Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Keywords = physical and chemical properties of wood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8499 KiB  
Article
Characterization of Low-Temperature Waste-Wood-Derived Biochar upon Chemical Activation
by Bilge Yilmaz, Vasiliki Kamperidou, Serhatcan Berk Akcay, Turgay Kar, Hilal Fazli and Temel Varol
Forests 2025, 16(8), 1237; https://doi.org/10.3390/f16081237 - 27 Jul 2025
Viewed by 243
Abstract
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus [...] Read more.
Depending on the feedstock type and the pyrolysis conditions, biochars exhibit different physical, chemical, and structural properties, which highly influence their performance in various applications. This study presents a comprehensive characterization of biochar materials derived from the waste wood of pine (Pinus sylvestris L.) and beech (Fagus sylvatica) after low-temperature pyrolysis at 270 °C, followed by chemical activation using zinc chloride. The resulting materials were thoroughly analyzed in terms of their chemical composition (FTIR), thermal behavior (TGA/DTG), structural morphology (SEM and XRD), elemental analysis, and particle size distribution. The successful modification of raw biomass into carbon-rich structures of increased aromaticity and thermal stability was confirmed. Particle size analysis revealed that the activated carbon of Fagus sylvatica (FSAC) exhibited a monomodal distribution, indicating high homogeneity, whereas Pinus sylvestris-activated carbon showed a distinct bimodal distribution. This heterogeneity was supported by elemental analysis, revealing a higher inorganic content in pine-activated carbon, likely contributing to its dimensional instability during activation. These findings suggest that the uniform morphology of beech-activated carbon may be advantageous in filtration and adsorption applications, while pine-activated carbon’s heterogeneous structure could be beneficial for multifunctional systems requiring variable pore architectures. Overall, this study underscored the potential of chemically activated biochar from lignocellulosic residues for customized applications in environmental and material science domains. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

23 pages, 1593 KiB  
Review
Thermal Modification of Wood—A Review
by Veronika Jančíková and Michal Jablonský
Sustain. Chem. 2025, 6(3), 19; https://doi.org/10.3390/suschem6030019 - 11 Jul 2025
Viewed by 730
Abstract
The thermal modification of wood has emerged as a sustainable and effective method for enhancing the physical, chemical, and mechanical properties of wood without the use of harmful chemicals. This review summarizes the current state-of-the-art in thermal wood modification, focusing on the mechanisms [...] Read more.
The thermal modification of wood has emerged as a sustainable and effective method for enhancing the physical, chemical, and mechanical properties of wood without the use of harmful chemicals. This review summarizes the current state-of-the-art in thermal wood modification, focusing on the mechanisms of wood degradation during treatment and the resulting changes in the properties of the material. The benefits of thermal modification of wood include improved dimensional stability, increased resistance to biological decay, and improved durability, while potential risks such as reduced mechanical strength, color change, and higher costs of wood under certain conditions are also discussed. The review highlights recent advances in process optimization and evaluates the trade-offs between improved performance and possible structural drawbacks. Finally, future perspectives are outlined for sustainable applications of thermally modified wood in various industries. Emerging trends and future research directions in the field are identified, aiming to improve the performance and sustainability of thermally modified wood products in construction, furniture, and other industries. Full article
Show Figures

