Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (145)

Search Parameters:
Keywords = photovoltaic panel cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5900 KiB  
Article
Experimental Testing and Seasonal Performance Assessment of a Stationary and Sun-Tracked Photovoltaic–Thermal System
by Ewa Kozak-Jagieła, Piotr Cisek, Adam Pawłowski, Jan Taler and Paweł Albrechtowicz
Energies 2025, 18(15), 4064; https://doi.org/10.3390/en18154064 - 31 Jul 2025
Viewed by 307
Abstract
This study presents a comparative analysis of the annual performances of stationary and dual-axis sun-tracked photovoltaic–thermal (PVT) systems. The experimental research was conducted at a demonstration site in Oświęcim, Poland, where both systems were evaluated in terms of electricity and heat production. The [...] Read more.
This study presents a comparative analysis of the annual performances of stationary and dual-axis sun-tracked photovoltaic–thermal (PVT) systems. The experimental research was conducted at a demonstration site in Oświęcim, Poland, where both systems were evaluated in terms of electricity and heat production. The test installation consisted of thirty stationary PVT modules and five dual-axis sun-tracking systems, each equipped with six PV modules. An innovative cooling system was developed for the PVT modules, consisting of a surface-mounted heat sink installed on the rear side of each panel. The system includes embedded tubes through which a cooling fluid circulates, enabling efficient heat recovery. The results indicated that the stationary PVT system outperformed a conventional fixed PV installation, whose expected output was estimated using PVGIS data. Specifically, the stationary PVT system generated 26.1 kWh/m2 more electricity annually, representing a 14.8% increase. The sun-tracked PVT modules yielded even higher gains, producing 42% more electricity than the stationary system, with particularly notable improvements during the autumn and winter seasons. After accounting for the electricity consumed by the tracking mechanisms, the sun-tracked PVT system still delivered a 34% higher net electricity output. Moreover, it enhanced the thermal energy output by 85%. The findings contribute to the ongoing development of high-performance PVT systems and provide valuable insights for their optimal deployment in various climatic conditions, supporting the broader integration of renewable energy technologies in building energy systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

33 pages, 7013 KiB  
Article
Towards Integrated Design Tools for Water–Energy Nexus Solutions: Simulation of Advanced AWG Systems at Building Scale
by Lucia Cattani, Roberto Figoni, Paolo Cattani and Anna Magrini
Energies 2025, 18(14), 3874; https://doi.org/10.3390/en18143874 - 21 Jul 2025
Viewed by 448
Abstract
This study investigated the integration of advanced Atmospheric Water Generators (AWGs) within the design process of building energy systems, focusing on the water–energy nexus in the context of a real-life hospital building. It is based on a simulation approach, recognised as a viable [...] Read more.
This study investigated the integration of advanced Atmospheric Water Generators (AWGs) within the design process of building energy systems, focusing on the water–energy nexus in the context of a real-life hospital building. It is based on a simulation approach, recognised as a viable means to analyse and enhance AWG potentialities. However, the current state of research does not address the issue of AWG integration within building plant systems. This study contributes to fill such a research gap by building upon an authors’ previous work and proposing an enhanced methodology. The methodology describes how to incorporate a multipurpose AWG system into the energy simulation environment of DesignBuilder (DB), version 7.0.0116, through its coupling with AWGSim, version 1.20d, a simulation tool specifically developed for atmospheric water generators. The chosen case study is a wing of the Mondino Hospital in Pavia, Italy, selected for its complex geometry and HVAC requirements. By integrating AWG outputs—covering water production, heating, and cooling—into DB, this study compared two configurations: the existing HVAC system and an enhanced version that includes the AWG as plant support. The simulation results demonstrated a 16.3% reduction in primary energy consumption (from 231.3 MWh to 193.6 MWh), with the elimination of methane consumption and additional benefits in water production (257 m3). This water can be employed for photovoltaic panel cleaning, further reducing the primary energy consumption to 101.9 MWh (55.9% less than the existing plant), and for human consumption or other technical needs. Moreover, this study highlights the potential of using AWG technology to supply purified water, which can be a pivotal solution for hospitals located in areas affected by water crises. This research contributes to the atmospheric water field by addressing the important issue of simulating AWG systems within building energy design tools, enabling informed decisions regarding water–energy integration at the project stage and supporting a more resilient and sustainable approach to building infrastructure. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 365
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

