Elemental Release from Egyptian Glauconite Sediments: An Extraction Study by Various Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glauconite Sample
2.2. Glauconite Washing
2.3. Acidic Extraction
2.4. Instrumental Analysis
2.5. pH and Electrical Conductivity Measurements
2.6. Statistical Analysis
3. Results and Discussion
3.1. Calcium
3.2. Potassium
3.3. Magnesium
3.4. Sodium
3.5. Zinc
3.6. Effect of Fraction Sizes of Glauconite on Element Release
3.7. Changes in pH and Electrical Conductivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jena, S.K. A review on potash recovery from different rock and mineral sources. Mining Metall. Explor. 2021, 38, 47–68. [Google Scholar] [CrossRef]
- Ahmed, M.M.B. An analytical economic study of the production and consumption of nitrogen fertilizers in Egypt. Alex. Sci. Exch. J. 2023, 44, 525–539. [Google Scholar] [CrossRef]
- Wang, Z.B.; Chen, J.; Mao, S.C.; Han, Y.C.; Chen, F.; Zhang, L.F.; Li, Y.B.; Li, C.D. Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production. J. Clean. Prod. 2017, 141, 1267–1274. [Google Scholar] [CrossRef]
- Basak, B.B.; Sarkar, B.; Biswas, D.R.; Sarkar, S.; Sanderson, P.; Naidu, R. Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: Challenges and opportunities. Adv. Agron. 2017, 141, 115–145. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, Q.; Zhang, W.; Liu, L.; Liang, H.; Quirino, R.L.; Chen, J.; Liu, M.; Lu, Q.; Zhang, C. Tunable thermo-physical performance of castor oil-based polyurethanes with tailored release of coated fertilizers. J. Clean. Prod. 2019, 210, 1207–1215. [Google Scholar] [CrossRef]
- El-Habaak, G.; Askalany, M.; Faraghaly, M.; Abdel-Hakeem, M. The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, Egypt. J. Afr. Earth Sci. 2016, 120, 186–197. [Google Scholar] [CrossRef]
- Odom, I.E. Glauconite and celadonite minerals. Rev. Mineral. Geochem. 1984, 13, 545–584. [Google Scholar] [CrossRef]
- Rubio, B.; López-Pérez, A.E. Exploring the genesis of glaucony and verdine facies for paleoenvironmental interpretation: A review. Sediment. Geol. 2024, 461, 106579. [Google Scholar] [CrossRef]
- Mohammed, I.Q.; Sarin, T.; Singh, P.; Lawa, F.A.; Farouk, S.; Al-Kahtany, K.; Banerjee, S. The influence of depositional conditions on chemical and mineralogical composition of glauconite: Case study from the Late Cretaceous Dokan Basin in Kurdistan region of Iraq. Appl. Clay Sci. 2025, 263, 107639. [Google Scholar] [CrossRef]
- Wilmsen, M.; Bansal, U.; Metzner, N.; Böoning, P. Geochemical and depositional environment of an Upper Cretaceous greensand giant (Münsterland Cretaceous Basin, Germany). Chem. Geol. 2024, 661, 122168. [Google Scholar] [CrossRef]
- Baldermann, A.; Banerjee, S.; Löhr, S.C.; Rudmin, M.; Warr, L.N.; Chakraborty, A. Exploring reverse silicate weathering across geological time: A review. Clay Miner. 2025, 2025, 1–27. [Google Scholar] [CrossRef]
- Rudmin, M.; López-Quirós, A.; Banerjee, S.; Ruban, A.; Shaldybin, M.; Bernatonis, P.; Singh, P.; Dauletova, A.; Maximov, P. Origin of Fe-rich clay minerals in Early Devonian volcanic rocks of the Northern Minusa basin, Eastern Siberia. Appl. Clay Sci. 2023, 241, 107014. [Google Scholar] [CrossRef]
- Shekhar, S.; Kumari, V.; Sinha, S.; Mishra, D.; Sahu, K.K. A clean process for the recovery of potash fertilizer from glauconitic rock via hydrogen gas pre-treatment and mild acid leaching. JOM 2024, 76, 3343–3353. [Google Scholar] [CrossRef]
- Dasi, E.; Rudmin, M.; Banerjee, S. Glauconite applications in agriculture: A review of recent advances. Appl. Clay Sci. 2024, 253, 107368. [Google Scholar] [CrossRef]