Figure 1

22 pages, 6793 KiB  
Article
Effect of Nano-Modified Recycled Wood Fibers on the Micro/Macro Properties of Rapid-Hardening Sulfoaluminate Cement-Based Composites
by Chunyu Ma, Liang Wang, Yujiao Li, Qiuyi Li, Gongbing Yue, Yuanxin Guo, Meinan Wang and Xiaolong Zhou
Nanomaterials 2025, 15(13), 993; https://doi.org/10.3390/nano15130993 - 26 Jun 2025
Viewed by 318
Abstract
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. [...] Read more.
Recycled wood fiber (RWF) obtained through the multi-stage processing of waste wood serves as an eco-friendly green construction material, exhibiting lightweight, porous, and high toughness characteristics that demonstrate significant potential as a cementitious reinforcement, offering strategic advantages for environmental protection and resource recycling. In this study, high-performance sulfoaluminate cement (SAC)-RWF composites prepared by modifying RWFs with nano-silica (NS) and a silane coupling agent (KH560) were developed and their effects on mechanical properties, shrinkage behavior, hydration characteristics, and microstructure of SAC-RWF composites were systematically investigated. Optimal performance was achieved at water–cement ratio of 0.5 with 20% RWF content, where the KH560-modified samples showed superior improvement, with 8.5% and 14.3% increases in 28 d flexural and compressive strength, respectively, compared to the control groups, outperforming the NS-modified samples (3.6% and 8.6% enhancements). Both modifiers improved durability, reducing water absorption by 6.72% (NS) and 7.1% (KH560) while decreasing drying shrinkage by 4.3% and 27.2%, respectively. The modified SAC composites maintained favorable thermal properties, with NS reducing thermal conductivity by 6.8% through density optimization, whereas the KH560-treated specimens retained low conductivity despite slight density increases. Micro-structural tests revealed accelerated hydration without new hydration product formation, with both modifiers enhancing cementitious matrix hydration product generation by distinct mechanisms—with NS acting through physical pore-filling, while KH560 established Si-O-C chemical bonds at paste interfaces. Although both modifications improved mechanical properties and durability, the KH560-modified SAC composite group demonstrated superior overall performance than the NS-modified group, providing a technical pathway for developing sustainable, high-performance recycled wood fiber cement-based materials with balanced functional properties for low-carbon construction applications. Full article
(This article belongs to the Special Issue Nanocomposite Modified Cement and Concrete)
Show Figures

Graphical abstract

23 pages, 1821 KiB  
Review
Beyond Peat: Wood Fiber and Two Novel Organic Byproducts as Growing Media—A Systematic Review
by Anna Elisa Sdao, Nazim S. Gruda and Barbara De Lucia
Plants 2025, 14(13), 1945; https://doi.org/10.3390/plants14131945 - 25 Jun 2025
Viewed by 764
Abstract
Environmental concerns drive the search for sustainable organic alternatives in horticultural substrates. This review critically examines three agro-industry renewable byproducts—wood fiber, coffee silverskin, and brewer’s spent grain—as partial peat substitutes. We aimed to comprehensively analyze their origin, processing methods, current applications, and key [...] Read more.
Environmental concerns drive the search for sustainable organic alternatives in horticultural substrates. This review critically examines three agro-industry renewable byproducts—wood fiber, coffee silverskin, and brewer’s spent grain—as partial peat substitutes. We aimed to comprehensively analyze their origin, processing methods, current applications, and key physical, hydrological, and chemical properties relevant to horticultural use. In soilless culture, wood fiber can be used as a stand-alone substrate. When incorporated at 30–50% (v/v) in peat mixtures, it supports plant growth comparable to peat; however, higher proportions may restrict water and nutrient availability. Coffee silverskin demonstrates high water retention and nutrient content, but its inherent phytotoxicity requires pre-treatment (e.g., co-composting); at concentrations up to 20%, it shows promise for potted ornamental crops. Brewer’s spent grain is nutrient-rich but demands careful management due to its rapid decomposition and potential salinity issues; inclusion rates around 10% have shown beneficial effects. In conclusion, when used appropriately in blends, these bio-based byproducts represent viable alternatives to reduce peat dependence in vegetable and ornamental cultivation, contributing to more sustainable horticultural practices. Future research should optimize pre-treatment methods for coffee silverskin and brewer’s spent grain, investigate long-term stability in diverse cropping systems, and explore novel combinations with other organic waste streams to develop circular horticultural substrates. Full article
Show Figures

