Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (156)

Search Parameters:
Keywords = phyllosilicate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5410 KiB  
Article
Mineral Phase Transformation and Leaching Behavior During the Roasting–Acid–Leaching Process of Clay-Type Lithium Ore in the Qaidam Basin
by Xiaoou Zhang, Jing Zhao, Yan Li, Dong An, Huaigang Cheng, Yuliang Ma and Huiping Song
Minerals 2025, 15(8), 777; https://doi.org/10.3390/min15080777 - 24 Jul 2025
Abstract
To address lithium extraction from clay-type lithium ore from the Qaidam Basin, this study identified key controlling factors through particle fractionation, acid-leaching–roasting experiments, and mineral characterization. The results demonstrate that particle size optimization enriched the lithium to 87.65 ppm, where a 74% leaching [...] Read more.
To address lithium extraction from clay-type lithium ore from the Qaidam Basin, this study identified key controlling factors through particle fractionation, acid-leaching–roasting experiments, and mineral characterization. The results demonstrate that particle size optimization enriched the lithium to 87.65 ppm, where a 74% leaching rate was achieved with 65 ppm extraction, which established intermediate-sized samples as optimal. During acid leaching, adsorbed lithium ions with a phyllosilicate interlayer were released via the ion exchange process instead of mineral dissolution, as verified by the Li-O/S-O peak shifts in the FTIR spectra. The roasting induced hydroxyl elimination, carbonate decomposition, and silicate restructuring but triggered lithium encapsulation via mineral phase reorganization, which caused a sharp leaching rate decline. Effective lithium extraction requires integrated particle size screening, acid-leaching optimization, and roasting-induced phase encapsulation disruption. This study established theoretical foundations for clay-type lithium ore exploitation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 25732 KiB  
Article
Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines
by Bingxiao Zheng, Liqin Yang, Yashuang Hei, Ling Yu, Sisi Wen, Lisi Ba, Long Ao and Zhiju Zhao
Molecules 2025, 30(15), 3089; https://doi.org/10.3390/molecules30153089 - 23 Jul 2025
Viewed by 35
Abstract
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO [...] Read more.
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO2(x)) via pyrolysis of silica-supported cobalt–phenanthroline complexes. The optimized Co-Ph@SiO2(900) catalyst achieved exceptional performance (>99% conversion, >98% selectivity) in the reductive amination of acetophenone to 1-phenylethanamine using NH3/H2. Systematic studies revealed that its exceptional performance originates from the in situ pyrolysis of the cobalt–phyllosilicate complex. This process promotes the uniform distribution of metal cobalt nanoparticles, simultaneously enhancing porosity and imparting bifunctional (acidic and basic) properties to the catalyst, resulting in outstanding catalytic activity and selectivity. The catalyst demonstrated broad applicability, efficiently converting diverse ketones (aryl-alkyl, dialkyl, bioactive) and aldehydes (halogenated, heterocyclic, biomass-derived) into primary amines with high yields (up to 99%) and chemoselectivity (>40 examples). This sustainable, non-noble metal-based catalyst system offers significant potential for industrial primary amine synthesis and provides a versatile tool for developing highly selective and active heterogeneous catalysts. Full article
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador
by Daniel Garcés, Samantha Jiménez-Oyola, Yolanda Sánchez-Palencia, Fredy Guzmán-Martínez, Raúl Villavicencio-Espinoza, Sebastián Jaramillo-Zambrano, Victoria Rosado, Bryan Salgado-Almeida and Josué Marcillo-Guillén
Minerals 2025, 15(8), 767; https://doi.org/10.3390/min15080767 - 22 Jul 2025
Viewed by 209
Abstract
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization [...] Read more.
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization and X-ray Fluorescence Spectrometry (XRF) were used to analyze the content of potentially toxic elements (PTEs) of interest (As, Cd, Cr, Cu, Ni, Pb, and Zn), and X-ray Diffraction (XRD) for mineralogical characterization. The contamination index (IC) was calculated to assess the potential hazard associated with the content of PTEs in the mining wastes. To assess environmental risks, leaching tests were carried out to evaluate the potential release of PTEs, and Acid-Base Accounting (ABA) tests were conducted to determine the likelihood of acid mine drainage formation. The results revealed that the PETs concentration exceeded the maximum permissible limits in all samples, according to Ecuadorian regulations: As, Pb, and Cd were identified as critical contaminants. Mineralogically, quartz was the dominant phase, followed by carbonates (calcite, dolomite and magnesite), phyllosilicates (chlorite and illite), and minor amounts of pyrite and talc. The IC indicated high to very high contamination risk levels, with As being the predominant contributor. Although leaching tests met the established limits for non-hazardous mining waste, the ABA test showed that all samples had a high potential for long-term acid generation. These results underscore the need for implementing management strategies to mitigate the environmental impacts and the development of plans to protect local ecosystems and communities from the adverse effects of mining activities. Full article
Show Figures