- Loveland, P.J.; Findlay, D.C. Composition and development of some soils on glauconitic Cretaceous (Upper Greensand) rocks in southern England. J. Soil Sci. 1982, 33, 219–294. [Google Scholar] [CrossRef]
- Lynn, W.C.; Yeck, R.D. Redefinition of the glauconitic family in soil taxonomy. In Mineral Classification of Soils; Kittrick, A., Ed.; Soil Science Society of America, Inc., American Society of Agronomy, Inc.: Madison, WI, USA, 1985; Volume 16, pp. 125–133. [Google Scholar]
- Obasi, C.; Terry, D.O.; Myer, G.H.; Grandstaff, D.E. Glauconite composition and morphology, shocked quartz, and the origin of the Cretaceous(?) main fossiliferous layer (MFL) in Southern New Jersey, USA. J. Sediment. Res. 2011, 81, 479–494. [Google Scholar] [CrossRef]
- Rudmin, M.; Banerjee, S.; Mazurov, A. Compositional variation of glauconites in Upper Cretaceous-Paleogene sedimentary iron-ore deposits in South-eastern Western Siberia. Sediment. Geol. 2017, 355, 20–30. [Google Scholar] [CrossRef]
- Westgate, Z.J.; DeGroot, D.J.; McMullin, C.; Zou, Y.; Guo, D.; Van Haren, S.; Beemer, R.D.; Zeppilli, D.; Miller, K.G.; Browning, J.W. Effect of degradation on geotechnical behavior of glauconite sands from the U.S. Mid-Atlantic Coastal Plain. Ocean Eng. 2023, 283, 115081. [Google Scholar] [CrossRef]
- Drits, V.A.; Dainyak, L.G.; Muller, F.; Besson, G.; Manceau, A. Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mössbauer and EXAFS spectroscopies. Clay Miner. 1997, 32, 153–179. [Google Scholar] [CrossRef]
- Singh, P.; Banerjee, S.; Choudhury, T.R.; Bhattacharya, S.; Pande, K. Distinguishing celadonite from glauconite for environmental interpretations: A review. J. Palaeogeogr. 2023, 12, 179–194. [Google Scholar] [CrossRef]
- Torqueti, S.T.D.S.; Boldrin, K.V.F.; Nascimento, Â.M.P.D.; Paiva, P.D.D.O.; Furtini, A.E.; Luz, I.C.A. Alternative potassium source for the cultivation of ornamental sunflower. Ciên. Agrotec. 2016, 40, 257–264. [Google Scholar] [CrossRef]
- Rudmin, M.; Banerjee, S.; Mazurov, A.; Makarov, B.; Martemyanov, D. Economic potential of glauconitic rocks in Bakchar deposit (SE Western Siberia) for alternate potash fertilizer. Appl. Clay Sci. 2017, 150, 225–233. [Google Scholar] [CrossRef]
- Khitrin, I.; Maximov, P.; Dasi, E.; Ibraeva, K.; Ponomarev, K.; Maximova, N.; Belousov, P.; Ruban, A.; Rudmin, M. Glauconite-based nanocomposites with Zn/Cu/B: Multifunctional micronutrient fertilizers. Minerals 2025, 15, 12. [Google Scholar] [CrossRef]
- Franzosi, C.; Castro, L.N.; Celeda, A.M. Technical evaluation of glauconies as alternative potassium fertilizer from the Salamanca Formation, Patagonia, Southwest Argentina. Nat. Resour. Res. 2014, 23, 311–320. [Google Scholar] [CrossRef]
- Rudmin, M.; Banerjee, S.; Makarov, B.; Mazurov, A.; Ruban, A.; Oskina, Y.; Tolkachev, O.; Buyakov, A.; Shaldybin, M. An investigation of plant growth by the addition of glauconitic fertilizer. Appl. Clay Sci. 2019, 180, 105178. [Google Scholar] [CrossRef]
- Rudmin, M.; Banerjee, S.; Makarov, B.; Belousov, P.; Kurovsky, A.; Ibraeva, K.; Buyakov, A. Glauconite-urea nanocomposites as polyfunctional controlled-release fertilizers. J. Soil Sci. Plant Nutr. 2022, 22, 4035–4046. [Google Scholar] [CrossRef]
- Pessoa, R.S.; Silva, C.A.; Moretti, B.S.; Furtini, A.E.; Inda, A.V.; Curi, N. Solubilization of potassium from alternative rocks by humic and citric acids and coffee husk. Ciên. Agrotec. 2015, 39, 553–564. [Google Scholar] [CrossRef]
- Eldawwy, N.; Gulyás, M.; Naser, H.; Takács, A.; Lehoczky, É.; Horváth, M. Investigating the elemental composition of Egyptian glauconite sediments by applying BCR sequential extraction procedure and some single extractants. Agrokém. Talajt. 2024, 73, 42–58. [Google Scholar] [CrossRef]
