catalytic driven advanced oxidation process using two-dimensional metal dichalcogenides for wastewater pollutants remediation. Chemosphere 2024, 353, 141524. [Google Scholar] [CrossRef]
- Low, J.; Cao, S.; Yu, J.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50, 10768–10777. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, E.; Rahman Setayesh, S.; Gholami, M.R. Investigating the role of MoS2/reduced graphene oxide as cocatalyst on Cu2O activity in catalytic and photocatalytic reactions. New J. Chem. 2017, 41, 7998–8005. [Google Scholar] [CrossRef]
- Ma, W.; Yao, B.; Zhang, W.; He, Y.; Yu, Y.; Niu, J. Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets. Chem. Eng. J. 2021, 415, 129000. [Google Scholar] [CrossRef]
- Krishnan, U.; Kaur, M.; Kaur, G.; Singh, K.; Dogra, A.R.; Kumar, M.; Kumar, A. MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial pollutants. Mater. Res. Bull. 2019, 111, 212–221. [Google Scholar] [CrossRef]
- Ritika; Kaur, M.; Umar, A.; Mehta, S.K.; Singh, S.; Kansal, S.K.; Fouad, H.; Alothman, O.Y. Rapid Solar-Light Driven Superior Photocatalytic Degradation of Methylene Blue Using MoS2-ZnO Heterostructure Nanorods Photocatalyst. Materials 2018, 11, 2254. [Google Scholar] [CrossRef] [PubMed]
- Hunge, Y.M.; Yadav, A.A.; Kang, S.-W.; Jun Lim, S.; Kim, H. Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J. Photochem. Photobiol. A Chem. 2023, 434, 114250. [Google Scholar] [CrossRef]
- Selvaraj, R.; Kalimuthu, K.R.; Kalimuthu, V. A type-II MoS2/ZnO heterostructure with enhanced photocatalytic activity. Mater. Lett. 2019, 243, 183–186. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Z.; Zhang, Z.; Xie, Y.; Wang, X.; Xing, Z.; Xu, R.; Zhang, X. Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation. Ultrason. Sonochem. 2008, 15, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Anastasova, I.; Tsekova, P.; Ignatova, M.; Stoilova, O. Imparting Photocatalytic and Antioxidant Properties to Electrospun Poly(L-lactide-co-D,L-lactide) Materials. Polymers 2024, 16, 1814. [Google Scholar] [CrossRef]
- Jaramillo-Fierro, X.; Gaona, S.; Ramón, J.; Valarezo, E. Porous Geopolymer/ZnTiO3/TiO2 Composite for Adsorption and Photocatalytic Degradation of Methylene Blue Dye. Polymers 2023, 15, 2697. [Google Scholar] [CrossRef]
- Matei, D.; Katsina, A.U.; Mihai, S.; Cursaru, D.L.; Şomoghi, R.; Nistor, C.L. Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye. Polymers 2023, 15, 1210. [Google Scholar] [CrossRef] [PubMed]
- Zarazúa-Morín, M.E.; Galindo-Luna, A.S.; Gallegos-Sánchez, V.J.; Zermeño-Resendiz, B.B.; Torres-Martínez, L.M. Novel hydrothermal-assisted microwave synthesis of NiTiO3/ZnO and sonophotocatalytic effect for degradation of rhodamine B. Top. Catal. 2022, 65, 1182–1190. [Google Scholar] [CrossRef]
- Asli, S.A.; Taghizadeh, M. Sonophotocatalytic Degradation of Pollutants by ZnO-Based Catalysts: A Review. ChemistrySelect 2020, 5, 13720–13731. [Google Scholar] [CrossRef]
- Wang, J.; Ma, T.; Zhang, Z.; Zhang, X.; Jiang, Y.; Dong, D.; Zhang, P.; Li, Y. Investigation on the sonocatalytic degradation of parathion in the presence of nanometer rutile titanium dioxide (TiO2) catalyst. J. Hazard. Mater. 2006, 137, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Bößl, F.; Brandani, S.; Menzel, V.C.; Rhodes, M.; Tovar-Oliva, M.S.; Kirk, C.; Tudela, I. Synergistic sono-adsorption and adsorption-enhanced sonochemical degradation of dyes in water by additive manufactured PVDF-based materials. Ultrason. Sonochem. 2023, 100, 106602. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Sharma, M.; Vaish, R. Photo-piezocatalysis in electrospun PVDF + WS2 membrane. Environ. Sci. Nano 2022, 9, 3885–3899. [Google Scholar] [CrossRef]