Figure 1

17 pages, 2591 KiB  
Article
Elemental Release from Egyptian Glauconite Sediments: An Extraction Study by Various Acids
by Nada Eldawwy, Márk Horváth, Heba Naser, Abdulrahman Maina Zubairu, Gábor Halász, Éva Lehoczky, Eszter Takács, András Székács and Miklós Gulyás
Soil Syst. 2025, 9(2), 50; https://doi.org/10.3390/soilsystems9020050 - 14 May 2025
Viewed by 1085
Abstract
Glauconite, a diagenetic sedimentary phyllosilicate mineral, holds significant importance in soil science, as it is commonly used in soil characterization (as in greensands) and can be identified in the field by its color and morphology. It is a potential fertilizer, rich in essential [...] Read more.
Glauconite, a diagenetic sedimentary phyllosilicate mineral, holds significant importance in soil science, as it is commonly used in soil characterization (as in greensands) and can be identified in the field by its color and morphology. It is a potential fertilizer, rich in essential macronutrients like potassium, phosphorus, calcium, and numerous micronutrients such as manganese, zinc, copper, cobalt, and nickel. In this meticulously conducted study, we extracted five individual elements (potassium, calcium, magnesium, sodium, and zinc) from washed glauconite samples separated into five different size fractions using a suite of acids. The acids employed were nitric acid, hydrochloric acid, acetic acid, and phosphoric acid, each prepared at the same molarity of 0.1 M. Water was used as the control solubilizing medium. The extractant behavior of the acids was assessed by measuring concentrations of each element by the ICP-OES device. The results demonstrate that nitric acid consistently exhibits the highest efficacy in releasing elements, followed by hydrochloric acid and phosphoric acid, while acetic acid results in the lowest release of these nutrients. These findings support the use of acidification treatment of glauconite, enhancing elemental release and potentially reducing the amount of glauconite needed as an alternative fertilizer, thus adding economic value. Full article
Show Figures

Graphical abstract

16 pages, 5841 KiB  
Article
Characterization and Suitability for Ceramics Production of Clays from Bustos, Portugal
by Carla Candeias, Isaac Santos and Fernando Rocha
Minerals 2025, 15(5), 503; https://doi.org/10.3390/min15050503 - 9 May 2025
Viewed by 754
Abstract
Clays are fundamental raw materials in the ceramics industry due to their plasticity, mineralogical composition, and thermal behavior. This study characterizes four clay samples from Bustos (Portugal), aiming to assess their suitability for ceramic applications through granulometric, geochemical, mineralogical, and technological assays, looking [...] Read more.
Clays are fundamental raw materials in the ceramics industry due to their plasticity, mineralogical composition, and thermal behavior. This study characterizes four clay samples from Bustos (Portugal), aiming to assess their suitability for ceramic applications through granulometric, geochemical, mineralogical, and technological assays, looking at aspects such as their plasticity and sintering behavior. A textural analysis of the samples revealed distinct granulometric profiles, being dominated by silty–clayey fractions and low amounts of coarse particles, indicating high plasticity potential. Three samples showed an alkaline pH (8.17–8.63), and one an acidic pH (5.11), which can significantly influence the rheology and firing behavior of the ceramic body. Samples had a predominance of phyllosilicate minerals, followed by quartz and magnetite–maghemite, and trace amounts of feldspars, anatase, bassanite, and siderite. In the clay fraction, smectite, illite, and kaolinite were identified. By combining classical analysis techniques with ceramic technology principles, this study contributes to the sustainable development of local ceramic industries, emphasizing the importance of characterizing natural raw materials for industrial applications. The plasticity tests showed strong workability in two samples, which exhibited high values of plasticity and moldability, making them suitable for shaping processes in ceramic production. Also, sintering behavior tests revealed that the same clays exhibited good densification during firing, with relatively low shrinkage. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