- Yang, J.-S.; Lee, J.Y.; Baek, K.; Kwon, T.-S.; Choi, J. Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. J. Hazard. Mater. 2009, 171, 443–451. [Google Scholar] [CrossRef]
- Golia, E.E.; Tsiropoulos, N.G.; Vleioras, S.; Antoniadis, V. Investigation of extraction methods for the assessment of the pseudo-total concentration of potentially toxic elements in moderately contaminated soils of Central Greece. Water Air Soil Pollut. 2020, 231, 484. [Google Scholar] [CrossRef]
- Clemente, R.; Bernal, M.P. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere 2006, 64, 1264–1273. [Google Scholar] [CrossRef] [PubMed]
- Salama, W.; El Aref, M.; Gaupp, R. Mineralogical and geochemical investigations of the Middle Eocene ironstones, El Bahariya Depression, Western Desert, Egypt. Gondwana Res. 2012, 22, 717–736. [Google Scholar] [CrossRef]
- Hassan, M.; Baioumy, H. Characterization and origin of alunite in the El-Gideda iron mine (Egypt). Period. Mineral. 2007, 76, 11–24. [Google Scholar]
- Ropp, R.C. Group 17 (H, F, Cl, Br, I) alkaline earth compounds. In Encyclopedia of the Alkaline Earth Compounds; Elsevier: Kidlington, UK, 2013; pp. 25–104. [Google Scholar] [CrossRef]
- Kant, S.; Kafkafi, U. Fertigation. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Kidlington, UK, 2013; pp. 1–10. [Google Scholar] [CrossRef]
- Tro, N.J. Introductory Chemistry, 6th ed.; Pearson: London, UK, 2011; ISBN 978-01-3430-238-6. [Google Scholar]
- Shekhar, S.; Mishra, D.; Agrawal, A.; Sahu, K.K. Physico-chemical treatment of glauconitic sandstone to recover potash and magnetite. J. Clean. Prod. 2017, 147, 681–693. [Google Scholar] [CrossRef]
- Praveen, S.; Tomar, D.S. Solubility of glauconite nano-particle in root exudates. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 3315–3320. [Google Scholar] [CrossRef]
- Yadav, V.P.; Sharma, T. Leaching of Glauconitic sand stone in acid lixiviants. Miner. Eng. 1992, 5, 715–720. [Google Scholar] [CrossRef]
- Schimicoscki, R.S.; Oliveira, K.D.; Ávila-Neto, C.N. Potassium recovery from a Brazilian glauconitic siltstone via reaction with sulfuric acid in hydrothermal conditions. Hydrometallurgy 2020, 191, 105251. [Google Scholar] [CrossRef]
- Shekhar, S.; Mishra, D.; Agrawal, A.; Sahu, K.K. Physical and chemical characterization and recovery of potash fertilizer from glauconitic clay for agricultural application. Appl. Clay Sci. 2017, 143, 50–56. [Google Scholar] [CrossRef]
- Rao, B.R.; Rao, L.S.; Mazumdar, A.K.; Rao, T.C. Fluoride aided potassium extraction from glauconitic sandstone for liquid fertilizer. Miner. Eng. 1993, 6, 405–413. [Google Scholar] [CrossRef]
- Oze, C.; Smaill, J.B.; Reid, C.M.; Palin, M. Potassium and metal release related to glaucony dissolution in soils. Soil Syst. 2019, 3, 70. [Google Scholar] [CrossRef]
- Liu, J.; Xie, W.; Yang, J.; Yao, R.; Wang, X.; Li, W. Effect of different fertilization measures on soil salinity and nutrients in salt-affected soils. Water 2023, 15, 3274. [Google Scholar] [CrossRef]
- Fairbrother, A.; Wenstel, R.; Sappington, K.; Wood, W. Framework for metals risk assessment. Ecotox. Environ. Saf. 2007, 68, 145–227. [Google Scholar] [CrossRef] [PubMed]
- Abou El-Anwar, E.A.; Gomaa, M.M. Electrical properties and geochemistry of carbonate rocks from the Qasr El-Sagha Formation, El-Faiyum, Egypt. Geophys. Prospect. 2013, 61, 630–644. [Google Scholar] [CrossRef]
- Meng, H.; Shi, Q.; Liu, T.; Liu, F.; Chen, P. The percolation properties of electrical conductivity and permeability for fractal porous media. Energies 2019, 12, 1085. [Google Scholar] [CrossRef]
Acid Treatment | Acid Concentrations | Effect on Glauconite | Reference |