- Magomedova, A.G.; Rabadanova, A.A.; Shuaibov, A.O.; Selimov, D.A.; Sobola, D.S.; Rabadanov, K.S.; Giraev, K.M.; Orudzhev, F.F. Combination NIPS/TIPS Synthesis of α-Fe2O3 and α/γ-Fe2O3 Doped PVDF Composite for Efficient Piezocatalytic Degradation of Rhodamine B. Molecules 2023, 28, 6932. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, B.; Hoque, N.A.; Janowicz, N.; Das, S.; Tiwari, M.K. Re-usable self-poled piezoelectric/piezocatalytic films with exceptional energy harvesting and water remediation capability. Nano Energy 2020, 78, 105339. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liao, Q.; Zhang, G.; Zhang, Z.; Liang, Q.; Liao, X.; Zhang, Y. High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 2015, 11, 719–727. [Google Scholar] [CrossRef]
- Muralikrishna, S.; Manjunath, K.; Samrat, D.; Reddy, V.; Ramakrishnappa, T.; Nagaraju, D.H. Hydrothermal synthesis of 2D MoS2 nanosheets for electrocatalytic hydrogen evolution reaction. RSC Adv. 2015, 5, 89389–89396. [Google Scholar] [CrossRef]
- Kao, L.-H.; Chuang, K.-S.; Catherine, H.N.; Huang, J.-H.; Hsu, H.-J.; Shen, Y.-C.; Hu, C. MoS2-coupled coniferous ZnO for photocatalytic degradation of dyes. J. Taiwan Inst. Chem. Eng. 2023, 142, 104638. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Hao, J.; Wang, Z.; Huo, B.; Qi, J.; Wang, Y.; Meng, F. Sustainable self-powered degradation of antibiotics using Fe3O4@MoS2/PVDF modified pipe with superior piezoelectric activity: Mechanism insight, toxicity assessment and energy consumption. Appl. Catal. B Environ. 2023, 331, 122655. [Google Scholar] [CrossRef]
- Guo, M.; Diao, P.; Cai, S. Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. J. Solid State Chem. 2005, 178, 1864–1873. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, T.; Zulfiqar; Khan, M. Enhanced photoluminescence performance of MoS2 nanostructures after amalgamation with ZnO NPs. Optik 2020, 220, 165201. [Google Scholar] [CrossRef]
- Gond, R.; Shukla, P.; Prakash, B.; Rawat, B. Vertically Aligned MoS2/ZnO Heterostructure for Highly Selective NH3 Sensing at Room Temperature. ACS Appl. Electron. Mater. 2024, 6, 2728–2738. [Google Scholar] [CrossRef]
- Madhushree, R.; Jadan Resnik Jaleel, U.C.; Pinheiro, D.; Devi Kr, S. The catalytic reduction of 4-nitrophenol using MoS2/ZnO nanocomposite. Appl. Surf. Sci. Adv. 2022, 10, 100265. [Google Scholar] [CrossRef]
- Ojha, S.; Bera, S.; Manna, M.; Maitra, A.; Si, S.K.; Halder, L.; Bera, A.; Khatua, B.B. High-Performance Flexible Piezo–Tribo Hybrid Nanogenerator Based on MoS2@ZnO-Assisted β-Phase-Stabilized Poly(Vinylidene Fluoride) Nanocomposite. Energy Technol. 2023, 11, 2201086. [Google Scholar] [CrossRef]
- Han, C.; Yang, M.-Q.; Weng, B.; Xu, Y.-J. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys. Chem. Chem. Phys. 2014, 16, 16891–16903. [Google Scholar] [CrossRef]
- Daems, N.; Milis, S.; Verbeke, R.; Szymczyk, A.; Pescarmona, P.P.; Vankelecom, I.F.J. High-performance membranes with full pH-stability. RSC Adv. 2018, 8, 8813–8827. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wang, X.; Zhou, Y.; Zhang, L. Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog. Nat. Sci. Mater. Int. 2012, 22, 250–257. [Google Scholar] [CrossRef]
- Wu, T.; Zhou, B.; Zhu, T.; Shi, J.; Xu, Z.; Hu, C.; Wang, J. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 2015, 5, 7880–7889. [Google Scholar] [CrossRef]
