Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = phthalides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1099 KiB  
Review
The Phytochemistry and Pharmacology of Onocleaceae Plants: Pentarhizidium orientale, Pentarhizidium intermedium, and Matteuccia struthiopteris—A Review
by Jungmoo Huh
Plants 2025, 14(11), 1608; https://doi.org/10.3390/plants14111608 - 25 May 2025
Viewed by 456
Abstract
The Onocleaceae family, a small group within the Pteridophytes, comprises four genera, but has been phytochemically studied mainly for Pentarhizidium orientale, Pentarhizidium intermedium, and Matteuccia struthiopteris. To date, a total of 91 compounds have been isolated from these three species, [...] Read more.
The Onocleaceae family, a small group within the Pteridophytes, comprises four genera, but has been phytochemically studied mainly for Pentarhizidium orientale, Pentarhizidium intermedium, and Matteuccia struthiopteris. To date, a total of 91 compounds have been isolated from these three species, including 15 flavonoids, 48 flavonoid glycosides, 6 stilbenes, 4 isocoumarins, 2 phthalides, 3 chromones, 2 lignan glycosides, 8 isoprenoid derivatives, and 3 phenolic compounds. Notably, most flavonoids and flavonoid glycosides possess C-methyl groups at the C-6 and/or C-8 positions, with several conjugated to (S)-3-hydroxy-3-methylglutaryl (HMG) moieties. Although not all isolates have been evaluated for their pharmacological activities, several compounds have demonstrated bioactivities such as antiviral, anti-inflammatory, α-glucosidase inhibitory, aldose reductase inhibitory, and antioxidant effects. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

17 pages, 2426 KiB  
Article
Regulatory Effects of Chlormequat Chloride on the Yield and Chemical Composition of Angelica sinensis Radix
by Honghan Qin, Juan Xu, Xiaojun Ma, Rongchang Wei and Zuliang Luo
Molecules 2024, 29(19), 4725; https://doi.org/10.3390/molecules29194725 - 6 Oct 2024
Cited by 1 | Viewed by 1383
Abstract
Chlormequat chloride (CCC), as a commonly used plant growth regulator in the production of rhizomatous medicinal herbs, can effectively control the bolting phenomenon in Angelica sinensis, significantly increasing the yield of underground rhizomes (medicinal part). However, its specific effects on the intrinsic [...] Read more.
Chlormequat chloride (CCC), as a commonly used plant growth regulator in the production of rhizomatous medicinal herbs, can effectively control the bolting phenomenon in Angelica sinensis, significantly increasing the yield of underground rhizomes (medicinal part). However, its specific effects on the intrinsic quality of Angelica sinensis, especially medicinal components, require further investigation. The objective of this study is to conduct a thorough examination of CCC residue and its influence on the yield and medicinal components of Angelica sinensis. By spraying different concentrations of CCC on Angelica sinensis, we systematically monitored the final yield of Angelica sinensis Radix (ASR) in each treatment group and the residual concentration of CCC in ASR. Using UPLC-QTOF-MS technology, we conducted an in-depth analysis of the metabolic profile of ASR. Subsequently, UFLC-MS/MS was employed to accurately quantify the changes in the content of nine key active components in ASR. The results of this study indicate that the application of CCC significantly improves the yield of ASR, with the best effect observed at 0.1 g/L, resulting in a yield increase of 24.8%. Meanwhile, the residual amount of CCC in ASR is positively correlated with the application concentration, with the residual levels as high as 7.12 mg/kg in the high-concentration treatment group. Metabolomic analysis preliminarily identified 21 chemical components in ASR, including four organic acids and 13 phthalides. It is worth noting that the quantitative analysis results indicate significant changes in active components such as butylphthalide, Z-ligustilide, and ferulic acid after the application of CCC. Specifically, high-concentration CCC significantly increased the content of butylphthalide and levistolide A, while low-concentration CCC significantly promoted the accumulation of coniferyl ferulate and senkyunolide A, accompanied by a significant decrease in Z-ligustilide and ferulic acidy. In conclusion, while CCC use can increase yield, the associated increase in residues and imbalanced composition ratios may threaten the quality and safety of ASR. Therefore, it is crucial to control the amount of CCC used rationally to balance yield enhancement and quality assurance. Full article
(This article belongs to the Special Issue Applied Analytical Chemistry: Second Edition)
Show Figures