Graphical abstract

15 pages, 2568 KiB  
Article
Effects of Wood Vinegar as a Coagulant in Rubber Sheet Production: A Sustainable Alternative to Acetic Acid and Formic Acid
by Visit Eakvanich, Putipong Lakachaiworakun, Natworapol Rachsiriwatcharabul, Wassachol Wattana, Wachara Kalasee and Panya Dangwilailux
Polymers 2025, 17(13), 1718; https://doi.org/10.3390/polym17131718 - 20 Jun 2025
Viewed by 414
Abstract
Occupational exposure to commercial formic and acetic acids through dermal contact and inhalation during rubber sheet processing poses significant health risks to workers. Additionally, the use of these acids contributes to environmental pollution by contaminating water sources and soil. This study investigates the [...] Read more.
Occupational exposure to commercial formic and acetic acids through dermal contact and inhalation during rubber sheet processing poses significant health risks to workers. Additionally, the use of these acids contributes to environmental pollution by contaminating water sources and soil. This study investigates the potential of three types of wood vinegar—derived from para-rubber wood, bamboo, and eucalyptus—obtained through biomass pyrolysis under anaerobic conditions, as sustainable alternatives to formic and acetic acids in the production of ribbed smoked sheets (RSSs). The organic constituents of each wood vinegar were characterized using gas chromatography and subsequently mixed with fresh natural latex to produce coagulated rubber sheets. The physical and chemical properties, equilibrium moisture content, and drying kinetics of the resulting sheets were then evaluated. The results indicated that wood vinegar derived from para-rubber wood contained a higher concentration of acetic acid compared to that obtained from bamboo and eucalyptus. As a result, rubber sheets coagulated with para-rubber wood and bamboo vinegars exhibited moisture sorption isotherms comparable to those of sheets coagulated with acetic acid, best described by the modified Henderson model. In contrast, sheets coagulated with eucalyptus-derived vinegar and formic acid followed the Oswin model. In terms of physical and chemical properties, extended drying times led to improved tensile strength in all samples. No statistically significant differences in tensile strength were observed between the experimental and reference samples. The concentration of acid was found to influence Mooney viscosity, the plasticity retention index (PRI), the thermogravimetric curve, and the overall coagulation process more significantly than the acid type. The drying kinetics of all five rubber sheet samples displayed similar trends, with the drying time decreasing in response to increases in drying temperature and airflow velocity. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

33 pages, 1352 KiB  
Review
Delignification as a Key Strategy for Advanced Wood-Based Materials: Chemistry, Delignification Parameters, and Emerging Applications
by Paschalina Terzopoulou, Evangelia C. Vouvoudi and Dimitris S. Achilias
Forests 2025, 16(6), 993; https://doi.org/10.3390/f16060993 - 12 Jun 2025
Viewed by 955
Abstract
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has [...] Read more.
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has emerged as a promising pretreatment technique to enhance the properties of wood for advanced subsequent applications. This process selectively removes lignin while preserving the aligned cellulose structure, thereby improving mechanical strength, dimensional stability, and potential for functionalization. Various delignification methods, including alkaline, acidic, and reductive catalytic fractionation, have been explored to optimize the wood’s structural and chemical properties. When combined with densification or impregnation, delignified wood exhibits superior mechanical performance, making it suitable for a range of applications, including structural materials, optical devices, biomedical applications, and energy storage. This detailed review examines the chemistry and mechanisms of delignification, its impact on the physical and mechanical properties of wood, and its role in developing sustainable, high-performance bio-based materials. Furthermore, challenges and future opportunities in delignification research are discussed, highlighting its potential for next-generation wood-based innovative applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

18 pages, 4018 KiB  
Article
Assessing the Efficiency of Open-System Densification on Chemically Treated Dendrocalamus asper Bamboo
by André Luiz Pereira de Godoy Junior, Marzieh Kadivar, Leo Maia do Amaral, Adriano Galvão de Souza Azevedo, Juan Camilo Adrada Molano, Esmaeil Biazar and Holmer Savastano Junior
Materials 2025, 18(12), 2719; https://doi.org/10.3390/ma18122719 - 10 Jun 2025
Viewed by 458
Abstract
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and [...] Read more.
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and chemical properties of solid wood. In this study, a two-step process of delignification and densification was carried out on Dendrocalamus asper bamboo specimens. The objective was to assess whether the optimized parameters of densification for natural bamboo on an open pressing system can be transferred for delignified bamboo. Delignification was achieved using an alkali solution (NaOH and Na2SO3) with two different temperature settings (25 °C or 100 °C). The pre-treated samples were dried in one of the two different conditions, either at 100 °C for 24 h or 25 °C for 30 days, resulting in four different groups with an average moisture content ranging from 7 to 10%. The samples were densified to 50% of their original thickness through an open thermo-mechanical press system at 160 °C with a compression rate of 6.7 mm/min and compared to densified bamboo without delignification (reference). The compression stress required to achieve a 50% degree of densification was evaluated, with untreated samples exhibiting an average value close to 17 MPa. Following treatment, the compression stress ranged from 7 to 13.4 MPa, indicating that the exposure to a high pH solution facilitates the densification process. However, a reduction in flexural properties (MOR, LOP, and MOE) was observed on the alkali-treated samples after a three-point bending test. Physical properties (water absorption and thickness swelling) were not altered after delignification. These findings demonstrate that the direct application of a densification process optimized for natural bamboo is not fully effective for chemically modified bamboo, highlighting the need for adjustments. Delignified bamboo showed an increase in free space after chemical treatment, which should be further densified under higher degrees. Full article
Show Figures