22 pages, 3165 KiB  
Article
Efficiency Enhancement of Photovoltaic Panels via Air, Water, and Porous Media Cooling Methods: Thermal–Electrical Modeling
by Brahim Menacer, Nour El Houda Baghdous, Sunny Narayan, Moaz Al-lehaibi, Liomnis Osorio and Víctor Tuninetti
Sustainability 2025, 17(14), 6559; https://doi.org/10.3390/su17146559 - 18 Jul 2025
Viewed by 493
Abstract
Improving photovoltaic (PV) panel performance under extreme climatic conditions is critical for advancing sustainable energy systems. In hyper-arid regions, elevated operating temperatures significantly reduce panel efficiency. This study investigates and compares three cooling techniques—air cooling, water cooling, and porous media cooling—using thermal and [...] Read more.
Improving photovoltaic (PV) panel performance under extreme climatic conditions is critical for advancing sustainable energy systems. In hyper-arid regions, elevated operating temperatures significantly reduce panel efficiency. This study investigates and compares three cooling techniques—air cooling, water cooling, and porous media cooling—using thermal and electrical modeling based on CFD simulations in ANSYS. The numerical model replicates a PV system operating under peak solar irradiance (900 W/m2) and realistic ambient conditions in Adrar, Algeria. Simulation results show that air cooling leads to a modest temperature reduction of 6 °C and a marginal efficiency gain of 0.25%. Water cooling, employing a top-down laminar flow, reduces cell temperature by over 35 °C and improves net electrical output by 30.9%, despite pump energy consumption. Porous media cooling, leveraging passive evaporation through gravel, decreases panel temperature by around 30 °C and achieves a net output gain of 26.3%. Mesh sensitivity and validation against experimental data support the accuracy of the model. These findings highlight the significant potential of water and porous material cooling strategies to enhance PV performance in hyper-arid environments. The study also demonstrates that porous media can deliver high thermal effectiveness with minimal energy input, making it a suitable low-cost option for off-grid applications. Future work will integrate long-term climate data, real diffuser geometries, and experimental validation to further refine these models. Full article
Show Figures

Figure 1

29 pages, 7665 KiB  
Article
Energy Sustainability, Resilience, and Climate Adaptability of Modular and Panelized Buildings with a Lightweight Envelope Integrating Active Thermal Protection: Part 2—Design and Implementation of an Experimental Prototype of a Building Module for Modular Buildings
by Daniel Kalús, Veronika Mučková, Zuzana Straková, Rastislav Ingeli, Naďa Antošová, Patrik Šťastný, Marek Ďubek, Mária Füri and Martin Bolček
Coatings 2025, 15(7), 781; https://doi.org/10.3390/coatings15070781 - 2 Jul 2025
Viewed by 785
Abstract
The integration of energy-active elements into the building envelope in the form of large-area heating/cooling, active thermal protection (ATP), thermal barriers (TB), and TABS represents a technical solution that is consistent with the principles of energy sustainability, resilience, and adaptability to climate change [...] Read more.
The integration of energy-active elements into the building envelope in the form of large-area heating/cooling, active thermal protection (ATP), thermal barriers (TB), and TABS represents a technical solution that is consistent with the principles of energy sustainability, resilience, and adaptability to climate change and ensures affordable and clean energy for all while protecting the climate in the context of the UN Sustainable Development Goals. The aim and innovation of our research is to develop energy multifunctional facades (EMFs) that are capable of performing a dual role, which includes the primary known energy functions of end elements and the additional innovative ability to serve as a source of heat/cooling/electricity. This new function of EMFs will facilitate heat dissipation from overheated facade surfaces, preheating of hot water, and electricity generation for the operation of building energy systems through integrated photovoltaic components. The theoretical assumptions and hypotheses presented in our previous research work must be verified by experimental measurements with predictions of the optimal operation of building energy systems. Most existing studies on thermal barriers are based on calculations. However, there are few empirical measurements that quantify the benefits of ATP in real operation and specify the conditions under which different types of ATP are feasible. In this article, we present the development, design, and implementation of an experimental prototype of a prefabricated building module with integrated energy-active elements. The aim is to fill the knowledge gaps by providing a comprehensive framework that includes the development, research, design, and implementation of combined energy systems for buildings. The design of energy systems will be developed in BIM. An important result of this research is the development of a technological process for the implementation of a contact insulation system with integrated ATP in modular and panel buildings with a lightweight envelope. Full article
Show Figures