Figure 1

16 pages, 2158 KiB  
Article
Application of the Wittig Rearrangement of N-Butyl-2-benzyloxybenzamides to Synthesis of Phthalide Natural Products and 3-Aryl-3-benzyloxyisoindolinone Anticancer Agents
by R. Alan Aitken, Francesca K. Cooper, Andrew D. Harper, Ryan A. Inwood, Elizabeth A. Saab and Ewan J. Soutar
Molecules 2024, 29(19), 4722; https://doi.org/10.3390/molecules29194722 - 6 Oct 2024
Viewed by 1230
Abstract
Application of the [1,2]-Wittig rearrangement and cyclisation approach to 3-arylphthalides has been evaluated for the synthesis of three bioactive natural products. While this is successful in the case of crycolide, providing the second synthesis of this compound, the more sterically demanding targets isopestacin [...] Read more.
Application of the [1,2]-Wittig rearrangement and cyclisation approach to 3-arylphthalides has been evaluated for the synthesis of three bioactive natural products. While this is successful in the case of crycolide, providing the second synthesis of this compound, the more sterically demanding targets isopestacin and cryphonectric acid prove not to be amenable to this approach, with the 2,6-disubstituted aryl groups causing the failure of the rearrangement and alkylation steps, respectively. Direct oxidation of the substituted benzhydrols resulting from [1,2]-Wittig rearrangement using MnO2 provides a new route to 3-aryl-3-hydroxyisoindolinones, and this method has been used in the synthesis of two 3-aryl-3-benzyloxyisoindolinone anticancer agents. Full article
Show Figures

Graphical abstract

19 pages, 5473 KiB  
Article
Arylphthalide Delays Diabetic Retinopathy via Immunomodulating the Early Inflammatory Response in an Animal Model of Type 1 Diabetes Mellitus
by Francisco Martín-Loro, Fátima Cano-Cano, María J. Ortega, Belén Cuevas, Laura Gómez-Jaramillo, María del Carmen González-Montelongo, Jan Cedric Freisenhausen, Almudena Lara-Barea, Antonio Campos-Caro, Eva Zubía, Manuel Aguilar-Diosdado and Ana I. Arroba
Int. J. Mol. Sci. 2024, 25(15), 8440; https://doi.org/10.3390/ijms25158440 - 2 Aug 2024
Cited by 2 | Viewed by 1842
Abstract
Diabetic retinopathy (DR) is one of the most prevalent secondary complications associated with diabetes. Specifically, Type 1 Diabetes Mellitus (T1D) has an immune component that may determine the evolution of DR by compromising the immune response of the retina, which is mediated by [...] Read more.
Diabetic retinopathy (DR) is one of the most prevalent secondary complications associated with diabetes. Specifically, Type 1 Diabetes Mellitus (T1D) has an immune component that may determine the evolution of DR by compromising the immune response of the retina, which is mediated by microglia. In the early stages of DR, the permeabilization of the blood–retinal barrier allows immune cells from the peripheral system to interact with the retinal immune system. The use of new bioactive molecules, such as 3-(2,4-dihydroxyphenyl)phthalide (M9), with powerful anti-inflammatory activity, might represent an advance in the treatment of diseases like DR by targeting the immune systems responsible for its onset and progression. Our research aimed to investigate the molecular mechanisms involved in the interaction of specific cells of the innate immune system during the progression of DR and the reduction in inflammatory processes contributing to the pathology. In vitro studies were conducted exposing Bv.2 microglial and Raw264.7 macrophage cells to proinflammatory stimuli for 24 h, in the presence or absence of M9. Ex vivo and in vivo approaches were performed in BB rats, an animal model for T1D. Retinal explants from BB rats were cultured with M9. Retinas from BB rats treated for 15 days with M9 via intraperitoneal injection were analyzed to determine survival, cellular signaling, and inflammatory markers using qPCR, Western blot, or immunofluorescence approaches. Retinal structure images were acquired via Spectral-Domain–Optical Coherence Tomography (SD-OCT). Our results show that the treatment with M9 significantly reduces inflammatory processes in in vitro, ex vivo, and in vivo models of DR. M9 works by inhibiting the proinflammatory responses during DR progression mainly affecting immune cell responses. It also induces an anti-inflammatory response, primarily mediated by microglial cells, leading to the synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). Ultimately, in vivo administration of M9 preserves the retinal integrity from the degeneration associated with DR progression. Our findings demonstrate a specific interaction between both retinal and systemic immune cells in the progression of DR, with a differential response to treatment, mainly driven by microglia in the anti-inflammatory action. In vivo treatment with M9 induces a switch in immune cell phenotypes and functions that contributes to delaying the DR progression, positioning microglial cells as a new and specific therapeutic target in DR. Full article
(This article belongs to the Special Issue Advances in the Pathophysiology and Treatment of Diabetic Retinopathy)
Show Figures