15 pages, 5094 KiB  
Article
Study on the Flotation Behavior of CMS-Na for Talc with Different Particle Sizes: Based on the Hydrophobicity Difference of Fracture Surfaces
by Runqing Liu, Wenye Man, Wenchao Dong, Yacong Wu and Zechao Huangfu
Minerals 2025, 15(4), 402; https://doi.org/10.3390/min15040402 - 11 Apr 2025
Viewed by 426
Abstract
Talc, as a phyllosilicate mineral, is often associated with sulfides such as copper, molybdenum, and nickel, which severely impact the flotation of target minerals. Micro-flotation experiments combined with SEM, contact angle, FTIR, TOC, and AFM analyses were performed to explore the influence and [...] Read more.
Talc, as a phyllosilicate mineral, is often associated with sulfides such as copper, molybdenum, and nickel, which severely impact the flotation of target minerals. Micro-flotation experiments combined with SEM, contact angle, FTIR, TOC, and AFM analyses were performed to explore the influence and mechanism of sodium carboxymethyl starch (CMS-Na) on the flotation behavior of talc with varying particle sizes in a butyl xanthate system. The flotation results indicate that when CMS-Na is used as a depressant, the recovery of coarse talc particles (−74 + 45 μm) is only about 1%, while fine talc particles (−23 μm) maintain a recovery rate of over 70%. FTIR analysis revealed that the interaction between CMS-Na and talc involves both chemical and physical adsorption mechanisms, with the most pronounced effect observed on fine-grained talc surfaces. TOC, AFM, and contact angle measurements further revealed that the proportion of exposed edge surfaces increases as the talc particle size decreases. These edge surfaces exhibited a higher affinity for CMS-Na, resulting in significant reagent adsorption. Consequently, at an equivalent reagent dosage, the adsorption of CMS-Na on the basal planes was reduced, leading to the retention of high surface hydrophobicity. This phenomenon is considered an important factor contributing to the poor depressive effect on fine-grained talc. Full article
(This article belongs to the Special Issue Interfacial Chemistry of Critical Mineral Flotation)
Show Figures

Figure 1

18 pages, 2219 KiB  
Article
Treated Wastewater Affects the Fertility and Geochemistry of Degraded Soil in the Brazilian Semi-Arid Region
by Victor Junior Lima Felix, Salomão de Sousa Medeiros, Rodrigo Santana Macedo, Cristiano dos Santos Sousa, Renato Francisco da Silva Souza, Vânia da Silva Fraga, Alexandre Pereira Bakker, Robson Vinício dos Santos, Bruno de Oliveira Dias and Milton César Costa Campos
Agronomy 2025, 15(3), 721; https://doi.org/10.3390/agronomy15030721 - 17 Mar 2025
Viewed by 629
Abstract
Projections for the Brazilian semi-arid (BSA) region estimate a reduction in water bodies and an increase in degraded areas. Recovering degraded soils using treated wastewater (TWW) is a strategy to increase the resilience of the local population to these climatic adversities. This study [...] Read more.
Projections for the Brazilian semi-arid (BSA) region estimate a reduction in water bodies and an increase in degraded areas. Recovering degraded soils using treated wastewater (TWW) is a strategy to increase the resilience of the local population to these climatic adversities. This study aimed to evaluate the impact of deficit irrigation with treated effluent on the (geo)chemistry of degraded soil in the BSA. An experiment with the application of TWW was conducted on soil degraded within an agroforestry system. The treatments arranged in randomized block design were WS0.5 (water supply at 0.5 L/plant/week), TE0.5 (treated effluent at 0.5 L/plant/week), and TE1 (treated effluent at 1 L/plant/week). Soil samples were collected (0–15 and 15–30 cm) at the initial condition, after two years of irrigation, and two years after the end of irrigation. Analyses of chemicals and geochemicals were carried out. All treatments increased soil fertility after two years in both layers, with TE1 resulting in higher Ca2+ (0–15 cm: 2.88; 15–30; 3.14; cmolc kg−1), Mg2+ (0–15 cm: 2.13; 15–30; 2.00; cmolc kg−1), and K+ (0–15 cm: 0.11; 15–30; 0.12; cmolc kg−1), generating a residual effect two years post-irrigation suspension and no risk of salinization. However, TE1 and mainly TE0.5 showed an increase in sodium content, making the soil solodic (6–11%). The application of TWW changed the CaO, MgO, and K2O contents of silt fraction, contributing to the availability of Ca, Mg, and K in soils. Future studies should monitor sodium levels and confirm K-bearing phyllosilicate (illitization) after irrigation with TWW. The application of TWW for a short period (two years) and in small volumes (0.5 L/plant/week) affects (geo)chemistry of degraded soil from the BSA. Full article
Show Figures