Figure 1

18 pages, 2429 KiB  
Article
Management of Energy Production in a Hybrid Combination of a Heat Pump and a Photovoltaic Thermal (PVT) Collector
by Wojciech Luboń, Artur Jachimowski, Michał Łyczba, Grzegorz Pełka, Mateusz Wygoda, Dominika Dawiec, Roger Książek, Wojciech Sorociak and Klaudia Krawiec
Energies 2025, 18(13), 3463; https://doi.org/10.3390/en18133463 - 1 Jul 2025
Cited by 1 | Viewed by 358
Abstract
The purpose of the study is to investigate the energy performance of a PVT collector in combination with a heat pump. First, a test system combining a heat pump and PVT module is built, and then its performance is carefully measured, assessing the [...] Read more.
The purpose of the study is to investigate the energy performance of a PVT collector in combination with a heat pump. First, a test system combining a heat pump and PVT module is built, and then its performance is carefully measured, assessing the electricity and heat production. The paper focuses on increasing the efficiency of a photovoltaic (PV) panel (as part of the PVT module) by cooling it with a heat pump. The main idea is to use the heat generated by the warming panels as a low-temperature source for the heat pump. The research aims to maximize the use of solar energy in the form of both electricity and heat. In traditional PV systems, the panel temperature rise reduces the solar-to-electric conversion efficiency. Therefore, cooling with a heat pump is increasingly used to keep panels at optimal temperatures and improve performance. The tests confirm that cooling the panels with a heat pump results in an 11.4% improvement in electrical efficiency, an increase from 10.8% to 12.0%, with an average system efficiency of 11.81% and a temperature coefficient of –0.37%/°C. The heat pump achieves a COP of 3.45, while thermal energy from the PVT panel accounts for up to 60% of the heat input when the air exchanger is off. The surface temperature of the PVT panels varies from 11 °C to 70 °C, and cooling enables an increase in electricity yield of up to 20% during sunny periods. This solution is especially promising for facilities with year-round thermal demand (e.g., swimming pools, laundromats). Full article
Show Figures

Figure 1

32 pages, 1002 KiB  
Article
A Robust Modeling Analysis of Environmental Factors Influencing the Direct Current, Power, and Voltage of Photovoltaic Systems
by Ali Al Humairi, Hayat El Asri, Zuhair A. Al Hemyari and Peter Jung
Electronics 2025, 14(13), 2647; https://doi.org/10.3390/electronics14132647 - 30 Jun 2025
Viewed by 339
Abstract
Solar photovoltaic technology has become a cornerstone of the renewable energy sector over the last 20 years, yet its efficiency remains sensitive to environmental and operational conditions. This study rigorously analyzes how irradiance, temperature, humidity, wind speed, and soiling affect key electrical outputs—Direct [...] Read more.
Solar photovoltaic technology has become a cornerstone of the renewable energy sector over the last 20 years, yet its efficiency remains sensitive to environmental and operational conditions. This study rigorously analyzes how irradiance, temperature, humidity, wind speed, and soiling affect key electrical outputs—Direct current, power, and voltage—of solar panels using advanced robust regression methods: Ridge Regression, Least Absolute Deviation, and M-Estimation. Our results demonstrate that irradiance is the dominant driver of performance, with Ridge Regression coefficients reaching up to 1193 for power. The M-estimation model achieved high predictive accuracy, with R2 Scores of 0.989 for current (Mean Squared Error = 0.0399) and 0.991 for power (Mean Squared Error ≈ 10,445), indicating strong model reliability. voltage prediction was more challenging but still robust (R2 = 0.836, Mean Squared Error = 49.63). Negative impacts from ambient temperature and humidity were consistently observed across models, while wind speed exhibited a beneficial effect by enhancing cooling and thus improving current and power outputs. Soiling was also identified as a critical factor, significantly reducing power and voltage generation. These findings provide quantifiable evidence of how environmental variables shape solar photovoltaic performance and underscore the importance of environmental monitoring and maintenance strategies to optimize energy yield in operational solar power systems. Full article
(This article belongs to the Special Issue Energy Optimization of Photovoltaic Power Plants)
Show Figures