Figure 1

13 pages, 6475 KiB  
Article
Investigating the Impact of Origins on the Quality Characteristics of Celery Seeds Based on Metabolite Analysis through HS-GC-IMS, HS-SPME-GC-MS and UPLC-ESI-MS/MS
by Jun Yan, Lizhong He, Zhiwu Huang, Hong Wang, Li Yu and Weimin Zhu
Foods 2024, 13(10), 1428; https://doi.org/10.3390/foods13101428 - 7 May 2024
Cited by 6 | Viewed by 1639
Abstract
Celery seeds contain various bioactive compounds and are commonly used as a spice and nutritional supplement in people’s daily lives. The quality of celery seeds sold on the market varies, and their regions of production are unclear. This study evaluated the metabolites of [...] Read more.
Celery seeds contain various bioactive compounds and are commonly used as a spice and nutritional supplement in people’s daily lives. The quality of celery seeds sold on the market varies, and their regions of production are unclear. This study evaluated the metabolites of Chinese celery seeds from three production regions using HS-SPME-GC-MS, HS-GC-IMS, and UPLC-ESI-MS/MS. The results indicate that GC-IMS analysis obtained a metabolic profile different from that detected using GC-MS. Terpenoids, polyphenols, coumarins, and phthalides are the main bioactive compounds in celery seeds. The production region significantly affects the metabolic characteristics of celery seeds. Based on GC-MS data, GC-IMS data, and LC-MS data, the variation analysis screened 6, 12, and 8 metabolites as potential characteristic metabolites in celery seeds related to the production region, respectively. According to the aromatic characteristics of the characteristic metabolites, seeds from the HCQ region and HZC region have a strong herbal, woody, celery, and turpentine aroma. The concentration of secondary metabolites was highest in the seeds from the HCQ region followed by the HZC region, and it was the lowest in the JJC region. Altogether, this study investigates how geographical origins influence the metabolomic profile of celery seeds. The results can be used to guide the planting and harvesting of celery seeds in suitable regions. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