- Gao, J.; Wang, J.; Xu, Q.; Wu, S.; Chen, Y. Regenerated cellulose strongly adhered by a supramolecular adhesive onto the PVDF membrane for a highly efficient oil/water separation. Green Chem. 2021, 23, 5633–5646. [Google Scholar] [CrossRef]
- Wu, Z.; Ji, X.; He, Q.; Gu, H.; Zhang, W.-X.; Deng, Z. Nanocelluloses fine-tuned polyvinylidene fluoride (PVDF) membrane for enhanced separation and antifouling. Carbohydr. Polym. 2024, 323, 121383. [Google Scholar] [CrossRef] [PubMed]
- Krithika, S.; Balavijayalakshmi, J. Synthesis of molybdenum disulfide doped zinc oxide nanocomposites by microwave assisted method. Mater. Res. Express 2019, 6, 105023. [Google Scholar] [CrossRef]
- Lalithambika, K.C.; Shanmugapriya, K.; Sriram, S. Photocatalytic activity of MoS2 nanoparticles: An experimental and DFT analysis. Appl. Phys. A 2019, 125, 817. [Google Scholar] [CrossRef]
- Xiong, G.; Pal, U.; Serrano, J.G.; Ucer, K.B.; Williams, R.T. Photoluminesence and FTIR study of ZnO nanoparticles: The impurity and defect perspective. Phys. Status Solidi C 2006, 3, 3577–3581. [Google Scholar] [CrossRef]
- Omar, A.; Gomaa, I.; Mohamed, O.A.; Magdy, H.; Kalloub, H.S.; Hamza, M.H.; Mohamed, T.M.; Rabee, M.M.; Tareq, N.; Hesham, H.; et al. Investigation of morphological, structural and electronic transformation of PVDF and ZnO/rGO/PVDF hybrid membranes. Opt. Quantum Electron. 2023, 55, 381. [Google Scholar] [CrossRef]
- Janakiraman, S.; Surendran, A.; Ghosh, S.; Anandhan, S.; Venimadhav, A. Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency. Solid State Ion. 2016, 292, 130–135. [Google Scholar] [CrossRef]
- Esterly, D.M.; Love, B.J. Phase transformation to β-poly(vinylidene fluoride) by milling. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 91–97. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Ahn, C.H.; Lee, M.B.; Choi, M.-S. Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater. Chem. Phys. 2011, 127, 137–142. [Google Scholar] [CrossRef]
- Jiang, L.; Xie, H.; Hou, Y.; Wang, S.; Xia, Y.; Li, Y.; Hu, G.-H.; Yang, Q.; Xiong, C.; Gao, Z. Enhanced piezoelectricity of a PVDF-based nanocomposite utilizing high-yield dispersions of exfoliated few-layer MoS2. Ceram. Int. 2019, 45, 11347–11352. [Google Scholar] [CrossRef]
- Nagarajan, T.; Khalid, M.; Sridewi, N.; Jagadish, P.; Shahabuddin, S.; Muthoosamy, K.; Walvekar, R. Tribological, oxidation and thermal conductivity studies of microwave synthesised molybdenum disulfide (MoS2) nanoparticles as nano-additives in diesel based engine oil. Sci. Rep. 2022, 12, 14108. [Google Scholar] [CrossRef] [PubMed]
- He, L.-L.; Zhu, Y.; Qi, Q.; Li, X.-Y.; Bai, J.-Y.; Xiang, Z.; Wang, X. Synthesis of CaMoO4 microspheres with enhanced sonocatalytic performance for the removal of Acid Orange 7 in the aqueous environment. Sep. Purif. Technol. 2021, 276, 119370. [Google Scholar] [CrossRef]
- Wang, G.; Ma, X.; Liu, J.; Qin, L.; Li, B.; Hu, Y.; Cheng, H. Design and performance of a novel direct Z-scheme NiGa2O4/CeO2 nanocomposite with enhanced sonocatalytic activity. Sci. Total Environ. 2020, 741, 140192. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhao, S.; Liu, L.; Liu, Z.; Chen, G. Ultrasonic emulsification: Basic characteristics, cavitation, mechanism, devices and application. Front. Chem. Sci. Eng. 2022, 16, 1560–1583. [Google Scholar] [CrossRef]