Figure 1

68 pages, 6774 KiB  
Review
Geobiological and Biochemical Cycling in the Early Cambrian: Insights from Phosphoritic Materials of South Spain
by Ting Huang and David C. Fernández-Remolar
Minerals 2025, 15(3), 203; https://doi.org/10.3390/min15030203 - 20 Feb 2025
Cited by 1 | Viewed by 816
Abstract
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was [...] Read more.
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was recorded as sequences of nodular phosphoritic limestones intercalated with chlorite-rich silts, containing ferrous phyllosilicates such as chamosite and chlorite. The abundant and diverse fossil record within these deposits corroborates that the ion supply facilitated robust biogeochemical and nutrient cycling, promoting elevated biological productivity and biodiversity. This paper investigates the early Cambrian nutrient fluxes from the Gondwanan continental region, focusing on the formation of phosphoritic and ferrous facies and the diversity of the fossil record. We estimate and model the biogeochemical cycling within a unique early Cambrian ecosystem located in South Spain, characterized by calcimicrobial reefs interspersed with archaeocyathids that settled atop a tectonically elevated volcano-sedimentary platform. The configuration enclosed a shallow marine lagoon nourished by riverine contributions including ferric and phosphatic complexes. Geochemical analyses revealed varying concentrations of iron (0.14–3.23 wt%), phosphate (0.1–20.0 wt%), and silica (0.27–69.0 wt%) across different facies, with distinct patterns between reef core and lagoonal deposits. Using the Geochemist’s Workbench software and field observations, we estimated that continental andesite weathering rates were approximately 23 times higher than the rates predicted through modeling, delivering, at least, annual fluxes of 0.286 g·cm⁻²·yr⁻¹ for Fe and 0.0146 g·cm⁻²·yr⁻¹ for PO₄³⁻ into the lagoon. The abundant and diverse fossil assemblage, comprising over 20 distinct taxonomic groups dominated by mollusks and small shelly fossils, indicates that this nutrient influx facilitated robust biogeochemical cycling and elevated biological productivity. A carbon budget analysis revealed that while the system produced an estimated 1.49·10¹⁵ g of C over its million-year existence, only about 0.01% was preserved in the rock record. Sulfate-reducing and iron-reducing chemoheterotrophic bacteria played essential roles in organic carbon recycling, with sulfate reduction serving as the dominant degradation pathway, processing approximately 1.55·10¹¹ g of C compared to the 5.94·10⁸ g of C through iron reduction. A stoichiometric analysis based on Redfield ratios suggested significant deviations in the C:P ratios between the different facies and metabolic pathways, ranging from 0.12 to 161.83, reflecting the complex patterns of organic matter preservation and degradation. The formation of phosphorites and ferrous phyllosilicates was primarily controlled by suboxic conditions in the lagoon, where microbial iron reduction destabilized Fe(III)-bearing oxyhydroxide complexes, releasing scavenged phosphate. This analysis of nutrient cycling in the Las Ermitas reef–lagoon system demonstrates how intensified continental weathering and enhanced nutrient fluxes during the early Cambrian created favorable conditions for the development of complex marine ecosystems. The quantified nutrient concentrations, weathering rates, and metabolic patterns established here provide a baseline data for future research addressing the biogeochemical conditions that facilitated the Cambrian explosion and offering new insights into the co-evolution of Earth’s geochemical cycles and early animal communities. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