19 pages, 7744 KiB  
Article
Levistilide A Exerts a Neuroprotective Effect by Suppressing Glucose Metabolism Reprogramming and Preventing Microglia Polarization Shift: Implications for Parkinson’s Disease
by Mingjie Zhang, Congyan Duan, Weifang Lin, Honghua Wu, Lu Chen, Hong Guo, Minyu Yu, Qi Liu, Yaling Nie, Hong Wang and Shaoxia Wang
Molecules 2024, 29(4), 912; https://doi.org/10.3390/molecules29040912 - 19 Feb 2024
Cited by 3 | Viewed by 2642
Abstract
The microglia, displaying diverse phenotypes, play a significant regulatory role in the development, progression, and prognosis of Parkinson’s disease. Research has established that glycolytic reprogramming serves as a critical regulator of inflammation initiation in pro-inflammatory macrophages. Furthermore, the modulation of glycolytic reprogramming has [...] Read more.
The microglia, displaying diverse phenotypes, play a significant regulatory role in the development, progression, and prognosis of Parkinson’s disease. Research has established that glycolytic reprogramming serves as a critical regulator of inflammation initiation in pro-inflammatory macrophages. Furthermore, the modulation of glycolytic reprogramming has the potential to reverse the polarized state of these macrophages. Previous studies have shown that Levistilide A (LA), a phthalide component derived from Angelica sinensis, possesses a range of pharmacological effects, including anti-inflammatory, antioxidant, and neuroprotective properties. In our study, we have examined the impact of LA on inflammatory cytokines and glucose metabolism in microglia induced by lipopolysaccharide (LPS). Furthermore, we explored the effects of LA on the AMPK/mTOR pathway and assessed its neuroprotective potential both in vitro and in vivo. The findings revealed that LA notably diminished the expression of M1 pro-inflammatory factors induced by LPS in microglia, while leaving M2 anti-inflammatory factor expression unaltered. Additionally, it reduced ROS production and suppressed IκB-α phosphorylation levels as well as NF-κB p65 nuclear translocation. Notably, LA exhibited the ability to reverse microglial glucose metabolism reprogramming and modulate the phosphorylation levels of AMPK/mTOR. In vivo experiments further corroborated these findings, demonstrating that LA mitigated the death of TH-positive dopaminergic neurons and reduced microglia activation in the ventral SNpc brain region of the midbrain and the striatum. In summary, LA exhibited neuroprotective benefits by modulating the polarization state of microglia and altering glucose metabolism, highlighting its therapeutic potential. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

18 pages, 3079 KiB  
Article
Defense Mechanisms Induced by Celery Seed Essential Oil against Powdery Mildew Incited by Podosphaera fusca in Cucumber
by Hajar Soleimani, Reza Mostowfizadeh-Ghalamfarsa, Mustafa Ghanadian, Akbar Karami and Santa Olga Cacciola
J. Fungi 2024, 10(1), 17; https://doi.org/10.3390/jof10010017 - 27 Dec 2023
Cited by 12 | Viewed by 2643
Abstract
This study aimed to evaluate the effectiveness of essential oil extracted from celery (Apium graveolens) seeds (CSEO) for the control of powdery mildew of cucumber (Cucumis sativus) incited by Podosphaera fusca and to investigate the metabolic and genetic defense [...] Read more.
This study aimed to evaluate the effectiveness of essential oil extracted from celery (Apium graveolens) seeds (CSEO) for the control of powdery mildew of cucumber (Cucumis sativus) incited by Podosphaera fusca and to investigate the metabolic and genetic defense mechanisms triggered by the treatment with this essential oil in cucumber seedlings. The main compounds in the CSEO as determined by gas chromatography–mass spectrometry (GC-MS) analysis were d-limonene, 3-butyl phthalide, β-selinene, and mandelic acid. The treatment with CSEO led to an increase in the content of both chlorophyll and phenolic/flavonoid compounds in cucumber leaves. In greenhouse tests, the application of CSEO reduced by 60% the disease severity on leaves of cucumber plants and stimulated the activity of defense-related enzymes such as β-1,3-glucanase, chitinase, phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase. Moreover, treatment with CSEO induced overexpression of β-1,3-glucanase, chitinase, and phenylalanine ammonia-lyase genes. A highly significant correlation was found between the β-1,3-glucanase, chitinase, and phenylalanine ammonia-lyase enzymatic activities and the relative expression of the corresponding encoding genes in both inoculated and non-inoculated cucumber seedlings treated with the essential oil. Overall, this study showed that CSEO is a promising eco-friendly candidate fungicide that can be exploited to control cucumber powdery mildew. Full article
Show Figures