- Areerob, Y.; Cho, J.Y.; Jang, W.K.; Oh, W.-C. Enhanced sonocatalytic degradation of organic dyes from aqueous solutions by novel synthesis of mesoporous Fe3O4-graphene/ZnO@SiO2 nanocomposites. Ultrason. Sonochem. 2018, 41, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Cheng, H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023, 28, 3706. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Li, Y.; Guo, G.; Zhao, X.; Yu, J.; Li, Z.; Xu, S.; Man, B.; Wei, D.; Zhang, C. Synergizing piezoelectric and plasmonic modulation of PVDF/MoS2 cavity/Au for enhanced photocatalysis. Appl. Surf. Sci. 2022, 577, 151811. [Google Scholar] [CrossRef]
- Veeralingam, S.; Badhulika, S. Rapid Degradation of Organic Dyes via Ultrasound Triggered Piezo-Catalysis Using PVDF/ZnSnO3/MoS2 Nanocomposite. ACS Appl. Nano Mater. 2023. [Google Scholar] [CrossRef]
- Huang, T.H.; Espino, F.K.C.; Tian, X.-Y.; Widakdo, J.; Austria, H.F.M.; Setiawan, O.; Hung, W.-S.; Pamintuan, K.R.S.; Leron, R.B.; Chang, C.-Y.; et al. Piezocatalytic property of PVDF/Graphene Self-Assembling piezoelectric membrane for environmental remediation. Chem. Eng. J. 2024, 487, 150569. [Google Scholar] [CrossRef]
- Mishra, H.K.; Sengupta, D.; Babu, A.; Pirzada, B.M.; Sarkar, R.; Naidu, B.S.; Kundu, T.K.; Mandal, D. PVDF/Ag2CO3 nanocomposites for efficient dye degradation and flexible piezoelectric mechanical energy harvester. Sustain. Energy Fuels 2022, 6, 1625–1640. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, Q.; Xiao, Z.; Luo, H.; Zhang, D. Three-dimensional BNT/PVDF composite foam with a hierarchical pore structure for efficient piezo-photocatalysis. J. Environ. Chem. Eng. 2022, 10, 108399. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, M.; Vaish, R. Flexible Ag@LiNbO3/PVDF composite film for piezocatalytic dye/pharmaceutical degradation and bacterial disinfection. ACS Appl. Mater. Interfaces 2021, 13, 22914–22925. [Google Scholar] [CrossRef] [PubMed]
- Raju, T.D.; Veeralingam, S.; Badhulika, S. Polyvinylidene fluoride/ZnSnO3 nanocube/Co3O4 nanoparticle thermoplastic composites for ultrasound-assisted piezo-catalytic dye degradation. ACS Appl. Nano Mater. 2020, 3, 4777–4787. [Google Scholar] [CrossRef]
- Muduli, S.P.; Veeralingam, S.; Badhulika, S. Free-standing, non-toxic and reusable 0.67BiFeO3–0.33BaTiO3 based polymeric piezo-catalyst for organic dye wastewater treatment. J. Water Process. Eng. 2022, 48, 102934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palanisamy, G.; Bhosale, M.; Magdum, S.S.; Thangarasu, S.; Oh, T.-H. Hybridization of Polymer-Encapsulated MoS2-ZnO Nanostructures as Organic–Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation. Polymers 2024, 16, 2213. https://doi.org/10.3390/polym16152213
Palanisamy G, Bhosale M, Magdum SS, Thangarasu S, Oh T-H. Hybridization of Polymer-Encapsulated MoS2-ZnO Nanostructures as Organic–Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation. Polymers. 2024; 16(15):2213. https://doi.org/10.3390/polym16152213
Chicago/Turabian StylePalanisamy, Gowthami, Mrunal Bhosale, Sahil S. Magdum, Sadhasivam Thangarasu, and Tae-Hwan Oh. 2024. "Hybridization of Polymer-Encapsulated MoS2-ZnO Nanostructures as Organic–Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation" Polymers 16, no. 15: 2213. https://doi.org/10.3390/polym16152213
APA StylePalanisamy, G., Bhosale, M., Magdum, S. S., Thangarasu, S., & Oh, T. -H. (2024). Hybridization of Polymer-Encapsulated MoS2-ZnO Nanostructures as Organic–Inorganic Polymer Films for Sonocatalytic-Induced Dye Degradation. Polymers, 16(15), 2213. https://doi.org/10.3390/polym16152213