Figure 1

17 pages, 3911 KiB  
Article
Wood-Based Micro-Biochars in a Cement Mixture
by Minkyeong Pyo, Jongsun Kim, Seungwook Seok, Chan Ho Park and Wonchang Choi
Molecules 2025, 30(9), 1898; https://doi.org/10.3390/molecules30091898 - 24 Apr 2025
Viewed by 728
Abstract
Immediate action is required to achieve carbon neutrality within the cement industry. The integration of biochar into cement as a component of reinforced concrete has potential to mitigate carbon emissions in the construction sector by enabling carbon sequestration. In pursuit of eco-friendly practices [...] Read more.
Immediate action is required to achieve carbon neutrality within the cement industry. The integration of biochar into cement as a component of reinforced concrete has potential to mitigate carbon emissions in the construction sector by enabling carbon sequestration. In pursuit of eco-friendly practices and improved physical properties of cement composites, this study investigated the properties of wood-based, micron-sized biochar as a non-carbonate raw material, including its chemical composition, morphology, and wettability. The characterization of lignocellulosic micro-biochar and its mechanical impact on cement composites was a focus of this study. Cement was partially replaced with varying weight percentages of micro-biochar (1, 3, and 5 wt%), and the effects were evaluated through compressive strength tests after 7 and 28 d. The results demonstrated that the micro-biochar could sustain strength even when substituted for cement. Notably, after 28 d, the compressive strength of the sample with only cement was 29.6 MPa, while the sample with 3 wt% biochar substitution showed 30.9 MPa, indicating a 4.4% increase. This research contributes to sustainable construction practices by offering a green solution for reducing carbon emissions in the industry. Full article
(This article belongs to the Special Issue Carbon-Based Materials for Sustainable Chemistry: 2nd Edition)
Show Figures

Figure 1

22 pages, 3629 KiB  
Review
Replacing Sand in Concrete: Review on Potential for Utilization of Bottom Ash from Combustion of Wood in Circulating Fluidized Bed Boilers
by Anders Hedegaard Jensen, Carola K. Edvardsen and Lisbeth M. Ottosen
Recycling 2025, 10(2), 73; https://doi.org/10.3390/recycling10020073 - 14 Apr 2025
Viewed by 1285
Abstract
Aggregates such as sand and gravel are the most mined resources on Earth and are the largest component in concrete. They are essential for construction but are becoming increasingly scarce. At the same time, large amounts of biomass ashes are produced in wood-fired [...] Read more.
Aggregates such as sand and gravel are the most mined resources on Earth and are the largest component in concrete. They are essential for construction but are becoming increasingly scarce. At the same time, large amounts of biomass ashes are produced in wood-fired power plants, offering potential as a partial substitute for decreasing sand resources. Due to the combustion technology of circulating fluidized bed boilers, their bottom ash offers high potential as a viable alternative to natural sand. This review examines previous research to assess the feasibility of replacing sand in concrete with bottom ash. Specific cementitious products are identified, where the substitution could realistically be performed in the concrete industry. Benefits and issues with partial substitution of bottom ash from wood combustion are discussed, and gaps in the research regarding sand replacements with bottom ash, notably the durability of the resulting concrete, are shown. Bottom ash has positive properties relevant for use in mortar and concrete, both regarding physical and chemical properties. Although limited research exists in the field, several researchers have demonstrated promising results when substituting sand for bottom ash in mortars. For lower substitution levels, little effect on the fresh and hardened properties is found. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