17 pages, 2350 KiB  
Article
Viral Clearance of Cupric-Modified Phyllosilicate Minerals Against Enveloped and Non-Enveloped Viruses
by Vaishali Sharma, Sneha Singh, Natalie M. Nold, Supreet Kaur, Bowen Li and Caryn L. Heldt
Colloids Interfaces 2025, 9(1), 13; https://doi.org/10.3390/colloids9010013 - 14 Feb 2025
Viewed by 1073
Abstract
The effectiveness of copper-based composites, specifically cupric ion (Cu2+)-modified phyllosilicate minerals, was evaluated in reducing the concentration of infectious agents in the environment while minimizing metal ion release. The phyllosilicate minerals, vermiculite, exfoliated and unexfoliated, and sepiolite, all modified with Cu [...] Read more.
The effectiveness of copper-based composites, specifically cupric ion (Cu2+)-modified phyllosilicate minerals, was evaluated in reducing the concentration of infectious agents in the environment while minimizing metal ion release. The phyllosilicate minerals, vermiculite, exfoliated and unexfoliated, and sepiolite, all modified with Cu2+, were compared with copper oxide for their antiviral activity against non-enveloped porcine parvovirus (PPV) and enveloped human coronavirus 229E (HCoV). Sepiolite effectively removed PPV and HCoV from the solution, regardless of Cu2+ presence, while vermiculite showed substantial viral clearance only when Cu2+ was present. The kinetics of viral clearance was fast, with complete clearance within one hour in many cases. To better understand the mechanism of virus clearance, EDTA was added at different times during the clearance study for PPV. EDTA prevented virus clearance in all vermiculite samples, whereas sepiolite containing copper still demonstrated substantial virus clearance. The addition of BSA before the virus binding was able to block binding in all cases. It was determined that binding is the key mechanism, and PPV can be eluted from the minerals with EDTA and still be infectious. This study provides the potent antiviral mechanisms of Cu2+-modified phyllosilicate minerals, offering insights for designing paints and plastics for high-touch surfaces to reduce viral transmission and enhance public health significantly. Full article
(This article belongs to the Special Issue Biocolloids and Biointerfaces: 2nd Edition)
Show Figures