Figure 1

13 pages, 3291 KiB  
Article
Experimental Work to Investigate the Effect of Rooftop PV Panel Shading on Building Thermal Performance
by Saad Odeh and Luke Pearling
Energies 2025, 18(13), 3429; https://doi.org/10.3390/en18133429 - 30 Jun 2025
Viewed by 370
Abstract
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their [...] Read more.
Rooftop photovoltaic (PV) panel systems have become a key component in green building design, driven by new building sustainability measures advocated worldwide. The shading generated by the rooftop PV panel arrays can impact their annual heating and cooling load, as well as their overall thermal performance. This paper presents a long-term experimental investigation into the changes in roof temperature caused by PV panels. The experiment was conducted over the course of a year, with measurements taken on four sample days each month. The study is based on measurements of the covered roof temperature, the uncovered roof temperature, PV surface temperature, ambient air temperature, as well as solar irradiation, wind speed, and rainfall. The results reveal that the annual energy savings (MJ/m2) in the cooling load due to the covered roof are about 26% higher than the energy loss from the heating load due to shading. The study shows that the effect of the rooftop PV panels on the house’s total heating and cooling load savings is between 5.3 to 6.1%. This difference is significant in thermal performance analyses, especially if most of the roof is covered by PV panels. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

32 pages, 4015 KiB  
Article
Performance Enhancement of Photovoltaic Panels Using Natural Porous Media for Thermal Cooling Management
by Ismail Masalha, Omar Badran and Ali Alahmer
Sustainability 2025, 17(12), 5468; https://doi.org/10.3390/su17125468 - 13 Jun 2025
Viewed by 466
Abstract
This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient [...] Read more.
This study investigates the potential of low-cost, naturally available porous materials (PoMs), gravel, marble, flint, and sandstone, as thermal management for photovoltaic (PV) panels. Experiments were conducted in a controlled environment at a solar energy laboratory, where variables such as solar irradiance, ambient temperature, air velocity, and water flow were carefully regulated. A solar simulator delivering a constant irradiance of 1250 W/m2 was used to replicate solar conditions throughout each 3 h trial. The test setup involved polycrystalline PV panels (30 W rated) fitted with cooling channels filled with PoMs of varying porosities (0.35–0.48), evaluated across water flow rates ranging from 1 to 4 L/min. Experimental results showed that PoM cooling significantly outperformed both water-only and passive cooling. Among all the materials tested, sandstone with a porosity of 0.35 and a flow rate of 2.0 L/min demonstrated the highest cooling performance, reducing the panel surface temperature by 58.08% (from 87.7 °C to 36.77 °C), enhancing electrical efficiency by 57.87% (from 4.13% to 6.52%), and increasing power output by 57.81% (from 12.42 W to 19.6 W) compared to the uncooled panel. The enhanced heat transfer (HT) was attributed to improved conductive and convective interactions facilitated by lower porosity and optimal fluid velocity. Furthermore, the cooling system improved I–V characteristics by stabilizing short-circuit current and enhancing open-circuit voltage. Comparative analysis revealed material-dependent efficacy—sandstone > flint > marble > gravel—attributed to thermal conductivity gradients (sandstone: 5 W/m·K vs. gravel: 1.19 W/m·K). The configuration with 0.35 porosity and a 2.0 L/min flow rate proved to be the most effective, offering an optimal balance between thermal performance and resource usage, with an 8–10% efficiency gain over standard water cooling. This study highlights 2.0 L/min as the ideal flow rate, as higher rates lead to increased water usage without significant cooling improvements. Additionally, lower porosity (0.35) enhances convective heat transfer, contributing to improved thermal performance while maintaining energy efficiency. Full article
Show Figures