21 pages, 5221 KiB  
Article
Analysis of Energy Efficiency in WPC Production from Pinus sylvestris Wood and Thermoplastic ABS Supported by the HWE Method
by Kamil Roman and Katarzyna Fedorowicz
Materials 2025, 18(5), 980; https://doi.org/10.3390/ma18050980 - 23 Feb 2025
Viewed by 503
Abstract
This study evaluates the mechanical energy consumption involved in producing wood–plastic composites (WPC) using Scots pine (Pinus sylvestris) and a acrylonitrile–butadiene–styrene terpolymer (ABS) thermoplastic. The research examines the effects of Hot Water Extraction (HWE) on the properties of Pinus sylvestris biomass [...] Read more.
This study evaluates the mechanical energy consumption involved in producing wood–plastic composites (WPC) using Scots pine (Pinus sylvestris) and a acrylonitrile–butadiene–styrene terpolymer (ABS) thermoplastic. The research examines the effects of Hot Water Extraction (HWE) on the properties of Pinus sylvestris biomass and its application in biocomposite production. Two Pinus sylvestris fractions, f1 (0–1 mm) and f2 (1–4 mm), were analyzed with and without HWE during compaction. The energy requirements and material performance were assessed through moisture content control, ash content determination, and compaction testing. The results show that HWE significantly improves the physical and chemical properties of Pinus sylvestris, increasing its suitability for WPC production. The HWE-treated samples consumed less energy and exhibited a higher density compared to the untreated materials. Statistical analysis validated the reliability of the methodology and revealed significant differences in the energy efficiency and material compatibility between treated and untreated samples. This study highlights the potential use of Pinus sylvestris and ABS for renewable bio-composite production, underlining the critical role of HWE in enhancing the properties of lignocellulosic materials. The findings contribute to developing energy-efficient industrial processes aligning with circular economy objectives. Full article
Show Figures

Figure 1

30 pages, 17875 KiB  
Article
Development and Characterization of Novel Hybrid Particleboard Made from Several Non-Wood Lignocellulosic Materials
by Fazilla Oktaviani Tarigan, Luthfi Hakim, Agus Purwoko, Tito Sucipto, Halimatuddahliana Nasution, Widya Fatriasari, Muhammad Adly Rahandi Lubis, Jajang Sutiawan, Mohammad Irfan Bakhsi, Nam-Hun Kim, Petar Antov, Seng Hua Lee, Rangabhashiyam Selvasembian, Mohd Hazwan Hussin, Manggar Arum Aristri and Apri Heri Iswanto
Polymers 2025, 17(4), 512; https://doi.org/10.3390/polym17040512 - 16 Feb 2025
Cited by 2 | Viewed by 1175
Abstract
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite [...] Read more.
The green transition trend in the wood-based panel industry aims to reduce environmental impact and waste production, and it is a viable approach to meet the increasing global demand for wood and wood-based materials as roundwood availability decreases, necessitating the development of composite products as alternatives to non-wood lignocellulosic raw materials. As a result, the purpose of this study is to examine and assess the physical, mechanical, and acoustic properties of particleboard manufactured from non-wood lignocellulosic biomass. The core layer was composed of non-wood lignocelluloses (banana stem, rice straw, coconut fiber, sugarcane bagasse, and fibrous vascular bundles (FVB) from snakefruit fronds), whereas the surface was made of belangke bamboo (Gigantochloa pruriens) and wood. The chemical characteristics, fiber dimensions and derivatives, and contact angles of non-wood lignocellulosic materials were investigated. The contact angle, which ranged from 44.57 to 62.37 degrees, was measured to determine the wettability of these materials toward adhesives. Hybrid particleboard (HPb) or sandwich particleboard (SPb) samples of 25 cm × 25 cm with a target density of 0.75 g/cm3 and a thickness of 1 cm were manufactured using 7% isocyanate adhesive (based on raw material oven dry weight). The physical parameters of the particleboard, including density, water content, water absorption (WA), and thickness swelling (TS), ranged from 0.47 to 0.79 g/cm3, 6.57 to 13.78%, 16.46 to 103.51%, and 3.38 to 39.91%, respectively. Furthermore, the mechanical properties of the particleboard, including the modulus of elasticity (MOE), bending strength (MOR), and internal bond strength (IB), varied from 0.39 to 7.34 GPa, 6.52 to 87.79 MPa, and 0.03 to 0.69 MPa, respectively. On the basis of these findings, the use of non-wood lignocellulosic raw materials represents a viable alternative for the production of high-performance particleboard. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials III)
Show Figures