Graphical abstract

22 pages, 3042 KiB  
Article
The Effects of the Addition of Secondary Phyllosilicate Minerals on the Decomposition Process and Products of Maize Straw in Black Soil
by Qi Zhao, Hongbin Wang, Chenyu Zhao, Jinhua Liu, Ning Huang, Biao Sui, Luze Yang, Nan Wang and Xingmin Zhao
Agronomy 2025, 15(2), 316; https://doi.org/10.3390/agronomy15020316 - 26 Jan 2025
Viewed by 798
Abstract
The interaction between secondary phyllosilicate minerals and straw is crucial for preserving soil organic carbon (SOC) and fertility. However, the specific mechanism through which these minerals affect straw decomposition and its products in northeast China’s black soil remains unclear. In this study, montmorillonite, [...] Read more.
The interaction between secondary phyllosilicate minerals and straw is crucial for preserving soil organic carbon (SOC) and fertility. However, the specific mechanism through which these minerals affect straw decomposition and its products in northeast China’s black soil remains unclear. In this study, montmorillonite, illite, and vermiculite were mixed with quartz sand and maize straw, inoculated with microbes, and incubated to analyze the effects of different secondary phyllosilicate minerals on the degradation of organic components in maize straw and the formation of soil humus. The results showed that montmorillonite significantly facilitated the decomposition of maize straw hemicellulose and lignin, which decreased by 95.85% and 76.38%, respectively. Conversely, vermiculite decelerated hemicellulose and lignin degradation. Regarding soil organic acids, lactic acid and malic acid were predominant, with the highest content being found after the montmorillonite treatment. Montmorillonite was the most effective in enhancing extractable humic-like substances, which increased by 71.68%. Montmorillonite increased the content of G0 (water dispersion group), G1 (sodium ion dispersion group), and G2 (sodium grinding dispersion group) complexes. The addition of secondary phyllosilicate minerals increased the organic carbon (OC) content in the G0, G1, and G2 samples, with montmorillonite demonstrating the most pronounced effect. Secondary phyllosilicate minerals increased the abundance of fungi, particularly Ascomycota, with the highest abundance being found after the montmorillonite treatment. In conclusion, our results indicated that montmorillonite facilitated the decomposition of lignocellulose in maize straw, enhanced the accumulation of humus, and promoted the formation of organic–mineral complexes. These findings provide valuable insights into the interaction between secondary phyllosilicate minerals and maize straw and have important implications for improving the quality of black soil in northeast China. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 9272 KiB  
Review
An Overview on the Manufacture and Properties of Clay-Based Porous Ceramics for Water Filtration
by Iffat Qoudsiyyah Maury Njoya, Gisèle Laure Lecomte-Nana, Kassoum Barry, Dayirou Njoya, Youssef El Hafiane and Claire Peyratout
Ceramics 2025, 8(1), 3; https://doi.org/10.3390/ceramics8010003 - 30 Dec 2024
Cited by 1 | Viewed by 1807
Abstract
This study explores the different techniques used to manufacture porous clay-based ceramics, examining their properties such as porosity, strength, permeability and filtration efficiency. Different techniques are discussed in this review, with additive manufacturing being one of the most innovative techniques for manufacturing porous [...] Read more.
This study explores the different techniques used to manufacture porous clay-based ceramics, examining their properties such as porosity, strength, permeability and filtration efficiency. Different techniques are discussed in this review, with additive manufacturing being one of the most innovative techniques for manufacturing porous ceramics. Porous ceramics have their applications in numerous domains. Such ceramic filters have the advantages of retaining heavy materials, suspended particles, bacteria, viruses and, water turbidity. Thus, the choice of the technique and propriety is a crucial step in obtaining a porous ceramic with the best performance. Barry et al. prepared porous phyllosilicate-based ceramics by freeze-tape casting on four samples and obtained porosity values in the range of 67–79% and diametrical compressive strength in the range of 3–7 MPa. Manni et al. prepared porous red ceramics from Moroccan clay and coffee waste (10, 20 and 30 wt.%) via uniaxial pressing and sintering at 1150 °C. They obtained porosities ranging from 30.2 to 63.8% and flexural strength values from 1.8 to 19.5 MPa. Medri et al. prepared ZrB2-based porous bodies with the use of sponges and polyurethane foams as templates via the replica method and obtained high porosity over 80% and compressive strength up to 4.8 MPa. The use of clay and peanut shell mixtures was used in preparing porous silicate ceramics after unidirectional pressing and sintering at 1100 °C. These samples included 25 mass% of peanut shells, and exhibited porosity in the range of 40 to 60% and diametrical compressive strength in the range of 1–6 MPa. Such properties are suitable for domestic use of these types of clay-based ceramic filters. Moreover, the permeability values and removal of some pollutants, like arsenic, have been satisfactory for the first set of samples. Full article
(This article belongs to the Special Issue Innovative Manufacturing Processes of Silicate Materials)
Show Figures

Figure 1

18 pages, 2383 KiB  
Article
Retention of Nickel and Cobalt in Boda Claystone Formation
by Ottó Czömpöly, Fruzsina Szabó, Margit Fábián, Tamás Kolonits, Zsolt Fogarassy, Dániel Zámbó, Marc Aertsens and János Osán
Minerals 2024, 14(12), 1299; https://doi.org/10.3390/min14121299 - 22 Dec 2024
Cited by 1 | Viewed by 834
Abstract
The Boda Claystone Formation (BCF) is considered to serve as a natural barrier to the potential high-level radioactive waste repository in Hungary. In order to evaluate the radionuclide retention capacity of the albitic claystone of the BCF, the adsorption and diffusion properties of [...] Read more.
The Boda Claystone Formation (BCF) is considered to serve as a natural barrier to the potential high-level radioactive waste repository in Hungary. In order to evaluate the radionuclide retention capacity of the albitic claystone of the BCF, the adsorption and diffusion properties of the rock for Ni2+ and Co2+ cations (activation products) were investigated separately and in competitive conditions when the two ions were simultaneously added. Batch sorption experiments were performed with powdered and conditioned albitic claystone samples in synthetic pore water to obtain adsorption isotherms. In addition, adsorption tests were performed on petrographic thin sections to check the transferability between dispersed and compact systems. Correlation analysis of microscopic X-ray fluorescence elemental maps recorded on thin sections suggested that nickel is primarily bound to clay minerals (mainly illite and chlorite), which was confirmed by (scanning) transmission electron microscopy measurements. Around illite particles, a newly formed nickel-rich few atomic layer thick phyllosilicate phase was identified. The discrepancy between the experimental and modeled adsorption isotherm at high concentrations could be explained with this nickel-rich new phase. Apart from Cin = 10−3 M and only Ni2+ or Co2+ in the source, the apparent diffusion coefficients of Ni2+ and Co2+ (Cin = 10−3–10−2 M) were found to be similar. Overall, the BCF shows promising capabilities to retain the studied radionuclides. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