Figure 1

17 pages, 2496 KiB  
Article
High-Precision Experimental Data for Thermal Model Validation of Flat-Plate Hybrid Water PV/T Collectors
by Fahad Maoulida, Rabah Djedjig, Mourad Rahim, Mohamed Aboudou Kassim and Mohammed El Ganaoui
Energies 2025, 18(11), 2972; https://doi.org/10.3390/en18112972 - 4 Jun 2025
Viewed by 1510
Abstract
An experimental setup was developed, incorporating a monitored DualSun® photovoltaic–thermal (PV/T) panel and a weather station to continuously record real-time climatic conditions. This setup enables an hour-by-hour comparison between the actual performance observed under real-world conditions and the predictions generated by the [...] Read more.
An experimental setup was developed, incorporating a monitored DualSun® photovoltaic–thermal (PV/T) panel and a weather station to continuously record real-time climatic conditions. This setup enables an hour-by-hour comparison between the actual performance observed under real-world conditions and the predictions generated by the thermal model. The generated dataset was used to evaluate a thermal model derived from the literature, comparing its predictions with measured data. The model adopts a quasi-steady-state, one-dimensional approach based on heat balance equations applied to both the photovoltaic cells and the heat transfer fluid. Conducted during the summer of 2022, the experiment provides valuable insights into the accuracy of the literature-based thermal model under summer meteorological conditions. The results show a good correlation between the experimental data and the model’s predictions. The average deviation observed for the outlet fluid temperature is 0.1 °C during the day and 1.3 °C at night. Consequently, the findings underscore the model’s effectiveness for evaluating daytime performance, while also pointing out its limitations for nighttime predictions, especially when hybrid PV/T collectors are used for applications such as nighttime free cooling. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

17 pages, 1144 KiB  
Article
Dispatch for the Industrial Micro-Grid with an Integrated Photovoltaic-Gas-Manufacturing Facility System Considering Carbon Emissions and Operation Costs
by Qian Wu and Qiankun Song
Energies 2025, 18(9), 2224; https://doi.org/10.3390/en18092224 - 27 Apr 2025
Viewed by 334
Abstract
In this paper, the dispatch for the industrial micro-grid with an integrated photovoltaic-gas-manufacturing facility system considering carbon emissions and operation costs is investigated. Two kinds of energy, electricity and natural gas, are contained in the integer energy system, in which the electricity mainly [...] Read more.
In this paper, the dispatch for the industrial micro-grid with an integrated photovoltaic-gas-manufacturing facility system considering carbon emissions and operation costs is investigated. Two kinds of energy, electricity and natural gas, are contained in the integer energy system, in which the electricity mainly comes from the PV panels and the utility electricity network, and the natural gas mainly comes from the utility gas network. In addition, electricity and natural gas can be converted into each other. Four kinds of loads, electricity load, gas load, heating load and cooling load, need to be satisfied, in which the electricity load can be divided into fixed load and flexible load. The flexible load comes from the scheduling for manufacturing facilities, and the scheduling of manufacturing facilities is modeled as a kind of deferable load to be integrated into the energy system. Moreover, daily operation costs and carbon emissions are considered in the decision, and the deviation preference strategy is used to solve this multi-objective optimization problem. Finally, a case study with a lithium-ion battery assembly system is proposed. According to the results, it can be found that the proposed model can help managers realize effective scheduling of the industrial micro-grid. Full article
Show Figures