Figure 1

31 pages, 4546 KiB  
Article
The Conservation and Study of Macromycetes in the Komarov Botanical Institute Basidiomycetes Culture Collection—Their Taxonomical Diversity and Biotechnological Prospects
by Nadezhda V. Psurtseva, Anna A. Kiyashko, Svetlana V. Senik, Natalya V. Shakhova and Nina V. Belova
J. Fungi 2023, 9(12), 1196; https://doi.org/10.3390/jof9121196 - 14 Dec 2023
Cited by 2 | Viewed by 3199
Abstract
Culture collections (CCs) play an important role in the ex situ conservation of biological material and maintaining species and strains, which can be used for scientific and practical purposes. The Komarov Botanical Institute Basidiomycetes Culture Collection (LE-BIN) preserves a large number of original [...] Read more.
Culture collections (CCs) play an important role in the ex situ conservation of biological material and maintaining species and strains, which can be used for scientific and practical purposes. The Komarov Botanical Institute Basidiomycetes Culture Collection (LE-BIN) preserves a large number of original dikaryon strains of various taxonomical and ecological groups of fungi from different geographical regions. Started in the late 1950s for the investigation of Basidiomycetes’ biological activity, today, in Russia, it has become a unique specialized macromycetes collection, preserving 3680 strains from 776 species of fungi. The Collection’s development is aimed at ex situ conservation of fungal diversity, with an emphasis on preserving rare and endangered species, ectomycorrhizal fungi, and strains useful for biotechnology and medicine. The main methods applied in the collection for maintaining and working with cultures are described, and the results are presented. Some problems for the isolation and cultivation of species are discussed. The taxonomical structure and variety of the strains in the collection fund are analyzed, and they show that the taxonomical diversity of fungi in the LE-BIN is commensurable with the largest CCs in the world. The achievements from the ex situ conservation of the diversity of macromycetes and the main results from the screening and investigation of the collection’s strains demonstrate that a number of strains can be prospective producers of enzymes (oxidoreductases and proteases), lipids, and biologically active compounds (terpenoids, phthalides, etc.) for biotechnology and medicine. Full article
(This article belongs to the Special Issue Macromycetes: Diversity and Biotechnological Potential)
Show Figures

Figure 1

2 pages, 546 KiB  
Correction
Correction: Gong et al. Neuroprotective and Cytotoxic Phthalides from Angelicae Sinensis Radix. Molecules 2016, 21, 549
by Wenxia Gong, Yuzhi Zhou, Xiao Li, Xiaoxia Gao, Junsheng Tian, Xuemei Qin and Guanhua Du
Molecules 2023, 28(23), 7814; https://doi.org/10.3390/molecules28237814 - 28 Nov 2023
Viewed by 958
Abstract
Error in Figure [...] Full article
Show Figures