Figure 1

12 pages, 1521 KiB  
Article
Carbon and Nitrogen Content and CO2 Efflux from Coarse Woody Debris of Norway Spruce, Black Alder, and Silver Birch
by Dovilė Čiuldienė, Egidijus Vigricas, Greta Galdikaitė, Vidas Stakėnas, Kęstutis Armolaitis and Iveta Varnagirytė-Kabašinskienė
Forests 2025, 16(2), 293; https://doi.org/10.3390/f16020293 - 8 Feb 2025
Viewed by 667
Abstract
Coarse woody debris (CWD) is an essential component in forest ecosystems, playing a significant role in enhancing biodiversity, soil formation, and nutrient cycling through decomposition processes. CWD also contributes to greenhouse gas fluxes, particularly through CO2 emissions. This study investigated the physical [...] Read more.
Coarse woody debris (CWD) is an essential component in forest ecosystems, playing a significant role in enhancing biodiversity, soil formation, and nutrient cycling through decomposition processes. CWD also contributes to greenhouse gas fluxes, particularly through CO2 emissions. This study investigated the physical and chemical properties of CWD and the CO2 effluxes from CWD of different decay classes. For this study, a range of CWD—from recently dead to highly decomposed wood—of native tree species such as silver birch (Betula pendula Roth), black alder (Alnus glutinosa (L.) Gaertn.), and Norway spruce (Picea abies (L.) H. Karst.) in hemiboreal forests were investigated. The findings showed that CWD properties significantly differed among tree species and CWD decay classes. Significant variations in wood density and total nitrogen (N) were observed in the early stages of CWD decay, with the highest values found for the deciduous tree species. The concentration of organic carbon (C) increased throughout the decomposition. The lowest CO2 efflux from CWD was found for spruce CWD from all decay classes and it was the highest for black alder and silver birch, especially for the 3rd and 4th decay classes. CO2 efflux was mainly influenced by the degree of decomposition, which was represented by the CWD decay class, followed by wood density and C content. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 17479 KiB  
Article
Epoxy as an Alternative Resin in Particleboard Production with Pine Wood Residues: Physical, Mechanical, and Microscopical Analyses of Panels at Three Resin Proportions
by Antonio José Santos Junior, Marjorie Perosso Herradon, Matheus Viana de Souza, Sergio Augusto Mello da Silva, Victor Almeida De Araujo, Diego Henrique de Almeida, Herisson Ferreira dos Santos and André Luis Christoforo
Forests 2025, 16(2), 196; https://doi.org/10.3390/f16020196 - 22 Jan 2025
Cited by 1 | Viewed by 1918
Abstract
Given the construction challenges and the impacts of industrial waste generation and the implications of using chemical adhesives, this study aims to evaluate epoxy as an alternative resin, whose application in the production of wood particleboards is still underexplored. In this regard, its [...] Read more.
Given the construction challenges and the impacts of industrial waste generation and the implications of using chemical adhesives, this study aims to evaluate epoxy as an alternative resin, whose application in the production of wood particleboards is still underexplored. In this regard, its results were compared with those of widely used adhesives, such as urea-formaldehyde (UF). Pine wood particles were used, and epoxy resin was applied as a binder in 5%, 10%, and 15% proportions. Panels were manufactured under pressing parameters of 5 N/mm2 for 10 min at 110 °C. Physical and mechanical properties of panels were evaluated using Brazilian, European, and American standards. The results showed that epoxy resin is potentially convenient for the particleboard industry, as the 15% trait panels met the P4 class criteria in the Brazilian and European standards and D-2 for the American code, and the 10% trait panels achieved the M-3i class for the American document. Although 5% adhesive was insufficient to envelop wood particles, these traits with greater percentages reached high enveloping ratings in the scanning electron microscopy (SEM) test, making epoxy resin viable for the panel industry as a potential alternative to formaldehyde-based adhesives. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties: 2nd Edition)
Show Figures