Figure 1

19 pages, 8929 KiB  
Article
Shape-Stabilized Phase Change Materials with Expanded Graphite for Thermal Management of Photovoltaic Cells: Selection of Materials and Preparation of Panels
by Sereno Sacchet, Francesco Valentini, Marco Guidolin, Riccardo Po and Luca Fambri
Appl. Sci. 2025, 15(8), 4352; https://doi.org/10.3390/app15084352 - 15 Apr 2025
Viewed by 973
Abstract
Organic phase change materials (PCMs) have been widely studied for thermal management applications, such as the passive cooling of silicon photovoltaic (PV) cells, whose efficiency is negatively affected by rising temperature. The aim of the present study is to investigate the shape stabilization [...] Read more.
Organic phase change materials (PCMs) have been widely studied for thermal management applications, such as the passive cooling of silicon photovoltaic (PV) cells, whose efficiency is negatively affected by rising temperature. The aim of the present study is to investigate the shape stabilization of PCMs by using expanded graphite (EG) as a highly conductive supporting matrix, leading to the development of novel PCM/EG composites with melting temperatures in the range 30–50 °C. Different organic PCMs were selected and compared, i.e., two paraffins and a eutectic mixture of fatty acids (myristic and palmitic acid). The EG was vacuum-impregnated with organic PCMs, and, subsequently, powdery composites were cold-compacted to obtain dense heat-absorbing panels. The thermal conductivity was enhanced up to 6 W/m·K, guaranteeing composites with a melting enthalpy of 160 to 220 J/g. This study found that the EG vacuum impregnation method is suitable for PCM shape stabilization, and cold compaction allows for the formation of solid panels with improved thermal response. The obtained PCM/EG composites were utilized to produce panels of about 6 × 6 × 2 cm3, suitable for the thermal management of silicon PV. Full article
Show Figures

Figure 1

21 pages, 20193 KiB  
Article
Heat Transfer Analysis of Ventilated Photovoltaic Wall Panels with Curved Ribs for Different Parametric Cavity Structures
by Na Song, Xitong Xu, Yongxiao Zheng, Jikui Miao and Hongwen Yu
Buildings 2025, 15(7), 1184; https://doi.org/10.3390/buildings15071184 - 4 Apr 2025
Viewed by 585
Abstract
Photovoltaic (PV) wall panels are an integral part of Building-Integrated Photovoltaics (BIPV) and have great potential for development. However, inadequate heat dissipation can reduce power generation efficiency. To reduce the temperature of photovoltaic wall panels and improve the photovoltaic conversion efficiency, this paper [...] Read more.
Photovoltaic (PV) wall panels are an integral part of Building-Integrated Photovoltaics (BIPV) and have great potential for development. However, inadequate heat dissipation can reduce power generation efficiency. To reduce the temperature of photovoltaic wall panels and improve the photovoltaic conversion efficiency, this paper constructs a computational fluid dynamics (CFD) numerical model of ventilated photovoltaic wall panels and verifies it, then simulates and analyzes the effects of three cavity structure forms on the thermal performance of photovoltaic wall panels and optimizes the dimensional parameters of the curved-ribbed cavity structure. The average surface temperatures of flat-plate, rectangular-ribbed, and arc-ribbed cavity structure PV wall panels were 59.42 °C, 57.56 °C, and 55.39 °C, respectively, under natural ventilation conditions. Among them, the arc-ribbed cavity structure PV wall panels have the best heat dissipation effect. Further studies have shown that the curvature, rib height, width, and spacing of the curved ribs significantly affect the heat dissipation performance of the photovoltaic panels. Compared to the flat-plate cavity structure, the parameter-optimized curved-rib cavity structure significantly reduces the average surface temperature of PV panels. As solar radiation intensity increases, the optimized structure’s heat dissipation effect strengthens, achieving a 6 °C temperature reduction at 1000 W/m2 solar radiation. Full article
(This article belongs to the Topic Advances in Solar Heating and Cooling)
Show Figures