11 pages, 3845 KiB  
Article
Comparative Analysis of Physico-Chemical and Potassium Sorption Properties of Sensitive Clays
by Marta Di Sante, Evelina Fratalocchi, Francesco Mazzieri, Bruno Di Buò and Tim Länsivaara
Minerals 2024, 14(12), 1273; https://doi.org/10.3390/min14121273 - 14 Dec 2024
Viewed by 1380
Abstract
The paper analyses physico-chemical and geotechnical characteristics of four Scandinavian sensitive soils formed under different environmental depositional conditions, with the main aims to contribute to the knowledge of sensitive soils and assess the potassium sorption capacity among the investigated soils, as a basic [...] Read more.
The paper analyses physico-chemical and geotechnical characteristics of four Scandinavian sensitive soils formed under different environmental depositional conditions, with the main aims to contribute to the knowledge of sensitive soils and assess the potassium sorption capacity among the investigated soils, as a basic characteristic to evaluate the effectiveness of treatment with KCl and to analyse potassium migration in such soils. The results show that, although the chemical composition of the four soils is very similar, their sensitivity is significantly different. The correlation from literature linking the specific surface, mineralogy, and plasticity in sensitive clays of Eastern Canada, was found to be qualitatively valid for the investigated Scandinavian sensitive clays, too. The highest value of the sensitivity index among the tested soils was found to be related to the lowest cation exchange capacity and to a limited amount of amorphous minerals. These characteristics contribute to explaining the highly sensitive behaviour of that soil affecting the structure formation during the deposition stage. The potassium sorption capacity has been experimentally investigated through batch tests specifically performed on the sensitive soils, as the first step to quantify the maximum sorption capacity and identify the main factors affecting it. The maximum potassium sorption capacity was always lower than that estimated by the cation exchange capacity, and it increased with the cation exchange capacity, plasticity index, and activity of the soils, as well as with the amount of phyllosilicates and amorphous minerals. Full article
(This article belongs to the Special Issue Adsorption Properties and Environmental Applications of Clay Minerals)
Show Figures