Figure 1

13 pages, 1778 KiB  
Article
Enhanced Properties of Cryptomeria japonica (Thunb ex L.f.) D.Don from the Azores Through Heat-Treatment
by Bruno Esteves, Lina Nunes, Rogério Lopes and Luísa Cruz-Lopes
Forests 2025, 16(1), 166; https://doi.org/10.3390/f16010166 - 17 Jan 2025
Cited by 1 | Viewed by 1063
Abstract
This study evaluates the chemical, physical, mechanical, and biological properties of untreated and heat-treated Cryptomeria japonica (Thunb ex L.f.) D.Don wood from the Azores, Portugal. Heat treatment was performed at 212 °C for 2 h following the Thermo-D class protocol. Chemical analysis revealed [...] Read more.
This study evaluates the chemical, physical, mechanical, and biological properties of untreated and heat-treated Cryptomeria japonica (Thunb ex L.f.) D.Don wood from the Azores, Portugal. Heat treatment was performed at 212 °C for 2 h following the Thermo-D class protocol. Chemical analysis revealed an increase in ethanol soluble extractives and lignin content after heat treatment, attributed to hemicellulose degradation and condensation reactions. Dimensional stability improved significantly, as indicated by reduced swelling coefficients and higher anti-swelling efficiency (ASE), particularly in the tangential direction. Heat-treated wood demonstrated reduced water absorption and swelling, enhancing its suitability for applications requiring dimensional stability. Mechanical tests showed a decrease in bending strength by 19.6% but an increase in the modulus of elasticity (MOE) by 49%, reflecting changes in the wood’s structural integrity. Surface analysis revealed significant color changes, with darkening, reddening, and yellowing, aligning with trends observed in other heat-treated woods. Biological durability tests indicated that both untreated and treated samples were susceptible to subterranean termite attack, although heat-treated wood exhibited a higher termite mortality rate, suggesting potential long-term advantages. This study highlights the impact of heat treatment on Cryptomeria japonica wood, emphasizing its potential for enhanced stability and durability in various applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

22 pages, 6292 KiB  
Review
Review of Bioinspired Composites for Thermal Energy Storage: Preparation, Microstructures and Properties
by Min Yu, Mengyuan Wang, Changhao Xu, Wei Zhong, Haoqi Wu, Peng Lei, Zeya Huang, Renli Fu, Francesco Gucci and Dou Zhang
J. Compos. Sci. 2025, 9(1), 41; https://doi.org/10.3390/jcs9010041 - 15 Jan 2025
Cited by 1 | Viewed by 1491
Abstract
Bioinspired composites for thermal energy storage have gained much attention all over the world. Bioinspired structures have several advantages as the skeleton for preparing thermal energy storage materials, including preventing leakage and improving thermal conductivity. Phase change materials (PCMs) play an important role [...] Read more.
Bioinspired composites for thermal energy storage have gained much attention all over the world. Bioinspired structures have several advantages as the skeleton for preparing thermal energy storage materials, including preventing leakage and improving thermal conductivity. Phase change materials (PCMs) play an important role in the development of energy storage materials because of their stable chemical/thermal properties and high latent heat storage capacity. However, their applications have been compromised, owing to low thermal conductivity and leakage. The plant-derived scaffolds (i.e., wood-derived SiC/Carbon) in the composites can not only provide higher thermal conductivity but also prevent leakage. In this paper, we review recent progress in the preparation, microstructures, properties and applications of bioinspired composites for thermal energy storage. Two methods are generally used for producing bioinspired composites, including the direct introduction of biomass-derived templates and the imitation of biological structures templates. Some of the key technologies for introducing PCMs into templates involves melting, vacuum impregnation, physical mixing, etc. Continuous and orderly channels inside the skeleton can improve the overall thermal conductivity, and the thermal conductivity of composites with biomass-derived, porous, silicon carbide skeleton can reach as high as 116 W/m*K. In addition, the tightly aligned microporous structure can cover the PCM well, resulting in good leakage resistance after up to 2500 hot and cold cycles. Currently, bioinspired composites for thermal energy storage hold the greatest promise for large-scale applications in the fields of building energy conservation and solar energy conversion/storage. This review provides guidance on the preparation methods, performance improvements and applications for the future research strategies of bioinspired composites for thermal energy storage. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

Back to TopTop