---|---|---|---|
Oxalic acid Acetic acid Citric acid Malic acid | 0.17 mM (15 mg kg−1) 0.67 mM (40 mg kg−1) 0.31 mM (60 mg kg−1) 0.22 mM (30 mg kg−1) | The acids exerted a variable solubilizing effect on glauconite in the order of oxalic acid > malic acid > citric acid > acetic acid. The effect was stronger in all cases than that achieved with distilled water. | [39] |
Humic acid Citric acid Coffee husk | Coffee husk mixed with glauconite and syenite samples at doses of 0, 5, 10, 20, and 40% (w/w). Citric and humic acids were mixed with the two modified low-grade K rocks at doses of 0, 1, 2, 5, and 10% (w/w). | The organic matrices have different abilities to weather the incubated potassic rocks, with the decreasing order of solubilization capacity: coffee husk > humic acid > citric acid. | [28] |
HCl | ~9.8 M (30% v/v) | Chemical leaching of enriched fraction with (HCl) yields demonstrating very low recovery (<12%) of potassium; a combined reduction roasting–leaching method was developed to recover potassium chloride suitable for fertilizer application. | [38] |
HCl HNO3 H2SO4 H3PO4 | 1–6 M 2 M 2 M 1–6 M | The results show the possibility of recovering 96% potassium by treatment of the glauconitic sandstone with 6 M HCl at 378 K (105 °C) for 3 h. Stirring (450 rpm) and extraction with other acids (H2SO4, H3PO4, and HNO3) did not provide appreciable results. | [40] |
H2SO4 | 0.05, 0.1, 0.5, 1, 5 M | Potassium recovery of 0.27, 0.38, 0.33, 0.49, and 0.44 at the H2SO4 concentrations applied, respectively. K extraction’s reaction rate was high, and K recovery was directly proportional to the acid concentration. | [41] |
H2SO4 | 1–3 M (10–30% w/v) | Sulfation roasting–leaching (temperature between 200 °C and 700 °C) was utilized for practically quantitative and selective (<98%) dissolution of K. | [42] |
H2SO4 | 9 M | Conducted tests on glauconitic sandstone with sulphuric acid (9 M) in the presence of hydrofluoric acid (HF) or fluoride salts NaF, LiF, and NH4HF2 to obtain dissolution of potassium (>90%) for particle sizes below 75 mm. | [43] |
Sample | Gl. Before Washing | Gl. After Washing | Gl. a.w. + HCl | Gl. a.w. + CH3COOH | Gl. a.w. + HNO3 | Gl. a.w. + H3PO4 |
---|---|---|---|---|---|---|
EC (mS cm–1) | 12.59 ± 0.36 | 4.32 ± 0.008 | 7.48 ± 0.009 | 4.93 ± 0.11 | 7.24 ± 0.093 | 5.28 ± 0.071 |
pH | 5.78 ± 0.06 | 6.10 ± 0.009 | 3.14 ± 0.008 | 4.61 ± 0.02 | 3.22 ± 0.009 | 3.90 ± 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldawwy, N.; Horváth, M.; Naser, H.; Zubairu, A.M.; Halász, G.; Lehoczky, É.; Takács, E.; Székács, A.; Gulyás, M. Elemental Release from Egyptian Glauconite Sediments: An Extraction Study by Various Acids. Soil Syst. 2025, 9, 50. https://doi.org/10.3390/soilsystems9020050
Eldawwy N, Horváth M, Naser H, Zubairu AM, Halász G, Lehoczky É, Takács E, Székács A, Gulyás M. Elemental Release from Egyptian Glauconite Sediments: An Extraction Study by Various Acids. Soil Systems. 2025; 9(2):50. https://doi.org/10.3390/soilsystems9020050
Chicago/Turabian StyleEldawwy, Nada, Márk Horváth, Heba Naser, Abdulrahman Maina Zubairu, Gábor Halász, Éva Lehoczky, Eszter Takács, András Székács, and Miklós Gulyás. 2025. "Elemental Release from Egyptian Glauconite Sediments: An Extraction Study by Various Acids" Soil Systems 9, no. 2: 50. https://doi.org/10.3390/soilsystems9020050
APA StyleEldawwy, N., Horváth, M., Naser, H., Zubairu, A. M., Halász, G., Lehoczky, É., Takács, E., Székács, A., & Gulyás, M. (2025). Elemental Release from Egyptian Glauconite Sediments: An Extraction Study by Various Acids. Soil Systems, 9(2), 50. https://doi.org/10.3390/soilsystems9020050