Figure 1

17 pages, 7056 KiB  
Article
The Performance and Synthesis of Alkynyl−Functionalized Benzoxazine Containing Phthalide Side Groups and Cyano Groups with Different Molecular Weights
by Nianjun Kang, Shuai Yang, Xuhai Xiong, Anchang Han, Rong Ren and Jing Wang
Polymers 2023, 15(16), 3478; https://doi.org/10.3390/polym15163478 - 20 Aug 2023
Cited by 5 | Viewed by 2104
Abstract
Benzoxazine resins are widely employed in a variety of applications due to their exceptional heat resistance and treatment properties. However, traditional benzoxazine resins still confront hurdles in today’s engineering applications, such as their inability to provide long-term service in high-temperature settings and their [...] Read more.
Benzoxazine resins are widely employed in a variety of applications due to their exceptional heat resistance and treatment properties. However, traditional benzoxazine resins still confront hurdles in today’s engineering applications, such as their inability to provide long-term service in high-temperature settings and their inadequate toughness. In this study, four alkyne-functionalized benzoxazines with phthalide side groups and cyano groups of varying molecular weights were produced. Fourier transform infrared spectroscopy (FT-IR) and hydrogen nuclear magnetic resonance spectroscopy (1H-NMR) were used to characterize the resin structure, and differential scanning calorimetry (DSC) was used to investigate the thermal curing kinetics at different warming rates. The apparent activation energy was 116.9 kJ/mol. In-situ FT-IR was used to investigate the cure mechanism. Dynamic mechanical analysis (DMA) was used to evaluate the gelation time of BOZ series resins at various temperatures, and the curing process was designed by combining the results with DSC. The Tg of the composites made using BOZ-1N21 as the matrix was 336 °C, which was much higher than the Tg of the BP-a resin made with aniline, phenolphthalein, and formaldehyde (Tg = 251 °C). As a result, the resin system is expected to be employed in applications requiring high-temperature resistance and toughness. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 2024 KiB  
Article
Chemical Investigations in Kelussia odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses
by Mehdi Rahimmalek, Antoni Szumny, Shima Gharibi, Natalia Pachura, Mehran Miroliaei and Jacek Łyczko
Molecules 2023, 28(16), 6140; https://doi.org/10.3390/molecules28166140 - 19 Aug 2023
Cited by 10 | Viewed by 2207
Abstract
Kelussia odoratissima Mozaff. is a species of Apiaceae endemic to the Zagros Mountains in Iran. In the present investigation, for the first time, the polyphenolic compounds and flavonoids of its leaves were determined by liquid chromatography-mass spectrometry (LC-MS). As a result, p-coumaric [...] Read more.
Kelussia odoratissima Mozaff. is a species of Apiaceae endemic to the Zagros Mountains in Iran. In the present investigation, for the first time, the polyphenolic compounds and flavonoids of its leaves were determined by liquid chromatography-mass spectrometry (LC-MS). As a result, p-coumaric acid, ferulic acid, caffeic acid, chlorogenic acid, acetyl phloroglucinol, vanillic acid, m-coumaric acid, and 4-methylsiringol were determined as the main phenolic compounds, while 3-hydroxyflavone, flavone, quercetin, rutin, neohesperidin, polydatin, and diosmin were the main flavonoid components, of which chlorogenic acid (303.08 µL/gDW), neohesperidin (38.37 µL/gDw), and diosmin (28.62 µL/gDW) were the most abundant. Solid-phase microextraction (SPME) was also used to determine the chemical compounds. Based on SPME, (Z)-undec-6-en-2-one (17.48%) and (Z)-butylidenephthalide (4.348%) were the major components. Based on GC-MS analyses, (Z)-ligustilide was the main compound; however, some new compounds were also determined, including 3-ethylisobenzofuran-1 (3H)-one, (E)-ligugustilide, and E-n-butylidene phthalide. Also, for the first time, we have identified EOs ethyl and isobutyl phthalides on the basis of the obtained EI-MS spectra. Finally, the fragmentation of phthalides is also discussed in this research. Full article
(This article belongs to the Special Issue Chemistry of Essential Oils: The Incredible Wealth of Plants)
Show Figures