Figure 1

33 pages, 2848 KiB  
Review
A Review on Phase-Change Materials (PCMs) in Solar-Powered Refrigeration Systems
by Yali Guo, Chufan Liang, Hui Liu, Luyuan Gong, Minle Bao and Shengqiang Shen
Energies 2025, 18(6), 1547; https://doi.org/10.3390/en18061547 - 20 Mar 2025
Cited by 2 | Viewed by 1483
Abstract
Over the past few years, the combination of solar power with refrigeration technology has matured, providing a promising solution for sustainable cooling. However, a key challenge remains, namely the inherent intermittency of solar energy. Due to its uneven temporal distribution, it is difficult [...] Read more.
Over the past few years, the combination of solar power with refrigeration technology has matured, providing a promising solution for sustainable cooling. However, a key challenge remains, namely the inherent intermittency of solar energy. Due to its uneven temporal distribution, it is difficult to ensure continuous 24 h operation when relying solely on solar energy. To address this issue, thermal energy storage technology has emerged as a viable solution. This paper presents a comprehensive systematic review of phase-change material (PCM) applications in solar refrigeration systems. It systematically categorizes solar energy conversion methodologies and refrigeration system configurations while elucidating the fundamental operational principles of each solar refrigeration system. A detailed examination of system components is provided, encompassing photovoltaic panels, condensers, evaporators, solar collectors, absorbers, and generators. The analysis further investigates PCM integration strategies with these components, evaluating integration effectiveness and criteria for PCM selection. The critical physical parameters of PCMs are comparatively analyzed, including phase transition temperature, latent heat capacity, specific heat, density, and thermal conductivity. Through conducting a critical analysis of existing studies, this review comprehensively evaluates current research progress within PCM integration techniques, methodological classification frameworks, performance enhancement approaches, and system-level implementation within solar refrigeration systems. The investigation concludes by presenting strategic recommendations for future research priorities based on a comprehensive systematic evaluation of technological challenges and knowledge gaps within the domain. Full article
Show Figures

Figure 1

23 pages, 6683 KiB  
Article
Optimization Study of Air-Based Cooling Photovoltaic Roofs: Experimental and Numerical Analysis
by Yi He, Yibing Xue and Yingge Zhang
Energies 2025, 18(5), 1168; https://doi.org/10.3390/en18051168 - 27 Feb 2025
Viewed by 764
Abstract
The rapid growth of photovoltaic (PV) installed capacity has driven advancements in photovoltaic technology, such as integrating PV panels into building envelopes. Temperature increases are known to negatively impact PV panel performance. This study investigates and optimizes the design of air-based cooling systems [...] Read more.
The rapid growth of photovoltaic (PV) installed capacity has driven advancements in photovoltaic technology, such as integrating PV panels into building envelopes. Temperature increases are known to negatively impact PV panel performance. This study investigates and optimizes the design of air-based cooling systems for PV roofs using experimental and numerical analyses, leveraging free natural convection for cooling. Experimental measurements included air inlet/outlet, PV panel, and roof surface temperatures. The primary parameters examined in Computational Fluid Dynamics (CFD) for the numerical study were the heights and widths of the air channels between the panels and the rooftop, with heights ranging from 25 mm to 75 mm and widths varying from 200 mm to 400 mm. There are good agreements between the numerical results and experimental measurements after model validation. The results reveal significant temperature non-uniformity across the surface of the PV panels, with a maximum temperature difference of 16.50 °C. The shading effect of the PV panels resulted in an average reduction in roof surface temperature by 12.90 °C. Parametric studies showed that changes in height had a more pronounced effect on cooling than in width. The optimal design was identified with a channel size of 75 mm × 400 mm, resulting in the lowest average PV panel temperature of 65.21 °C and enhanced temperature uniformity, with maximum efficiency reaching 11.54%. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

Back to TopTop