Figure 1

17 pages, 5439 KiB  
Article
Chemical and Thermal Changes in Mg3Si2O5 (OH)4 Polymorph Minerals and Importance as an Industrial Material
by Ahmet Şaşmaz, Ayşe Didem Kılıç and Nevin Konakçı
Appl. Sci. 2024, 14(22), 10298; https://doi.org/10.3390/app142210298 - 8 Nov 2024
Cited by 4 | Viewed by 1532
Abstract
Serpentine (Mg3Si2O5(OH)4), like quartz, dolomite and magnesite minerals, is a versatile mineral group characterized by silica and magnesium silicate contents with multiple polymorphic phases. Among the phases composed of antigorite, lizardite, and chrysotile, lizardite and [...] Read more.
Serpentine (Mg3Si2O5(OH)4), like quartz, dolomite and magnesite minerals, is a versatile mineral group characterized by silica and magnesium silicate contents with multiple polymorphic phases. Among the phases composed of antigorite, lizardite, and chrysotile, lizardite and chrysotile are the most prevalent phases in the serpentinites studied here. The formation process of serpentinites, which arise from the hydrothermal alteration of peridotites, influences the ratio of light rare earth elements (LREE) to heavy rare earth elements (HREE). In serpentinites, the ratio of light rare earth elements (LREE)/heavy rare earth elements (HREE) provides insights into formation conditions, geochemical evolution, and magmatic processes. The depletion of REE compositions in serpentinites indicates high melting extraction for fore-arc/mantle wedge serpentinites. The studied serpentinites show a depletion in REE concentrations compared to chondrite values, with HREE exhibiting a lesser degree of depletion compared to LREE. The high ΣLREE/ΣHREE ratios of the samples are between 0.16 and 4 ppm. While Ce shows a strong negative anomaly (0.1–12), Eu shows a weak positive anomaly (0.1–0.3). This indicates that fluid interacts significantly with rock during serpentinization, and highly incompatible elements (HIEs) gradually become involved in the serpentinization process. While high REE concentrations indicate mantle wedge serpentinites, REE levels are lower in mid-ocean ridge serpentinites. The enrichment of LREE in the analyzed samples reflects melt/rock interaction with depleted mantle and is consistent with rock–water interaction during serpentinization. The gradual increase in highly incompatible elements (HIEs) suggests that they result from fluid integration into the system and a subduction process. The large differential thermal analysis (DTA) peak at 810–830 °C is an important sign of dehydration, transformation reactions and thermal decomposition, and is compatible with H2O phyllosilicates in the mineral structure losing water at this temperature. In SEM images, chrysotile, which has a fibrous structure, and lizardite, which has a flat appearance, transform into talc as a result of dehydration with increasing temperature. Therefore, the sudden temperature drop observed in DTA graphs is an indicator of crystal form transformation and CO2 loss. In this study, the mineralogical and structural properties and the formation of serpentinites were examined for the first time using thermo-gravimetric analysis methods. In addition, the mineralogical and physical properties of serpentinites can be recommended for industrial use as additives in polymers or in the adsorption of organic pollutants. As a result, the high refractory nature of examined serpentine suggests that it is well-suited for applications involving high temperatures. This includes industries such as metallurgy and steel production, glass manufacturing, ceramic production, and the chemical industry. Full article
Show Figures

Figure 1

16 pages, 42047 KiB  
Article
Characterisation of Fault-Related Mn-Fe Striae on the Timpa Della Manca Fault (Mercure Basin, Southern Apennines, Italy)
by Sabrina Nazzareni, Luciana Mantovani, Mattia Pizzati, Danilo Bersani, Tiziano Boschetti, Ambra Palmucci, Daniele Cirillo and Francesco Brozzetti
Geosciences 2024, 14(11), 299; https://doi.org/10.3390/geosciences14110299 - 5 Nov 2024
Cited by 1 | Viewed by 1345 | Correction
Abstract
The Quaternary Mercure basin is a complex fault structure located in the Pollino region of the southern Apennines (Italy). A persistent seismic gap makes the Mercure basin structure one of Italy’s highest seismic risk zones. The southernmost termination of the Mercure basin is [...] Read more.
The Quaternary Mercure basin is a complex fault structure located in the Pollino region of the southern Apennines (Italy). A persistent seismic gap makes the Mercure basin structure one of Italy’s highest seismic risk zones. The southernmost termination of the Mercure basin is the Timpa della Manca fault. The fault’s mirror is characterised by distinctive, lineated, black-coloured striae decorating a cataclasite made of carbonate clasts. These black-coloured striae consist of a mixture of Mn phases, including hollandite, todorokite, birnessite, and orientite, which are associated with goethite and hematite along with minor amounts of phyllosilicates (chlorite, muscovite), quartz, and sursassite. This mineral association and their phase stability suggest that hydrothermal circulating fluids may have mobilised and re-precipitated low-temperature Mn hydrous phases within the shear zone, leaving remnants of higher-temperature minerals. Oceanic crust remnant blocks within the Frido Unit appear to be the most likely source of the Mn. The uniqueness of the Mn striae on the Timpa della Manca fault offers intriguing insights into fluid circulation within the Mercure basin tectonic system, with potential implications for the seismotectonic characteristics of the Pollino region. Full article
Show Figures

Figure 1

Back to TopTop