Figure 1

15 pages, 3317 KiB  
Article
Non-Conjugated Poly(Diphenylene Phthalide)—New Electroactive Material
by Danfis D. Karamov, Azat F. Galiev, Alexey A. Lachinov, Khalim I. Davlyatgareev, Sergey N. Salazkin, Artur R. Yakhin and Alexey N. Lachinov
Polymers 2023, 15(16), 3366; https://doi.org/10.3390/polym15163366 - 10 Aug 2023
Cited by 2 | Viewed by 1710
Abstract
In organic electronics, conjugated conductive polymers are most widely used. The scope of their application is currently very wide. Non-conjugated polymers are used much less in electronics and are usually used as insulation materials or materials for capacitors. However, the potential of non-conjugated [...] Read more.
In organic electronics, conjugated conductive polymers are most widely used. The scope of their application is currently very wide. Non-conjugated polymers are used much less in electronics and are usually used as insulation materials or materials for capacitors. However, the potential of non-conjugated polymers is much wider, due to the fact that new electronic materials with unique electronic properties can be created on the basis of non-conjugated polymers, as well as other inorganic dielectrics. This article demonstrates the possibilities of creating electrically conductive materials with unique electronic parameters based on non-conjugated polymers. The results of the study of the sensory properties of humidity are given as examples of the practical application of the structure. The abnormal electronic properties are realized along the interface of two polymer dielectrics with functional polar groups. The submicron films of polydiphenylenephthalide were used as a dielectric. It is shown that a quasi-two-dimensional electronic structure with abnormally large values of conductivity and mobility of charge carriers occurs along the interface. These structures are often called quasi-two-dimensional electron gas (Q2DEG). This article describes the manufacturing processes of multielectrode devices. Polymer films are deposited via the spin-coating method with polymer solutions in cyclohexanone. The metal electrodes were manufactured through thermal deposition in a vacuum. Three types of metal electrodes made of aluminum, copper and chromium were used. The influence of the electron work function of contacting metals on the electronic parameters of the structure was studied. It was established that the work function decrease leads to an increase in the conductivity and mobility of charge carriers. The charge carrier parameters were estimated based on the analysis of the current-voltage characteristics within the space-charge-limited current technique. The Richardson-Schottky thermionic emission model was used to evaluate values a potential barrier at metal/organic interfaces. It was established that the change in ambient humidity strongly affects the electronic transport properties along the polymer/polymer interface. It is demonstrated that the increase in conductivity with an increase in humidity occurs due to an increase in the mobility of charge carriers and a decrease in the height of the potential barrier at the three-dimensional metal contact with two-dimensional polymer interface. The potential barrier between the electrode and the bulk of the polymer film is significantly higher than between the electrode and the quasi-two-dimensional polymer structure. Full article
(This article belongs to the Special Issue Polymer Based Electronic Devices and Sensors II)
Show Figures

Figure 1

23 pages, 4574 KiB  
Article
Fungistatic Effect of Phthalide Lactones on Rhodotorula mucilaginosa
by Joanna Gach, Teresa Olejniczak, Jakub Pannek and Filip Boratyński
Molecules 2023, 28(14), 5423; https://doi.org/10.3390/molecules28145423 - 15 Jul 2023
Cited by 2 | Viewed by 1958
Abstract
Currently, there is an increasing number of cases of fungal infections caused by opportunistic strains of the yeast Rhodotorula mucilaginosa, mainly in immunocompromised patients during hospitalization. The excessive use of antibiotics and azole compounds increases the risk of resistance to microorganisms. A [...] Read more.
Currently, there is an increasing number of cases of fungal infections caused by opportunistic strains of the yeast Rhodotorula mucilaginosa, mainly in immunocompromised patients during hospitalization. The excessive use of antibiotics and azole compounds increases the risk of resistance to microorganisms. A new alternative to these drugs may be synthetic phthalide lactones with a structure identical to or similar to the natural ones found in celery plants, which show low toxicity and relatively high fungistatic activity. In the present study, the fungistatic activity of seven phthalide lactones was determined against R. mucilaginosa IHEM 18459. We showed that 3-n-butylidenephthalide, the most potent compound selected in the microdilution test, caused a dose-dependent decrease in dry yeast biomass. Phthalide accumulated in yeast cells and contributed to an increase in reactive oxygen species content. The synergistic effect of fluconazole resulted in a reduction in the azole concentration required for yeast inhibition. We observed changes in the color of the yeast cultures; thus, we conducted experiments to prove that the carotenoid profile was altered. The addition of lactones also triggered a decline in fatty acid methyl esters. Full article
(This article belongs to the Special Issue Design, Synthesis, and Biological Evaluation of Antimicrobial Agents)
Show Figures

Figure 1

20 pages, 3662 KiB  
Review
Senkyunolide I: A Review of Its Phytochemistry, Pharmacology, Pharmacokinetics, and Drug-Likeness
by Yan Huang, Yan Wu, Hongxiang Yin, Leilei Du and Chu Chen
Molecules 2023, 28(8), 3636; https://doi.org/10.3390/molecules28083636 - 21 Apr 2023
Cited by 15 | Viewed by 3582
Abstract
Senkyunolide I (SI) is a natural phthalide that has drawn increasing interest for its potential as a cardio-cerebral vascular drug candidate. In this paper, the botanical sources, phytochemical characteristics, chemical and biological transformations, pharmacological and pharmacokinetic properties, and drug-likeness of SI are reviewed [...] Read more.
Senkyunolide I (SI) is a natural phthalide that has drawn increasing interest for its potential as a cardio-cerebral vascular drug candidate. In this paper, the botanical sources, phytochemical characteristics, chemical and biological transformations, pharmacological and pharmacokinetic properties, and drug-likeness of SI are reviewed through a comprehensive literature survey, in order to provide support for its further research and applications. In general, SI is mainly distributed in Umbelliferae plants, and it is relatively stable to heat, acid, and oxygen, with good blood–brain barrier (BBB) permeability. Substantial studies have established reliable methods for the isolation, purification, and content determination of SI. Its pharmacological effects include analgesic, anti-inflammatory, antioxidant, anti-thrombotic, anti-tumor effects, alleviating ischemia–reperfusion injury, etc. Pharmacokinetic parameters indicate that its metabolic pathway is mainly phase Ⅱ metabolism, and it is rapidly absorbed in vivo and widely distributed in the kidneys, liver, and lungs. Full article
Show Figures

Figure 1

21 pages, 1776 KiB  
Article
New Hybrid Phenalenone Dimer, Highly Conjugated Dihydroxylated C28 Steroid and Azaphilone from the Culture Extract of a Marine Sponge-Associated Fungus, Talaromyces pinophilus KUFA 1767
by Fátima P. Machado, Inês C. Rodrigues, Aikaterini Georgopolou, Luís Gales, José A. Pereira, Paulo M. Costa, Sharad Mistry, Salar Hafez Ghoran, Artur M. S. Silva, Tida Dethoup, Emília Sousa and Anake Kijjoa
Mar. Drugs 2023, 21(3), 194; https://doi.org/10.3390/md21030194 - 21 Mar 2023
Cited by 7 | Viewed by 3255
Abstract
An undescribed hybrid phenalenone dimer, talaropinophilone (3), an unreported azaphilone, 7-epi-pinazaphilone B (4), an unreported phthalide dimer, talaropinophilide (6), and an undescribed 9R,15S-dihydroxy-ergosta-4,6,8 (14)-tetraen-3-one (7) were isolated together with [...] Read more.
An undescribed hybrid phenalenone dimer, talaropinophilone (3), an unreported azaphilone, 7-epi-pinazaphilone B (4), an unreported phthalide dimer, talaropinophilide (6), and an undescribed 9R,15S-dihydroxy-ergosta-4,6,8 (14)-tetraen-3-one (7) were isolated together with the previously reported bacillisporins A (1) and B (2), an azaphilone derivative, Sch 1385568 (5), 1-deoxyrubralactone (8), acetylquestinol (9), piniterpenoid D (10) and 3,5-dihydroxy-4-methylphthalaldehydic acid (11) from the ethyl acetate extract of the culture of a marine sponge-derived fungus, Talaromyces pinophilus KUFA 1767. The structures of the undescribed compounds were elucidated by 1D and 2D NMR as well as high-resolution mass spectral analyses. The absolute configuration of C-9′ of 1 and 2 was revised to be 9′S using the coupling constant value between C-8′ and C-9′ and was confirmed by ROESY correlations in the case of 2. The absolute configurations of the stereogenic carbons in 7 and 8 were established by X-ray crystallographic analysis. Compounds 1,2, 48, 10 and 11 were tested for antibacterial activity against four reference strains, viz. two Gram-positive (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and two Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as three multidrug-resistant strains, viz. an extended-spectrum β-lactamase (ESBL)-producing E. coli, a methicillin-resistant S. aureus (MRSA) and a vancomycin-resistant E. faecalis (VRE). However, only 1 and 2 exhibited significant antibacterial activity against both S. aureus ATCC 29213 and MRSA. Moreover, 1 and 2 also significantly inhibited biofilm formation in S. aureus ATCC 29213 at both MIC and 2xMIC concentrations. Full article
Show Figures

Figure 1

Back to TopTop